論文 横補強筋を配置しないカプラー方式主筋継手を用いた RC 梁の付着 性能

市岡 有香子*1·田川 浩之*2·足立 将人*3·益尾 潔*4

要旨:カプラー方式の機械式継手を用い,継手部以外に横補強筋を均等に配置した RC 梁の,主筋の付着性 能を明らかにするため,片持ち梁試験体の付着破壊実験を行った。実験因子は,継手の有無,コンクリート 強度,横補強筋鋼種,横補強筋比である。実験の結果,梁主筋のひずみ分布は継手の有無に係わらなかった。 すなわち,継手部以外に横補強筋を均等に配置した本工法では,継手表面の付着応力の低下分が継手小口の 支圧応力と相殺されるため,梁主筋の付着性能に及ぼす継手の影響は小さいことがわかった。 キーワード:機械式継手,カプラー方式,RC梁,付着性能,支圧応力,継手小口

1. はじめに

機械式継手(以下,継手)を有する梁主筋では,継手表 面の付着力は小さいが,継手小口の支圧力を期待できる。 従来,継手を含めた鉄筋の引抜き試験¹⁾,主筋継手を配 置した梁部材の実験²⁾により,継手付き梁主筋の付着性 能が検討されている。本研究では,継手部分で設計かぶ り厚さの不足を避けるために,横補強筋を継手には配置 せず,継手部以外に均等に配置した梁主筋を有する,片 持ち RC 梁試験体の曲げせん断加力を行い,継手の有無 が梁主筋の付着性状に及ぼす影響を明らかにする。

2. 実験計画

2.1 試験体

主な試験体の形状寸法,配筋を図-1 に,梁断面を図 -2 に示す。本試験体では,AIJ 靱性指針³⁾付着強度式の 基になっている前田らの研究⁴⁾と同様,加力点および固 定端で,鋼管を用いて梁主筋の付着を切った。付着切り 鋼管の詳細を図-3 に示す。試験体一覧を表-1 に,継 手の詳細を図-4 に示す。試験体は計8体で,実験因子 は,継手の有無,コンクリート目標圧縮強度,横補強筋 鋼種,横補強筋比である。梁主筋の鋼種,本数,位置は 共通で,せん断スパン比は2である。ただし,試験体 No.1 ~No.4 と No.5~No.8 では,梁主筋に別ロットの鉄筋を 用いた。

継手あり試験体は,継手位置を試験区間のほぼ中央と し,継手カプラーには横補強筋を配置せず,継手部以外 に,継手なし試験体と同数の横補強筋を均等配置した。 また,全試験体とも,付着破壊以前の曲げまたはせん 断破壊を防止するため,中段筋(4-D22)を配置するととも に,梁断面中央はせん断補強筋を密に配置した。中段筋 は,梁固定端側では危険断面直上に機械式定着金物を配 置し,梁自由端側では端部鋼板にロックナットで固定し た。更に,3章で加力方法を示すように,下端筋・引張加

- *2 日本建築総合試験所 構造部 構造物試験室 Ph.D. (正会員)
- *3 日本建築総合試験所 構造部 構造物試験室·主査 博士(工学) (正会員)
- *4 建築構造技術支援機構 工博 (正会員)

表-1 実験計画

試験体	F	主筋		如下の	横補強筋					
	(N/mm^2)	配筋 (p _t %)	鋼種	維手の有無	鋼種	配筋	p _w	$p_w \cdot \sigma_{wy}$ (N/mm ²)	$\frac{\mathbf{p}_{w}\boldsymbol{\cdot}\boldsymbol{\sigma}_{w}}{\mathbf{F}_{c}}$	
No. 1				なしあり	SD	2-D10 @120	0.40%	1.46	0.05	
No. 3	27 60	4-D22 (1.29%)	SD 490	なし	295	2-D10	0.68%	2.50	0.08	
No. 4 No. 5				なし	785 N/mm ² 級	2-S10 @120	0.40%	3.80	0.07	
No. 7 No. 8				なしあり		2-S10 @70	0.68%	6.51	0.12	

【記号】L:片側スパン長,B:梁幅,D:梁せい,F_c:コンクリートの目標圧縮強度 p_t:引張鉄筋比, p_w:横補強筋比, σ_{wy}:横補強筋の降伏強度

【部材寸法】L=800mm, B×D=300mm×400mm 【横補強筋の加工形式】SD295:135°フック閉鎖型, 785N/mm²級:溶接閉鎖型

力時において、先に行った上端筋・引張加力時に横補強 筋が降伏する影響を除くために、上端筋と下端筋の横補 強筋は、それぞれ反対側の中段筋にかけた(図-2)。

一方,本実験に用いた機械式継手は,図-4に示すよ うに、カプラー中央部の寸法は小口よりも大きく、両側 にテーパー部を有し、小口の支圧面積比α_nは 1.3 で中 央部の支圧面積比 α_{nl}の 0.7 倍程度である。

