論文 鉄筋コンクリート巻立て補強工法における軸方向鉄筋のフーチング へのアンカー定着に関する実験的研究

塩畑 英俊*1・野島 昭二*2・前田 晴人*3・林 和彦*4

要旨:本研究は,既設鉄筋コンクリート橋脚の代表的な耐震補強工法である鉄筋コンクリート巻立て補強工 法において,軸方向鉄筋を既設フーチングに定着する際の一般的な定着長である鉄筋径の20倍の定着長につ いて,妥当性を検証するとともに,比較的新しい設計基準で設計された既設橋脚ではアンカー定着を行わな い軸方向鉄筋を省略できる可能性について検討したものである。検討の結果,設計上期待している補強効果 に対応する定着効果としては鉄筋径の20倍の定着長でも十分であることが確認された。また,アンカー定着 を行わない軸方向鉄筋を省略しても耐荷挙動および破壊形態にほとんど影響を与えないことが確認された。 キーワード:RC巻立て補強工法,あと施工アンカー,定着長,静的正負交番載荷,準動的載荷

1. はじめに

1995 年の兵庫県南部地震による橋梁の被災を経験し て以降,NEXCOでは昭和 55 年の道路橋示方書¹⁾よりも 古い基準で設計された既設橋梁を中心に震災対策を実 施している。このうち,既設鉄筋コンクリート橋脚の耐 震補強では,鉄筋コンクリート巻立て補強が経済的で確 実な工法として一般的に用いられている。鉄筋コンクリ ート巻立て補強工法は,曲げ耐力を向上させる場合,巻 立てコンクリート部の軸方向鉄筋を既設フーチングに アンカー定着させる必要がある。この時のアンカー定着 は,あと施工アンカーとなり,既設フーチングを削孔し て定着させる必要がある。NEXCO では、このような場 合には樹脂アンカーを標準的に用いており,必要定着長 を 20 (:鉄筋径)としている。本研究は,この必要 定着長の妥当性を検証するために,橋脚模型供試体によ る静的正負交番載荷実験および準動的載荷実験を行っ たものである。

また,NEXCO の設計基準²⁾では,曲げ耐力を向上さ せる場合の軸方向鉄筋の既設フーチングへのアンカー 定着を1本おきに行うこととしている。アンカー定着を 行わない軸方向鉄筋は,既設橋脚の軸方向鉄筋の途中定 着部の補強に効果を有する。しかし,比較的新しい基準 ¹⁾で設計された既設橋脚では,構造細目の見直しが図ら れ,軸方向鉄筋の途中定着を行う場合の定着長が長くな っているとともに,このような断面変化部では帯鉄筋を 密に配置することとなっている。そのため,破壊位置が 基部となる傾向であり,途中定着部の補強が不要になる と考えられる。したがって,このようなケースでは,ア ンカー定着しない軸方向鉄筋を省略すれば合理的にな ると考えられる。そこで,このことを検討するため,本 研究ではアンカー定着しない軸方向鉄筋を省略した橋 脚模型供試体による静的正負交番載荷実験を行った。

2. 実験概要

2.1 供試体の形状および諸元

実験に用いた供試体は,NEXCO が管理する高速道路 において中空床版橋形式を支える下部構造に一般的に 適用されている独立2柱式形式で比較的新しい設計基準 ¹⁾よりも古い設計基準で造られた既設橋脚における 1/4 の規模とした。ただし,軸方向鉄筋の途中定着は再現し なかった。供試体の形状の一例および諸元を図-1 およ び表-1 に,鉄筋の材料試験結果を表-2 に示す。コン クリートの設計基準強度は,フーチング,柱部(以降, 「既設部」と呼ぶ。)および鉄筋コンクリート巻立て部 (以降,「補強部」と呼ぶ。)の設計基準強度を f'_{ck} = 24N/mm²とし,最大骨材径が10mm となるように骨材を 粒度調整して使用した。

既設部は 450mm×300mm の長方形断面とした。供試体 No.1~No.3 は既設部に対して鉄筋コンクリート巻立 て補強を行ったものであり,補強部のコンクリート厚さ を既存橋脚の補強厚さ 250mm のおよそ 1/4 として 60mm とし,570mm×420mm の長方形断面としたものである。 供試体 No.1~No.3 の補強部のコンクリートは実施工を 再現するため,既設部の製作後に 10 日程度期間をおい て打設した。供試体 No.4 はあと施工アンカーの定着効果 を確認するため補強部軸方向鉄筋を既設部軸方向鉄筋 と同様にフーチング底面まで定着し,コンクリートは既 設部および補強部を一体で打設した。なお,いずれの供

