論文 接着工法を採用したRM増設耐震壁に関する実験研究

蘓鉄 盛史^{*1}·森 浩二^{*2}·横田 誠司^{*3}

要旨:既存柱梁フレーム内にRMユニットを積み上げて増設耐震壁とするRM耐震補強工法において,壁板 と既存躯体との接合にアンカーを使用せず,柱躯体面は目荒しのみとし,梁壁間は鋼板を介しグリース状の エポキシ樹脂で接着する工法を考案して,その性状を確認する実験を行った。接着強度確認の要素実験では4 試験体を単調載荷し,約1/2縮小1層1スパンの増設壁フレーム実験では一定軸力下で繰り返し水平載荷を行 った。その結果,本工法の増設耐震壁は,せん断強度が接着強度を既存躯体コンクリート圧縮強度の0.08倍 とする評価式で安全に評価でき,初期剛性はアンカー接合によるものと同等以上であることが確認された。 キーワード:RM増設耐震壁,RMユニット,接着工法,RM造

1. はじめに

RM耐震補強工法は既存建物の柱梁フレーム内にR M造¹⁾で用いられる高強度・高精度な補強組積ブロック のRMユニット(**写真-1**)を積み上げて増設耐震壁を 構築する工法であり,筆者らは従来の場所打ちコンクリ ートを用いた増設耐震壁に代わる省力化工法として開 発を行ってきており,これまでは増設壁と既存躯体であ る柱梁との接合をあと施工アンカーで行っていた。^{2),3)} しかし,あと施工アンカーは既存躯体の鉄筋やRMユニ ットのウェブを避けて施工する必要があり打設位置に 制約が大きく,また,アンカー工事の取止めによる騒 音・振動・粉塵のさらなる低減も望まれていた。そこで, 既存躯体と増設壁の接合方式を接着接合とした補強工 法を考案し,その性状を確認するための実験を行った。 本報ではその内容について報告する。

写真-1 RMユニット

2. 接着接合の概要と実験の種類

既存躯体の柱梁とRM増設壁との接合方法の概要を 図-1 に示した。梁壁間については鋼板を介したグリー ス状のエポキシ樹脂による接着接合とし、柱壁間につい ては、柱側を目荒しのみ行い、RMユニット内部の高強 度モルタルの充填施工をもって接合するものとした。な

*1	(株)	新井組	. 建	築本部技術	奇部	(正会員	₹)
*2	(株)	淺沼組	技	術研究所	(正:	会員)	
*3	太陽	サーブ	(株)	営業工事	(正	三会員)	

お、鋼板にはRMユニット内部に定着される異形筋がス タッド溶接されている。実験は、接合部のせん断強度を 確認するための接合部の要素実験と、増設壁の耐力と変 形性状を確認するためのフレーム実験を行った。

3. 接合部の要素実験

3.1 試験体

断面 400mm×400mm の RC 躯体部の両側に, R M壁体 を接着工法によって設置したものを試験体とした。試験 体は4体作製し,実験パラメータを既存躯体のコンクリ ート強度と,曲げ破壊モードを抑制するために試験体の 両側から与える一定の外部拘束力による面圧とした。 試験体一覧を表-1に,試験体を図-2に示した。

表-1 試験体一覧

試験体	コンクリート強度 σ _B (N/mm ²)	面圧 $\sigma_{o}(N/mm^2)^{*1}$	
No. 1	24	0.50	
No. 2	21	2.00	
No. 3	19	0.50	
No. 4	12	2.00	
*1 面圧は拘束力を接着接合部の面積で除したもの			

既存躯体側コンクリートおよび壁体部充填モルタル の強度試験結果を表-2 に示した。既存躯体側の接着面 はグラインダーで表面の脆弱性を除去した。接合鋼板は, 板圧 12m の鋼板 (SS400)を使用し,接着面をショット ブラスト加工 (徐錆度 SIS-Sa2 1/2,表面粗度 100µm 以下)し,防錆塗料のエッチングプライマー(ビニルブ チラール樹脂系長ばく形,2液形)を塗布した。また, RMユニット側の面に異形筋スタッド (D16)を溶接し た。鋼材の材料試験結果を表-3に示した。