2.2 使用材料

コンクリートと鉄筋の材料特性を表-2に示す。

			衣一	2	1121円	14 科特性			
			(a) =	レク	リート			_
		試験体	C	r B (N	$/\text{mm}^2$)	$\epsilon co(\times 10^{-3})$	3)	σ t (N/mm ²)	
	No	o.1∼No.	4	31	. 8	1.87		2.74	
	No	o.5∼No.	8	53	. 5	2.29		4.30	
注)	σB:	圧縮強度	έ, ε co	;圧	縮強周	度時ひずみ,	, ,	σt:引張強	闺度
				(b) 鉄	筋			
使用領	節所	試験体	呼び	名	鋼種	$\sigma v (N/mm^2)$	σ	$u(N/mm^2)$	伸び(%)

SD490

SD295/

SD490

KSS78

613

369

543

963

834

512

769

1125

16

29

18

11

No. 8 注) σy: 降伏点, σu: 引張強さ

D22

D10

D22

D10

No. 1

No 4

No. 5~

3. 実験方法

主筋

横補強筋

樯補強筋

俌

実験は、図-5に示すように、試験体スタブ部を固定 し、押し引き型油圧ジャッキを用いて、試験体に水平力 を加えて行った。まず上端筋が引張側となる正加力方向 に単調載荷を行って上端筋の付着破壊を生じさせ、次に 下端筋が引張側となる負加力方向に単調載荷を行った。 主な測定項目は、片持ち梁の全体水平変形量、梁主筋端 部のすべり量、梁主筋および横補強筋のひずみである。

梁主筋端部のすべり量Sは、梁自由端側の端部鋼板に取 り付けた変位計のスピンドル先を、梁主筋の端面に押し 当てて測定した。

4. 実験結果

4.1 荷重-変形関係および破壊状況

横補強筋比 pw が同じ試験体の,継手の有無による Q -R 関係の比較を図-6, 図-7 に示す。Q は水平荷重, R は加力点高さの水平変位δ_hを加力点高さ L で除した 変形角である。同図中に、後述の式(1)による AIJ 靭性指 針³⁾の付着信頼強度 τ_{bu}に基づく付着耐力 Q_{buo}, コンク リートの応力--ひずみ関係に e 関数 5), 6)を用いた平面保 持仮定による曲げ終局耐力時せん断力 Qfu を併示する。

(1) F_c=27N/mm²の試験体

正, 負加力時ともに, 曲げひび割れ, せん断ひび割れ が順に生じた後に、継手なし試験体は試験体中央高さ付 近,継手あり試験体は継手小口近傍を起点とする付着割 裂ひび割れが発生した。図-6に示すように、正加力時 は R=10×10⁻³rad.程度, 負加力時は R=-10×10⁻³rad.程度で 最大耐力±Q_{max}に到達後,付着割裂ひび割れが著しく進 展し、梁主筋の滑りを伴って耐力が低下した。継手あり 試験体 No.2, No.4 の最大耐力は,正,負加力時ともに, 継手なし試験体 No.1, No.3 と同程度となった。

各試験体の破壊形式は、正、負加力時ともに、梁主筋 の付着割裂破壊型と判断される。

(2) F_c=60N/mm²の試験体

ひび割れ発生順序は F_=27N/mm² と同様であったが, 継手あり試験体の付着割裂ひび割れの起点は継手小口 近傍に限らなかった。各試験体とも R=8~9×10⁻³rad.程 度で梁主筋が降伏し, 試験体 No.8 を除く各試験体は, 図 -7 に示すように, 正加力時は R=11×10⁻³rad.程度で Q_{max} に到達後、付着割裂ひび割れが進展し、梁主筋の滑りを 伴って耐力が低下した。試験体 No.8 では付着破壊を生じ ず耐力が低下しなかったが、R=20×10⁻³rad.で荷重を反転 した。負加力時では,正加力時に下端筋近くまで進展し たひび割れの影響により、-Qmax 到達時が R=-10~-20×

写真-1 継手の有無による損傷状況の比較

10⁻³rad.程度とばらついた。継手あり試験体 No.6, No.8 の最大耐力は, 正, 負加力時ともに, 継手なし試験体 No.5, No.7 と同程度以上となった。