*1 (株)高速道路総合技術研究所道路研究部橋梁研究室研究員(正会員)
*2 (株)高速道路総合技術研究所道路研究部橋梁研究室主任研究員(正会員)
*3 (株)日本構造橋梁研究所大阪支社長博士(工)(正会員)
*4 横浜国立大学大学院工学研究院特別研究教員博士(工)(正会員)

試体も, せん断スパンは1500mm である。

いずれの鉄筋もかぶりを 35mm 確保し, 既設部の軸方 向鉄筋にはフランジ面に D13, ウェブ面に D10 をそれぞ れ配置して全軸方向鉄筋比を 2.38%とし,帯鉄筋には D3 を用いて帯鉄筋比を 0.043%とした。補強部の軸方向鉄 筋には D10 を用い,補強部のみの全軸方向鉄筋比を供試 体 No.1, No.2 および No.4 は 0.953%とし,供試体 No.3 は供試体 No.2 に対してアンカー定着しない軸方向鉄筋 を省略して全軸方向鉄筋比を 0.477%とした。

補強部の軸方向鉄筋のフーチングへの定着には電気 ハンマードリルにて、鉄筋径プラス10mmの径で削孔し, 削孔長は鉄筋径の20倍とした。定着にはエポキシ樹脂 を用いた。エポキシ樹脂の力学特性を表-3に示す。 2.2載荷方法

載荷は供試体のフーチングを PC 鋼棒で反力床に固定 して供試体 No.1 および供試体 No.3 は静的正負繰返し載 荷を行い,供試体 No.2 および供試体 No.4 は準動的載荷 ⁴⁾を行った。載荷装置の状況を写真 - 1 に示す。載荷点

図 - 1(a) 供試体形状(既設部)

までの高さはフーチング上面から 1500mm の位置である。 水平力は 2本のアクチュエーターを使用し,柱頭部に一 定の軸圧縮力を載荷した状態で作用させた。軸圧縮力は 独立 2 柱式の既設橋脚における死荷重を想定し, 0.34N/mm²とした。載荷方向は以降,写真-1 に示す北 側への押しの荷重および変位を正,南側への引きの荷重 および変位を負で示すこととする。

静的正負繰返し載荷の方法は,軸方向鉄筋が降伏する ときの載荷点変位である 7.5mm(部材全体回転角 1/200rad)を基準とし,最大荷重までは7.5mm(1/200rad) の整数倍で変位を増加させ,最大荷重以降は 15mm (2/200rad)の整数倍で増加させた。また,同じ変位で の繰返し回数は1回とした。載荷終了は,載荷荷重が最 大荷重の80%を下回った時点で終了した。

準動的載荷に用いた初期設定値を表 - 4 に示す。使用 した地震波は,兵庫県南部地震で神戸海洋気象台におい て観測された地震波の NS 成分の 15 秒間とした。固有周 期は想定する既存橋脚の中で厳しい応答が予測される

表 - 1 供試体諸元

		既言	殳 部	補強部							
1供 試	町山	軸方向鉄筋	帯鉄筋		軸方向鉄筋	j –	-ut-	載荷			
体	1211	種別	種別		鉄筋径			鉄筋径	方		
番	r	鉄筋径,間隔	鉄筋径,間隔	種別	間隔	定着方法	種別	間隔	法		
5	[mm]	鉄筋比	鉄筋比		鉄筋比			鉄筋比			
1					D10@50mm	1本おき			静的		
	570×420 (450× 300)	SD295	SD295		0.052%	に定着	SD345		刜		
2		D13@38mm	D3@65mm	SD245	0.93370			D6@35mm	動的		
		D10@58mm		3D343	D10@100mm	未定着		0.317%	*		
3	500)				D10@120mm	鉄筋		0.51770	野的		
		2.38%	0.043%		0.477%	省略					
					D10@50mm	既設部			準		
	1				D10@60mm	「日桂			劉的		
					0.75570	1 1 1 1 1 1					