表-2	コンクリ-	-トとモルタ	ルの強度試験結果
-----	-------	--------	----------

		圧縮強度	ヤング係数	割裂強度
種別	試験体	σ_{B}	Ec	σ_t
		(N/mm ²)	(10 ⁴ N/mm ²)	(N/mm ²)
既存躯体	No.1, No.2	33.7	2.84	3.00
コンクリート	No.3, No.4	19.2	2.59	1.90
充填モルタル	共通	62.3	_	_

表-3 鋼材の材料試験結果

板厚	细括	降伏点	引張強さ	伸び
(mm)	亚 叫 个里	(N/mm^2)	(N/mm^2)	(%)
12	SS400	264	435	25

3.2 実験方法

実験装置図を図-3 に示した。試験体は両側のRM壁 体部を球座(下部にテフロン板を設置)で支持した。前 述の曲げ破壊モードを抑制するための一定の外部拘束 力は試験体の両側から油圧ジャッキを用いて与えた。試 験体中央の既存躯体に対して2Qとした鉛直力を単調 載荷し,既存躯体部と両側RM壁体部との鉛直方向のず れ変位を測定した。接合面のせん断力伝達に有効な面積

の算出のため, 接合面の開き量と異形筋スタッドのひず み量を計測した。

3.3 実験結果

(1) 荷重変形関係と結果一覧

荷重変形関係を図-4 に、実験結果の一覧を表-4 に 示した。試験体は、接合面のせん断破壊に先行して接合 部下端に開きが生じ、開き発生時の荷重は、面圧 0.5 の 試験体では56~57kN、面圧 2.0 の試験体では141~144kN となった。開き発生後も荷重は増加し、ずれ変形 1~2mm に荷重のピークが見られた。試験体 No.1~3 では既存躯 体コンクリートの剥離による破壊となり、No.1 では、既 存躯体コンクリートの曲げせん断ひび割れも観察され た。試験体 No.4 では既存躯体コンクリート下部 75%程 度に剥離が見られたものの、最終破壊位置は、エッチン

-					
試験体	$\sigma_{\rm B}$ (N/mm ²)	面圧(N/mm ²) ^{*1} [拘束力P(kN)]	最大荷重 (kN)	開き時荷重 (kN)	破壊性状 ^{*2}
No. 1	33.7	0.5 [40]	162	57	A
No. 2	33.7	2.0 [160]	293	141	в
No. 3	19. 2	0.5 [40]	111	56	в
No. 4	19. 2	2.0 [160]	265	144	С

表-4 実験結果一覧

*1 面圧は、拘束カPを接着接合部の面積(400mm×200mm)で 除したもの

*2 破壊性状は、

Aが既存躯体コンクリートの剥離+曲げせん断 Bが既存躯体コンクリートの剥離 Cがエッチングプライマーの剥離90% +既存躯体コンクリートの剥離10%

グプライマーの剥離 90%と,既存躯体コンクリート上部 の剥離 10%となった。なお,エッチングプライマーの剥 離部は両側全面にエッチングプライマーが付着してお り,エッチングプライマーを重ね塗りしたことが剥離の 主な原因と考えられた。

(2) 接合部強度

各試験体の接着接合部のせん断強度を表-5 に示した。 せん断強度の評価のための接着接合部の面積は、実験中 の接合部下端の開きによる影響を考慮した有効面積比 k を乗じたものとし、その有効面積比 k は、異形筋スタッ ドのひずみ計測値により接着接合面の応力分布を推定 し、文献 6)によるせん断剛性低下率β(β=1/(1+50w), w:ひび割れ幅)を用いて接合面が負担するせん断力が等 価となるように算定した。⁵⁾⁶⁾ なお、せん断強度時の荷 重は、接着部コンクリートが剥離破壊した試験体 No.1~ No.3 では初回ピーク時の荷重とし、最大荷重時にエッチ ングプライマーで破断した試験体 No.4 では最大荷重と した。最大荷重時にエッチングプライマーの破断した試 験体 No.4 は破断直前までエッチングプライマーの全断 面がせん断力を負担したと考え全断面有効で評価した。

