論文 単純圧縮力を受ける SRC 柱部材の強度と変形性能に関する研究

尹 航*1·立崎 稔仁*2·土井 希祐*3

要旨: SRC 柱部材の構造性能を適切に評価する上で,内蔵鉄骨によるコンクリート拘束効果を考慮すること は重要である。しかし,鉄骨によるコンクリート拘束効果の適切な評価法は明確にされていない。そこで, 本研究においては,鉄骨によるコンクリート拘束効果を,鉄骨ウェブの寄与率αを指標として評価すること により,単純圧縮力を受ける SRC 柱部材の軸力-軸歪関係をモデル化し,その最大耐力,初期剛性,および 変形性能について検討した。最大耐力については計算値と実験値がほぼ一致した。初期剛性については計算 値が実験値を下回った。変形性能については,その指標である限界歪の計算値が実験値と概ね一致した。 **キーワード**:SRC,圧縮材,コンクリート拘束効果,最大耐力,初期剛性,変形性能,限界歪

1. はじめに

SRC 柱部材の構造性能を適切に評価する上で,内蔵鉄 骨によるコンクリート拘束効果を考慮することは重要 である¹⁾。しかし,鉄骨によるコンクリート拘束効果の 適切な評価法は明確にされていない。そこで本研究では, コンクリートの拘束効果を考慮した単純圧縮力を受け る SRC 柱部材の軸力ー軸歪関係モデルを提案し,その最 大耐力,初期剛性,および変形性能について検討した。

2. 検討対象試験体

本研究では,**表-1**に示す十字形鉄骨またはH形鋼を 内蔵した SRC 短柱試験体計 28 体を研究対象として用い た^{1)_4)}。いずれも中心圧縮試験を行ったものである。各 試験体の使用材料の力学的特性を**表-2**に示す。

3. 検討方法

鉄骨フランジ部分の全塑性モーメント M_p に着目し, コンクリートの拘束効果に影響を及ぼす鉄骨ウェブ断 面の寄与率 α を次式により算定する(図-1参照)。

	試験体名	内蔵鉄骨寸法	横補強筋
第1 ¹⁾	SRC-C-1	2-H100 × 50 × 5 × 7	φ4@50
シリーズ	SRC-H-1	H100 × 90 × 6 × 8	φ4@50
第2 ¹⁾	SRC-C-2	2-H100 × 50 × 4.5 × 4.5	φ4@50
シリーズ	SRC-H-2	$H100 \times 90 \times 4.5 \times 4.5$	φ4@50
文献 ²⁾	C1-50,100	$2-H140 \times 50 \times 4.5 \times 6$	D6@50,100
	C2-50,100	$2-H140 \times 50 \times 2.3 \times 6$	D6@50,100
	C3-50,100	2-H140 × 50 × 4.5 × 2.3	D6@50,100
	M1-50	H140 × 50 × 4.5 × 6	D6@50
文献 ³⁾	₁₈ SRC(計3体)	H216×216×6×6	φ6@150
	₂₄ SRC(計3体)	$H288 \times 288 \times 6 \times 6$	φ6@150
文献 ⁴⁾	#40-#42(計3体)	H200 × 150 × 4.5 × 6	D6@50
	#45-#49(計5体)	H200 × 150 × 6 × 9	D6@35~100
	#52-#54(計3体)	$H200 \times 150 \times 9 \times 12$	D6@50

表-1 試験体諸元

*1 新潟大学大学院 自然科学研究科 修(工) (正会員)

*2 新潟大学大学院 自然科学研究科

*3 新潟大学教授 工学部建設学科 博(工) (正会員)

ここに, *b_f*:フランジ断面幅,

 t_w : ウェブ厚, t_f : フランジ厚, σ_y : 鉄骨降伏応力度。ただし, $_wT$, $_wT_y$, M_p は材軸方向の単位幅あたりの値である。