正, 負加力時ともに,梁主筋降伏後の付着割裂破壊型 であると判断される。ただし,試験体 No.8 の正加力時で は,梁主筋の付着割裂破壊は見られなかった。

(3) 梁主筋に沿う付着割裂ひび割れ

 F_c27 , $p_w=0.7\%$ の試験体 No.3, No.4 について, 正側最 大耐力 Q_{max} 時近傍および負側載荷終了時での損傷状況 を写真-1に示す。正側 Q_{max} 時に, No.4 の継手近傍では, No.3 の継手なし試験体よりもひび割れ本数が多かった。 ただし, 次段落で述べるように, 付着耐力 Q_{buo} 時(R_{bu} 時) には, No.4 のひび割れ幅は 0.2mm 程度以下であり, No.3 とも大差はなく, 継手小口にひび割れが集中することは なかった。 $R=30 \times 10^3$ rad.の負側載荷終了時には、No.4 で継手近傍に大きな付着割裂ひび割れが生じたが、負側 最大耐力- Q_{max} 時までは、両試験体の損傷に差異は見られ なかった。

継手位置近傍に発生した付着割裂ひび割れ幅 w_{BC} の推移を図-8に示す。 w_{BC} の測定位置を写真-1中に示す。 同図中には、付着耐力 Q_{buo} 時の変形角 R_{bu} と短期許容付 着耐力 Q_{fa} 時の変形角 R_{fa} を併示する。 Q_{buo} は、後述の式 (1)による AIJ 靭性指針³⁾の付着信頼強度 τ_{bu} に基づく付 着耐力である。 Q_{fa} は、後述の式(2)中の τ_{bu} を短期許容付 着応力度 τ_{fa} ⁷⁾に置き換え、式(1)に代入して求めた短期許 容付着耐力である。

図-8によると,継手の有無に関わらず,Q_{fa}時(R_{fa}時) では,継手位置近傍に付着割裂ひび割れは発生していな い。 Q_{buo} 時 $(R_{bu}$ 時)では,継手あり試験体の w_{BC} は,継手 なし試験体よりも大きな値になる傾向がある。ただし, いずれも耐震性能評価指針案⁸⁾による使用限界状態(部 材が継続使用に耐えうる状態)の残留ひび割れ幅 0.2mm 程度に留まる。部材寸法によるひび割れ幅の増大率を2.0 程度,残留ひび割れ幅は最大ひび割れ幅の 1/2 程度とな ると考えると, Q_{buo} 時であっても残留ひび割れ幅は 0.2mm 程度に留まると推察される。 Q_{buo} 時以降,継手あ り試験体の w_{BC} は,継手なし試験体よりも増加した。

4.2 梁主筋ひずみと付着応力

正側最大耐力 Q_{max} 時の梁主筋ひずみ ϵ_{Mi} 分布を図-9 に示す。 F_c27 の試験体 No.1~No.4 の ϵ_{Mi} は、降伏ひず み ϵ_y に達していないが、 F_c60 の試験体 No.5~No.8 では、 ϵ_{M4} が ϵ_y に達している。コンクリート強度と横補強筋 比 p_w が同じ試験体同士では、 ϵ_{Mi} 分布に梁主筋継手の有 無による有意差は見られない。すなわち、継手部以外に 横補強筋を均等に配置した RC 梁の主筋は、継手なしの 場合と同程度の付着性能を有する。これは、**図**-10 に示 すように、継手表面の付着応力が異形鉄筋と比べて小さ くなる一方、継手小口における支圧応力が増大し、両者 が相殺されるからであると推察される¹⁾。継手小口に支 圧応力が発現するのは、**図**-4 に示すように、支圧面積 比 $\alpha_{nl,2}$ が 1.3~1.8 確保されていることに起因する⁹。

4.3 横補強筋ひずみ

正側最大耐力 Q_{max}時の各試験体の横補強筋ひずみ ε_{Hi} 分布を図ー11 に示す。継手あり試験体の継手部近傍の横

補強筋ひずみ ε_{H3}は,継手なし試験体と比較して大きく なった。すなわち,継手あり試験体では,図-10に示す ように,引張側梁主筋の継手小口に支圧応力が作用する ことに伴い,その近傍の横補強筋のひずみが増加したと 考えられる。

5. 最大耐力の検討

5.1 検討方針

本論文で検討対象とする計算耐力は,(1)梁主筋付着 耐力時梁せん断力 Q_{buo},(2)曲げ終局耐力時せん断力 Q_{fu}, ならびに(3)せん断終局耐力 Q_{suo}である。