各試験体のせん断強度値を既往の実験結果と比較し

試験体	有効面 積比 k	拘束力 P (kN) [σ _{0T} ^{*1} (N/mm ²)]	強度Q _{ju} (kN) [_{b τ ju} *2(N/mm ²)]	$\frac{{}_{b}\tau_{ju}}{{}_{b}\tau_{ju1}}^{*3}$	$\frac{{}_{b}\tau_{ju}}{{}_{b}\tau_{ju2}}^{*4}$
No. 1	0.55	40 [0. 90]	148 [3. 34]	1.06	0.77
No. 2	0.57	160 [3.50]	286 [6. 25]	1.41	1.11
No. 3	0.54	40 [0. 93]	111 [2.57]	1.29	0.96
No. 4	1.00	160 [2.00]	265 [3.31]	1.31	1.03

表-5 接合部強度の評価結果一覧

*1 σ_{oT}=P/kA_b (A_b:接合部面積)

*2 $_{\rm b} \tau$ ju=Q ju/kAb

*3 $_{\rm b}$ τ $_{\rm ju1}$ =0.08 σ $_{\rm B}$ +0.5 σ $_{\rm oT}$

*4 $_{\rm b}$ τ $_{\rm ju2}$ =0. 115 σ $_{\rm B}$ +0. 5 σ $_{\rm oT}$

て図-5 に示した。図の縦軸は接着によるせん断強度 $_{b}$ $\tau_{ju}をコンクリート強度 <math>\sigma_{B}$ で基準化した。図中には文献 $^{4)}$ に基づく接着接合部のせん断評価式(1)と本実験結果の 回帰式(2)の直線を併記した。

 $b \tau_{ju1} = 0.08 \sigma_B + 0.5 \sigma_{0T}$ ・・・(1) $b \tau_{ju2} = 0.115 \sigma_B + 0.5 \sigma_{0T}$ ・・・(2) σ_B : 既存躯体コンクリート強度 σ_{0T} : 等価拘束応力度

本実験による接合強度は、既存の式(1)の評価より安全 側となっており、式(2)と概ね一致することがわかった。

4. 増設壁のフレーム実験

4.1 試験体

試験体の諸元を表-6に、材料試験結果を表-7,表-8に示した。試験体の概要を図-6に示した。試験体は、 縮小率が約1/2の1層1スパンのRC柱梁架構内にRM 増設壁を構築したものであり、形状と各部材の配筋量は 梁一壁の接着接合部の接合部破壊型となるよう定めた。

柱梁とRM 増設壁の接合方式については,柱壁間では 面積比15%程度の目荒しのみとし,梁壁間では要素実験 と同様に,鋼板を介したエポキシ樹脂による接着接合と

表-6 試験体の諸元						
柱				RI	V壁	
試験体 の符号	B×D (mm)	主筋 HOOP	壁厚 t (mm)	内法 長さ (mm)	壁筋	想定 破壊形式
RM-EB	250 ×250	12-D13 D6@100	100	1440	横:D10@100 縦:D13@200	梁壁間接 合部破壊

表-7 材料試験結果

(コングリート、モルダル)				
括则	圧縮強度	ヤング係数		
俚加	$\sigma_{\rm B}({\rm N/mm}^2)$	$E_c(\times 10^4 N/mm^2)$		
柱・梁	31.7	2.87		
下スタブ	32.3	2.70		
壁体部充填モルタル	68.6	2.59		
上部充填モルタル	71.8	2.26		

し、梁側の接着面はグラインダーで表面の脆弱性を除去 して, 鋼板側はショットブラスト処理を行った後に防錆 塗料を塗布した。なお、鋼板の RM 壁体側には定着のた めの異形筋をスタッド溶接している。

RM 増設壁部は, RM ユニットの縮小モデル (200×100 ×97)を用い、ユニットと壁筋を配置した後、ユニット 内には高流動のモルタルを充填した。また、梁下にはス パイラル筋を配置し、無収縮グラウトを充填した。

4.2 実験方法

載荷方法を図-7 に示した。試験体両側の柱の頂部に 柱軸力比 0.15 の一定軸力を載荷し、油圧ジャッキを用い て左右の梁を押し引きし, 左右のジャッキの荷重がほぼ