表-2 鉄筋の材料特性

	±17./->	+0+47	A# ## /7	降伏点	引張強度	弾性係数	伸び	降伏ひずみ
	部1立	規恰	釱肋住	[N/mm ²]	[N/mm ²]	[kN/mm ²]	[%]	μ
既設部	軸方向鉄筋	SD295	D13	373	552	186	24.9	1930
既設部	軸方向鉄筋	SD295	D10	389	524	189	24.5	2058
既設部	帯鉄筋	-	D3	323	341	199	-	1623
補強部	軸方向鉄筋	SD345	D10	401	552	194	26.9	2067
補強部	帯鉄筋	SD345	D6	425	602	186	22.0	2285

表-3 エポキシ樹脂の力学特性

接着剤種別	圧縮強度 引張強度		引張せん断 接着強度	圧縮弾性係数	可使時間	
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]	(20	時)
エポキシ系	74.3	51.1	16.4	2050	49ı	nin

表 - 4 準動的載荷に用いた初期設定値

固有周期	仮想質量	初期剛性	減衰定数		
[sec.]	[ton]	[kN/mm]			
0.3	68.4	51.1	0.03		

代表値として 0.3 秒とした。仮想質量を求める際に必要 な剛性としては,静的載荷実験によって求められたひび 割れ発生前の初期剛性を用いた。仮想質量は部材を1自 由度系と仮定して,固有周期と初期剛性を用いて算出し た値を用いた。ただし,供試体と実構造物とを対応させ るため,耐震補強を行う前の既設橋脚が設計地震動に相 当する 0.25g の地震動を受けたときに軸方向鉄筋が降伏 応力の 295 N/mm²となるように入力加速度を調整してい る。減衰定数は 0.03 とし,部材剛性が初期剛性の 25% を下回った時点以降を0とした。

2.3 計則項目

計側項目は,柱とフーチングの相対変位,柱部および フーチング部の軸方向鉄筋のひずみ,帯鉄筋のひずみ, 供試体の損傷状況などである。

3. 実験結果と考察

3.1 供試体 No.1 (静的載荷,アンカー定着長 20)

静的正負繰返し載荷実験の結果得られた載荷荷重 -載荷点変位関係の履歴曲線を図 - 2 に示す。図 - 2 には 設計基準³⁾の計算方法により算出した荷重変位関係も併 記(以降,他の実験ケースについても同様。)している。 これは,コンクリートの終局ひずみを最外縁となる補強 部の軸方向鉄筋位置として計算したものである。また, 表 - 5 に各実験における荷重と変位の計測結果について 示す。以降,荷重変位曲線の包絡線は正側と負側で大差 がないため,正側について示す。

載荷点変位 6.63mm の時に載荷荷重が 111.07kN となり, 補強部の正側のあと施工アンカーが降伏ひずみに達し た。その後,載荷荷重は既設部の軸方向鉄筋が降伏する まで増加した以降は増加の割合は小さくなり,載荷点変 位 22.64mm で最大荷重 162.69kN に達した。この最大荷 重は,既往の研究⁴⁾で実施されている補強を行っていな い既設部のみの載荷実験における最大荷重のおよそ約

写真 - 1 載荷装置状況

1.5 倍である。最大荷重以降は,徐々に耐力が低下し, 90.26mmを超えた段階で最大耐力の80%程度まで低下し た。0.03radから0.04radの載荷ステップにおいて載荷荷 重が148.12 kNから152.93 kNとわずかに増加しているが, その要因について既設部の計測した軸方向鉄筋のひず みから推察する。この載荷ステップの前後で軸方向鉄筋 のひずみはフーチング内で低下し,基部から210mmの 高さでは増加を続けていた。このことから,軸方向鉄筋 のフーチングからの抜け出しにより柱基部の曲率分布 に変化が生じたためと思われる。

以上の実験結果から、7.5mm(1/200rad)を基準とした 正負各1回の交番載荷実験において、20のアンカー定 着長を持つアンカーの定着効果は既設部の軸方向鉄筋 が降伏するときの載荷点変位の4倍程度に相当する 60mm(0.04rad)まで持続し、その後繰り返し作用によ り徐々に耐力が低下する可能性があることが示された。 現在行っている耐震補強では残留変形量を15mm (0.01rad)以下とするために最大応答変位を30mm (0.02rad)程度に抑えている。このため、地震動による 繰り返し回数が今回の正負交番載荷の範囲内であれば 設計地震動の範囲でアンカー定着の効果は持続する可 能性が高いと考えられる。