(1) 付着耐力 Qbuo

付着耐力 Q_{buo} は、梁主筋の有効付着区間 L_b について、 継手の有無に係わらず、継手がないとして求めた平均付 着応力 τ_b が AIJ 靭性指針 ³⁾による付着信頼強度 τ_{bu} に到 達した時の水平力 Q と定義する。すなわち、付着耐力 Q_{buo} は下式で算定される。

$$Q_{buo} = \sigma_s \times \Sigma a_t \times j_t / L_o \tag{1}$$

ここで、 $\sigma_s = \tau_{bu} \times \phi \times L_b/a_t$ (2) $\Sigma a_t : 梁主筋の全断面積$

j_t:上,下端主筋の重心間距離

L_o:加力点高さ(=800mm)

- L_b: 有効付着長さ(=725mm)
- τ_{bu}:梁主筋付着応力で,AIJ 靱性指針³⁾による付着信 頼強度とする。
- ψ : 梁主筋の周長

有効付着長さ L_bは,梁主筋継手の有無に係わらず,梁 主筋両端に配置した付着切り鋼管の内法寸法として,L_b =725mm とした。付着耐力の算定に用いた寸法諸元を図 -10 中に示す。

(2) 曲げ終局耐力時せん断力 Q_{fu}

曲げ終局耐力時せん断力 Q_{fu}は, e 関数^{5,6}によるコン クリートの応力-ひずみ関係を用いて平面保持仮定に より算定する。ここで,中段筋は,梁端部に機械式定着 金物を配置しているが,危険断面を貫通してないため, 曲げ終局耐力に寄与しないとする。

(3) せん断終局耐力 Q_{suo}

せん断終局耐力 Q_{suo}は、下式で算定される。

 $Q_{suo}=\min(Q_{su}, Q_{bu})$ (3)

ここで, Q_{su} は AIJ 靱性指針式³⁾によるせん断終局耐力, Q_{bu} は AIJ 靱性指針式³⁾による付着破壊の影響を考慮した せん断終局耐力である。各耐力算定に際し、本試験体で は、上端筋と下端筋の横補強筋をそれぞれ反対側の中段 筋にかけているため、横補強筋比 p_w には、上端、下端1 段筋にそれぞれかけた横補強筋のみの値を用いる。また、 継手あり試験体の p_w は、横補強筋の組数を同じとした継 手なし試験体の値を用いる。

5.2 検討結果

実験値および計算耐力の一覧を**表-3**に、各試験体の $Q_{max}/Q_{fu}-Q_{buo}/Q_{fu}$ 関係を**図ー12**に示す。計算耐力の算定 には、**表-2**に示すコンクリートの実圧縮強度 σ_B ,鉄筋 の実降伏強度 σ_v を用いた。

 F_c27 の試験体 No.1~No.4 では,最大耐力実験値 $\pm Q_{max}$ は Q_{buo} に達したが, Q_{fu} および Q_{suo} に達していない。 F_c60 の試験体 No.5~No.8 の $\pm Q_{max}$ 実験値は, Q_{buo} に達し, Q_{fu} にも概ね達した。 F_c27 , F_c60 の各試験体ともに,上端 主筋が引張力を受ける正加力時において, $\mathbf{20}-12(\mathbf{a})$ に示 すように,各試験体の最大耐力 Q_{max} は, Q_{buo} の 1.38 倍程 度となった。横補強筋比 \mathbf{p}_w が同じ試験体を比較すると, 継手の有無は Q_{max} にほとんど影響を及ぼさない。下端主 筋が引張力を受ける負加力時では, $\mathbf{20}-12(\mathbf{b})$ に示すよう に,各試験体の Q_{max} は Q_{buo} の 1.17 倍程度となった。

6. 結論

本研究で得られた主な知見は、以下である。

- 本研究で対象とする,継手部以外に横補強筋を均等 に配置した RC 梁では,継手の有無が付着破壊時の 梁せん断力±Q_{max}に及ぼす影響は小さかった。
- 2) 梁主筋のひずみ分布は、継手の有無による有意な差 を示さず、継手部以外に横補強筋を均等に配置した RC 梁の主筋は、継手なしの場合と同程度の付着性 能を有することが明らかになった。