等しくなるように制御した。左右の荷重の合計をせん断 力Q,下スタブと梁の相対変位を載荷点高さで除したも のを変形角 R とした。載荷スケジュールは変形角 R=0.5/1000, 2/1000, 5/1000 (各3回), 10/1000 (1回) の正負交番載荷とした。

4.3 実験結果

(1)実験経過

荷重変形関係を図-8 に最終破壊状況を写真-2 に示 した。変形角 R=0.5/1000 で柱脚に曲げひび割れが生じ, R=2/1000 で壁にせん断ひび割れが発生した。R=5/1000 までに柱頭にパンチングによるひび割れが生じた後,最 大荷重となった。変形角 R=5/1000~6/1000 までに壁板や

(a) 鉄筋					
使用如位	町び(細話)	降伏点強度	引張強度	伸び	
使用即位	守い(到裡)	$\sigma_y(N/mm^2)$	$\sigma_u(N/mm^2)$	(%)	
柱帯筋	D6 (SD295A相当)	316	532	20.8	
RM壁横筋	D10 (SD295A)	367	506	17.8	
柱主筋、 RM壁縦	D13 (SD295A)	367	503	17.0	

表-8 材料試験結果

(b)	RMユニット、	プリズム圧縮試験
-----	---------	----------

括即	圧縮強度	ヤング係数
↑里 /小」	$\sigma_{\rm B}({\rm N/mm^2})$	$E_c(\times 10^4 N/mm^2)$
RMユニット*1	52.5	-
プリズム圧縮強度*2	44.0	2.99
★1 DMコニットの圧縮	没度に出たる	NDMコーットに対するもの

の上縮強度は 単体のRM. *2 プリズム圧縮強度は縮小RMユニットを3段組積し、壁体部 充填モルタルを充填した試験体で圧縮試験を行ったもの。

200

図-7 載荷方法

柱のせん断ひび割れ幅が拡大し,柱帯筋,壁横筋が降伏 した。その後,荷重が大きく低下し始めたため, R=10/1000の繰り返しで載荷を終了した。なお,載荷終 了時まで柱主筋や異形筋スタッドは降伏せず,また,梁 とエポキシ樹脂との界面にひび割れはなく,接合鋼板と 無収縮モルタルとの間にひび割れが生じていた。荷重が 最大耐力の 80%の大きさに低下した時の変形角である 限界部材角 R80 は 7.9/1000 であった。

(2)終局耐力

実験時最大荷重と計算耐力の一覧を表-9 に示す。試 験体の計算耐力はRC耐震改修指針⁷⁰の式(3)で算定した。 ただし、梁下面の接合材のせん断耐力は、フレーム実験 の試験体では実施工の場合と同じように、RM増設壁を 既存フレーム内に後構築することから接着接合面への 拘束力が期待できないので、要素実験で確認した接着接

合のせん断強度の評価式(3)において等価拘束応力度の 効果 0.5 σ_{OT}を考慮しない形の,評価式 (4)を用いて算定 した。

接着接合のせん断強度を $0.08 \sigma_B$ とした場合のせん断 強度 aQsu に対する実験時最大荷重の比は 1.3 であり, 安 全側の評価となっている。

また, せん断余裕度 aQsu/wQmu は 0.65 で, せん断破壊 型となっている。試験体の限界部材角 R80 は 7.9/1000 で あり, RC 耐震診断基準によるせん断破壊型壁の靭性指 標 F=1.0 で想定される限界部材角 1/250 (4/1000) を上回 っている。

写真-2 最終破壊状況

表·	-9	耐力-	-覧

計算値					実験結果					
wQsu	Qj	_p Q _c	αQ_{c}	$_{a}Q_{su}$	wQ _{mu}	Q _{max}	Q_{max}	Q_{max}	Q _{max}	
(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	$/{}_{\rm w}{\rm Q}_{\rm su}$	$/_{\rm a} {\rm Q}_{\rm su}$	$/_{\rm w} {\rm Q}_{\rm mu}$	
834	355	329	115	799	1225	1009	1.2	1.3	0.8	
wQsu:一体打ち壁としてのせん断強度、Qj:梁下下面の接合材										
のせん断耐力の和、 _p Q。: 圧縮側柱のパンチングシア耐力、α										
Q _c :柱のせん断強度(α=1)、 _a Q _{su} :接合部を考慮したせん断										
強度、 _w Q _{mu} :一体打ち壁としての曲げ降伏時のせん断強度、										
Q _{max} :実験時最大荷重										