図 - 3 に各載荷段階における補強部南西アンカー鉄筋 のひずみ変化を示す。定着面直下のアンカーのひずみは 最大耐力となった 15mm(0.01rad)を過ぎると減少を始 め 60mm(0.04rad)では半分以下の 600 µ となっている。 写真 - 2 に 105mm(0.07rad)時の基部周辺の状況を示す。 図 - 4 に供試体頭部の鉛直方向の動きを示す。図 - 4 に 示すように水平変位の増加に伴い,既設部ならびに補強 部の基部周辺の軸方向鉄筋は降伏して供試体は鉛直方 向に伸びるような動きをし,これに伴い基部周辺のひび 割れが開いている。柱頭部の鉛直変位は補強部の軸方向 鉄筋の降伏以降継続して増加しており,この間耐力は低 下していないことを踏まえると,アンカー定着は抜け出 しながらも定着効果は低下せず橋脚としての耐力を持

図 - 2 載荷荷重 - 載荷点変位関係(供試体 No.1)

続している可能性が高いと考えられる。 3.2 供試体 No.2 (No.1 の準動的載荷)

準動的載荷実験の結果得られた載荷荷重 - 載荷点変 位関係の履歴曲線を図 - 5 に示す。1.76 秒で正側の最大 荷重 184kN となった後 2.35 秒時に負側の最大荷重 -151.5kNを示した。その後,正側で変位を増加させ,4.57 秒後に最大変位 110mm となった後,地震動が収まるに 従い揺れ幅は小さくなり最終的な残留変位は正側に 45mm(0.03rad)であった。また,図-5には静的正負交 番載荷実験で行った供試体 No.1 の載荷荷重 - 載荷点変 位関係との比較も示している。図 - 5 に示すとおり,準 番載荷実験で行った供試体 No.1 の載荷荷重 - 載荷点変 動的載荷実験の最大応答変位 110mm に対して静的正負 交番載荷実験では75%の耐力低下が見られたが準動的載 荷実験では耐力低下は認められず,アンカーの定着効果 が持続していることがわかる。写真 - 3 に最大応答変位 を示した 4.57 秒時の供試体基部の状況を示す。準動的載

図 - 3 補強部軸方向鉄筋のひずみ分布(供試体 No.1)

荷実験後の基部周辺の損傷状況は準動的載荷実験にお ける最大応答変位に対応する静的交番載荷実験の 105mm(0.07rad)における状況に比べ損傷が少ない。準 動的載荷実験による評価を行えば、供試体 No.2 の終局変 位は既設部の軸方向鉄筋が降伏するときの載荷点変位 の7倍以上に相当する105mm(0.07rad)以上であると思 われる。

以上の結果から 20 の定着長のあと施工アンカーの 定着効果の評価において,最大応答変位に対応する正負 交番載荷実験結果による健全性の評価は,兵庫県南部地 震の神戸海洋気象台で観測された地震動に対して 0.3 秒 という最も厳しい固有周期を設定しても,準動的載荷実 験結果による健全性の評価より厳しい評価をしている

表 - 5	各実験における荷重および変位の計測結果

供試体No.1			供試体No.2			供試体No.4				
荷重 [kN]	変位 [mm]	解記	時刻 [sec]	荷重 [kN]	変位 [mm]	解記	時刻 [sec]	荷重 [kN]	変位 [mm]	解記
+111.07	+6.63	正側アンカー鉄筋降伏	1.61	+145.90	+11.58	1.61秒から1.64秒までの間で正	1.48	-148.69	-10.80	負側最大荷重
+156.37	+15.13	正側既設部軸方向鉄筋降伏	1.64	+172.78	+19.03	側既設部軸方向鉄筋降伏	1.61	+164.48	+12.70	正側補強部軸方向鉄筋降伏
+162.69	+22.64	正側最大荷重	1.76	+184.31	+43.45	正側1回目のピーク.荷重は	1.64	+198.63	+20.37	正側既設部軸方向鉄筋降伏
+130.15	+90.26	正側最大荷重の80%	1.78	+167.85	+44.43	全体のピーク	1.72	+219.29	+37.49	正側最大荷重
-129.55	-17.61	負側既設部軸方向鉄筋降伏	2.35	-151.50	-40.08	負側の荷重ピーク	2.00	-110.74	-7.17	負側補強部軸方向鉄筋降伏
-140.11	-22.52	負側最大荷重	2.38	-141.72	-41.55	負側の変位ピーク	2.09	-135.93	-16.24	負側既設部軸方向鉄筋降伏
-112.09	-105.01	負側最大荷重の80%	2.80	+174.04	+104.00	正側2回目の荷重ピーク	2.33	-143.26	-20.20	負側最大変位
供試体No.3		2.82	+160.00	+104.89	正側2回目の変位ピーク	2.75	+215.68	+91.63	正側最大変位	
荷重	変位	会 刀≐台	4.55	+164.12	+109.33	正側3回目の荷重ピーク	15	+11.01	+20.83	載荷終了
[kN]	[mm]	用牛百尤	4.57	+155.35	+110.24	正側3回目の変位ピーク	15	0	+18.78	水平力除荷(軸力は載荷)
+156.37	+15.09	正側既設部軸方向鉄筋降伏	15	+2.55	+44.46	載荷終了				
+163.38	+22.60	正側最大荷重	15	0	+43.77	水平力除荷(軸力は載荷)				
+125.10	+105.12	正側最大荷重の80%								
-147.66	-15.04	負側既設部軸方向鉄筋降伏								
-147.66	-15.07	負側最大荷重								
-118.13	-90.05	負側最大荷重の80%								