	試験体		実験値		曲げ耐力		せん断耐力						
$ \rangle$			Q _{max}	au _{bu}	Q_{buo}	Q _{max}	Q_{buo}	Q_{fu}	Q _{max}	Q_{su}	Q_{bu}	Q_{suo}	Q_{suo}
$ \rangle$			(kN)	(N/mm^2)	(kN)	$/\mathrm{Q}_\mathrm{buo}$	$/\mathrm{Q}_{\mathrm{fu}}$	(kN)	$/\mathrm{Q}_{\mathrm{fu}}$	(kN)	(kN)	(kN)	$/\mathrm{Q}_{\mathrm{fu}}$
	Æ	No. 1	274	2.29	187	1.46	0.48	391	0.70	309	365	309	0.79
	加	No. 2	272	2.29	187	1.45	0.48	391	0.70	309	365	309	0.79
	力	No. 3	301	2.90	237	1.27	0.61	391	0.77	394	412	394	1.01
F 27	時	No. 4	308	2.90	237	1.30	0.61	391	0.79	394	412	394	1.01
1 _c 21	負	No. 1	260	2.76	226	1.15	0.58	391	0.67	309	401	309	0.79
	加	No. 2	282	2.76	226	1.25	0.58	391	0.72	309	401	309	0.79
	力	No. 3	323	3.49	286	1.13	0.73	391	0.83	394	457	394	1.01
	時	No. 4	320	3.49	286	1.12	0.73	391	0.82	394	457	394	1.01
	正	No. 5	356	2.90	237	1.50	0.67	352	1.01	595	490	490	1.39
	加	No. 6	344	2.90	237	1.45	0.67	352	0.98	595	490	490	1.39
	力	No. 7	362	3.55	290	1.25	0.82	352	1.03	767	540	540	1.53
F 60	時	No. 8	371	3.55	290	1.28	0.82	352	1.05	767	540	540	1.53
1 _c 00	負	No. 5	365	3.27	268	1.36	0.76	352	1.03	595	518	518	1.47
	加	No. 6	332	3.27	268	1.24	0.76	352	0.94	595	518	518	1.47
	力	No. 7	380	4.01	328	1.16	0.93	352	1.08	767	575	575	1.63
	時	No. 8	374	4.01	328	1.14	0.93	352	1.06	767	575	575	1.63

表-3 実験値および計算耐力の一覧

p _w (%)	継三	手なし	継手あり			
0.40		No. 1 No. 5	igodot	No. 2 No. 6		
0.68	\diamond	No. 3 No. 7		No. 4 No. 8		

- 3) 1), 2)の理由として, 継手表面の付着応力が異形鉄 筋と比べて小さくなる一方,継手小口における支圧 応力が増大し,両者が相殺されることが考えられる。 継手小口に支圧応力が発現するのは,本工法で用い る継手では支圧面積比が 1.3~1.8 確保されている ことに起因する。
- 4) 上端主筋が引張力を受ける時のQ_{max}は, AIJ 靭性指 針³⁾による付着信頼強度に基づく付着耐力 Q_{buo}の 1.3~1.5 倍程度となった。下端主筋が引張力を受け る場合は1.1~1.3 倍程度であった。

謝辞

本実験は、ダイワスチール(株)による開発の一環とし て行なったものである。ここに記して感謝の意を表する。

参考文献

- 1) 又刈克英, 阿瀬正明, 末永保美, 南宏一: スプライ ススリーブ継手を含んだ異形鉄筋の付着性状に関 する一実験,日本建築学会中国支部研究報告集,第 25巻, pp.273-276, 2002.3
- 2) 高津比呂人,木村秀樹:柱梁接合部内にスリーブ継 手を有する梁主筋の付着性状に関する実験的研究,

コンクリート工学年次論文報告集, Vol.29, No.3, pp.631-636, 2007

- 3) 日本建築学会:鉄筋コンクリート造建築物の靭性保 証型耐震設計指針・同解説,6章 柱および梁のせん 断と付着に対する設計, pp.138-207, 1999
- 4) 前田匡樹,小谷俊介,青山博之: RC 部材の付着割 裂強度に関する実験的研究, コンクリート工学年次 論文報告集, Vol.13, No.2, pp.145-150, 1991.6
- 5) 梅村魁:鋼筋コンクリート梁の塑性変形および終局 強度,日本建築学会論文集,第42号,pp.59-70,1951.2
- 6) 日本建築学会:鉄筋コンクリート終局強度設計に関 する資料,1.コンクリートの1軸応力状態における 力学的性状, pp.1-4, 1987
- 7) 日本建築学会:鉄筋コンクリート構造計算規準・同 解説, 2010
- 8) 日本建築学会:鉄筋コンクリート造建物の耐震性能 評価指針(案)・同解説,実用的評価手法,5.梁部材の 性能評価法, pp.129-168, 2004
- 9) 村上雅英,藤達也,窪田敏行:引き抜き試験による はり主筋の機械式定着耐力の評価, コンクリート工 学論文集, 第8巻, 第2号, pp.1-10, 1997.7