- $aQ_{su} = Q_{j} + {}_{p}Q_{c} + \alpha Q_{c} \cdot \cdot \cdot (3)$ $Q_{j} = 0.08\sigma_{B} \cdot A_{b} \cdot \cdot \cdot \cdot (4)$ $Q_{j} : 梁下面の接合材のせん断耐力の和$ $pQ_{c} : 柱のパンチングシア耐力$ $\alpha Q_{c} : 変形状態を考慮した柱のせん断耐力$ (せん断破壊のとき) $\sigma_{B} : 既存躯体コンクリートの圧縮強度$
 - A_b : 梁下面の接着部の面積

(3)初期剛性

試験体の初期剛性を図-9 に示す。図中には,既存の 柱梁躯体との接合をアンカー接合とした既往の研究³⁾で の試験体 RM-F(本試験体と壁厚が同じでコンクリート 強度などが同等)の結果も併記した。なお,図の縦軸は 実験場所も載荷方式も異なる試験体 RM-F との比較のた め,荷重を計算剛性で正規化している。実験時初期剛性 Ke は荷重変形関係の折れ曲がり点における割線剛性と した。折れ曲がり点は,試験体にせん断ひび割れの発生 をともなう剛性低下が生じた点とし,荷重変形関係にお ける剛性の低下とひび割れ観察結果,柱帯筋および壁横 筋ひずみの値の変化をもとに決定している。

ー体打ち壁とみなした場合の計算剛性 Kc に対する実 験時初期剛性 Ke の比は 0.73 であった。試験体 RM-F に よるフレーム実験の結果と比較すると、変形角 R=0.1/1000 までは本試験体の剛性が若干高くなっている が、これは載荷装置など試験の諸条件が異なることが要 因と考えられる。その後の荷重変形関係はほぼ同等とな っているのが把握できる。なお、変形角 R=0.5/1000 の時

点では接合面のひび割れは観察されず,ずれ変形は生じ ていなかったと考えられる。

5. まとめ

- 要素実験による接着接合部のせん断強度は、文献⁴⁾ に基づく設計式より安全側となった。
- 2) 接着接合方式を採用した RM 増設耐震壁の初期剛性 は、アンカー接合によるものと同等以上であった。
- 接着接合方式を採用した RM 増設耐震壁のせん断強 度は、接着強度を 0.08 σ_B (σ_Bは既存躯体のコンクリ ート強度)として安全側に評価できた。
- 4) 接着接合方式を採用した RM 増設耐震壁の限界部材 角は 7.9/1000 であり,耐震診断基準の靭性指標で想定 される変形性能を有していることが分かった。

謝辞

本研究はRM耐震補強研究会(㈱淺沼組,㈱新井組, ㈱松村組,太陽サーブ㈱)によって行われました。また, 本実験を行うに当たり,(財)日本建築総合試験所の益 尾潔審議役(工学博士)にご指導をいただきました。関 係各位に謝意を表します。

参考文献

- 建築研究振興協会:鉄筋コンクリート組積造(RM
 造)建築物の構造設計指針・同解説,2004
- 中澤敏樹,今西達也,東健二,安居功二:RM構造 を用いた増設耐震壁に関する実験研究,コンクリー ト工学年次論文集, Vol.25, No.2, pp.1543-1548、2003.7
- (4) 森浩二,山内正明,柏木隆尾,中澤敏樹:開口を有 するRM増設耐震壁に関する実験研究,コンクリー ト工学年次論文集, Vol.30, No.3, pp.1201-1206, 2008.7
- 4) 小宮敏明,益尾潔:鉄骨増設ブレース補強用の接着 接合部および間接接合部の終局耐力,コンクリート 工学年次論文集, Vol.22, No.3, pp.1657-1662, 2000
- 5) 土木学会:コンクリート標準示方書[設計編](2007 年制定)
- 6) 篠原保二,金子葉:コンクリートの破壊進行領域に おける圧縮せん断挙動に関する実験的研究,日本建 築学会構造系論文集,第525号,1999年11月,pp.1 ~6
- 7) 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震改修設計指針 同解説,2001