ことが示された。本研究で使用した供試体は残留変位に 対する明確な照査を行う前に設計された橋脚をモデル 化しており,準動的載荷実験後の残留変位は復旧に課題 が残る45mm(0.03rad)を示したが,最大応答変位は降 伏変位の7倍程度で,耐力の低下が無く,終局変位に対 して十分な安全性を示した。

図 - 6 に供試体頭部の鉛直方向の動きを示す。鉛直方 向の動きは最大で 7mm,実験終了後約 6mm であった。 正負交番載荷実験における 110mm の時の鉛直方向の動 きは正側のとき 8mm,負側のとき 9.5mm である。これ らの結果から,同一変位に対する抜け出し量は正負交番 載荷実験より準動的載荷実験の方が小さかったものの アンカーは準動的載荷実験でも抜け出しながら定着効 果が持続していたと思われる。

写真 - 2 0.07 rad(105mm)時基部周辺ひび割れ状況

図 - 6 供試体頭部鉛直方向変位(供試体 No.2)

3.3 供試体 No.3 (No.1 の未定着鉄筋省略)

図 - 7に供試体 No.3の載荷荷重 - 載荷点変位関係を示 す。図 - 7 では,対比する実験ケースである供試体 No.1 の実験結果も併記している。供試体 No.1 と No.3 は,ほ とんど同じ挙動を示しており,破壊位置が基部となるよ うな非補強体の場合,アンカー定着しない鉄筋の有無は 耐荷挙動および破壊形態にほとんど影響を与えないこ とが示された。この結果を踏まえると,比較的新しい規 準¹⁾で設計された既設橋脚において軸方向鉄筋の途中定 着部があっても途中定着部で破壊しないことが明らか な橋脚に対して,耐震補強を行う場合に補強部のアンカ ー定着しない軸方向鉄筋の配筋を省略できる可能性が あることが示された。

3.4 供試体 No.4(準動的載荷,既設部・補強部一体施工) 供試体 No.4 は、あと施工アンカーの定着効果を確認す ることを目的として補強断面内の軸方向鉄筋をあと施

写真 - 3 最大応答変位時の基部周辺のひび割れ状況

図 - 7 載荷荷重 - 載荷点変位関係(供試体 No.3)

写真 - 4 最大応答変位時の基部周辺のひび割れ状況

エアンカーではなくフーチング下面まで配筋し確実に 定着している供試体である。図-8 に準動的載荷実験に より得られた載荷荷重 - 載荷点変位関係を示す。図 - 8 では、対比する実験ケースである供試体 No.2 の実験結果 も併記している。最大応答変位は供試体 No.2 に比べ 82% の 92mm (0.06rad) で残留変位は 22.5mm (0.015rad) で あった。最大荷重は供試体 No.2 の 184kN のおよそ 1.2 倍程度の 219kN となっている。最大荷重が補強鉄筋をア ンカー定着した供試体より大きくなった理由は,確実に 定着されていたことにより鉄筋降伏後の耐力増加が大 きくなったためと考えられる。写真 - 4 に最大応答変位 を示した 2.80 秒時の供試体基部の状況を示す。実験終了 後 基部周辺は供試体 No.2 と比べてひび割れの進展が軽 微であった。すなわち,供試体 No.2 に比べ最大応答変位 および残留変位が小さくなったのは,基部周辺の損傷進 行の差が剛性低下の差となり,応答に影響を与えたため と考えられる。

以上の結果から,あと施工アンカーにより定着長 20 で定着した橋脚が兵庫県南部地震の地震動を受ける 場合,確実に定着していた場合と比べ,軸方向鉄筋の抜 け出しの影響により基部周辺での損傷の進行が見られ, 最も厳しい場合を想定すれば最大応答変位は 1.2 倍程度, 残留変位は 2 倍程度となる可能性が示された。最大耐力 はアンカー定着した供試体のほうがやや小さくなる傾 向を示したが,耐震補強設計では鉄筋降伏後の耐力増加 を無視しているため,設計上期待している補強効果に対 応する定着効果としては定着長を 20 としても十分で あると考えられる。

4.今後の課題

現行の設計規準³⁾による照査法は,地震時の挙動が複 雑な橋の場合,動的照査法による耐震設計を行うことと なっている。したがって,動的照査法を行う場合に,あ と施工アンカーの抜け出しの影響を考慮した鉄筋コン クリート柱の復元力モデルを用いる必要があることが 示唆される。

5.まとめ

本実験により得られた知見を以下に示す。

- (1) 静的正負交番載荷実験の結果,既設部の軸方向鉄筋 が降伏するときの載荷点変位の4倍に相当する回転 角0.04rad(変位60mm)までの範囲で急激な耐力低 下は認められず十分な健全性が確保できることが 示された。
- (2)静的正負交番載荷実験の結果,既設部の軸方向鉄筋が降伏するときの載荷点変位の7倍に相当する回転角0.07rad(変位105mm)で最大荷重の75%程度まで

荷重が低下し,基部周辺の損傷が著しく進行した。 一方,構造物にとって不利となる0.3秒の固有周期を 設定し兵庫県南部地震における神戸海洋気象台で観 測された地震動を用いた準動的載荷実験の結果では, ほぼ同じ変位の最大応答変位を経験しても荷重の低 下はほとんど見られず,十分な健全性を示した。

- (3) 想定する地震動が明確な場合は地震動の影響を評価 できる実験方法により評価を行うことが重要である ことが示された。動的な評価が困難な場合は,静的 な実験でも評価することは可能であるが,想定する 地震動によっては厳しすぎる評価となる可能性があ ることが示された。
- (4) 耐震補強断面の軸方向鉄筋を確実に定着した供試体 およびあと施工アンカーで定着した供試体の準動的 載荷実験の比較結果から,あと施工アンカーにより 定着長 20 で定着した場合,最も厳しい場合を想定 すれば確実に定着していた場合と比べ,抜け出しの 影響により基部周辺での損傷の進行が見られ,最大 応答変位ならびに残留変位がやや大きくなる傾向が 示された。
- (5) 準動的載荷実験の結果,比較的新しい設計規準^{1)よ} りも古い基準で造られた橋脚を兵庫県南部地震の地 震動に対して耐震補強を行う場合,軸方向鉄筋の定 着長を20 としても十分な定着効果が得られること が示された。
- (6) 既設の軸方向鉄筋に途中定着部が無い場合,アンカ ー定着しない軸方向鉄筋を省略しても耐荷挙動および破壊形態にほとんど影響を与えないことが示された。
- (7) 比較的新しい設計規準¹⁾で造られた橋脚のように, 軸方向鉄筋の途中定着部があっても設計照査の結果, 途中定着部で破壊しないことが明らかな橋脚を耐震 補強する場合に耐震補強断面にアンカー定着しない 軸方向鉄筋を省略しても破壊形態に与える影響は小 さいと推察される。

参考文献

- 社団法人 日本道路協会:道路橋示方書・同解説 耐震設計編,1980.5.
- 東・中・西日本高速道路株式会社:設計要領第二集 橋梁保全編,2010.7.
- 3) 社団法人 日本道路協会:道路橋示方書・同解説 耐震設計編,2002.3.
- 4) 長田光司,大野晋也,山口隆裕,池田尚治:炭素繊 維シートによる鉄筋コンクリート橋脚の耐震補強, コンクリート工学年次論文報告集, Vol.18, No.2, pp.83-88, 1996.