(1)式による寄与率 α に応じて算定されるウェブ断面 の一部が鉄骨拘束領域(図-2参照)において横拘束材 として働くと仮定し, NewRC 式⁵における横補強筋体

表-2 鋼材およびコンクリートの力学的性質

	鋼種		σ_{y}	Es	$_{c}\sigma_{B}$	E _c
	十字形 PL-5/7		336/352	2.13/2.10		
66 1)	H形	PL-6/8	274/264	2.10/2.14		
男	十件	D10	365	1.94	22.6	2.01
シリース	王肋	D6	332	1.68		
	帯筋	φ4	523	1.93		
	鉄骨	PL-4.5	274	2.04		2.37
第2 ¹⁾	主辞	D10	352	1.80	26.0	
シリーズ	工加	D6	320	1.74	20.0	
	帯筋	φ4	472	1.91		
文献 ²⁾	鉄骨	PL-2.3~6	322~407	2.08		
	主筋	φ4	382	2.05	30.8	2.68
	帯筋	D6	215	2.05		
	鉄骨	PL-6	573	2.05		1.30
文献 ³⁾	主筋	D16	453	2.05	25.6	
	帯筋	φ6	451	2.05		
文献 ⁴⁾	鉄骨	PL-4.5~12	291~842	2.05		
	主筋 D16		380	2.05	35.7	2.75
	帯筋	D6	342	2.05		
σ_y :鋼材降伏点[N/mm²] 。 σ_B :コンクリート圧縮強度[N/mm²]						
E_s :鋼材ヤング係数[×10 ⁵ N/mm ²] E_s :コンクリートヤング係数[×10 ⁴ N/mm ²]						

積比 $\rho_h \varepsilon$,帯筋拘束領域(図-2 参照)においては(2) 式,鉄骨拘束領域においては(3)式によりそれぞれ算定し, 帯筋および鉄骨によるコンクリート拘束効果を評価し た。

$$\rho_{h} = \frac{V_{r}}{rV_{c}}$$
(2)
$$\rho_{h} = \frac{V_{s}}{V_{c}}$$
(3)

ここに、 ρ_h : 横補強筋体積比、 N_s : 鉄骨負担軸力、 V_r : 帯筋体積、 V_s : 鉄骨体積 ($a \times_s V_w$)、 $_s V_w$: ウェブ体積 (試 験体長さあたりの体積)、 A_f : フランジ断面積、 A_w : ウェ ブ断面積、 $_r V_c$: 帯筋拘束領域コンクリート体積(帯筋間 隔あたりの体積)、 $_s V_c$: 鉄骨拘束領域コンクリート体積 (試験体長さあたりの体積) コンクリートの応力度-盃度関係を NewRC 式 ⁵によ りモデル化し,鉄骨および主筋の応力度-盃度関係は完 全弾塑性モデルとして,平面保持の仮定により,コンク リート,鉄骨,および主筋の各負担軸力を累加すること により SRC 柱部材の軸力-軸歪関係を求めた。この際, (4)式に示すように横拘束に寄与したウェブ断面積を鉄 骨断面積から差し引いて鉄骨の負担軸力 N_sを算定した。

$$N_s = \sigma_y \cdot A_f + \sigma_y \cdot A_w (1 - \alpha) \tag{4}$$

以上により求めた SRC 柱部材の軸力-軸歪関係に基づいて, **表-1** に示す各試験体について,最大耐力,初期剛性,および変形性能の検討を行った。

4. 結果および考察

図-3 に、本研究において提案した SRC 柱部材の軸力 - 軸歪関係(以下 NewRC モデルと表記)と実験結果の 比較の例を示す。図-3(a)~(c)は、最大耐力および初期 剛性を比較しやすいよう ε=0.005 までの範囲とし、初期 剛性の値を求めた N_{max}(最大耐力)/3 の点を丸印で示し た。図-3(d)~(f)は、変形性能の指標である限界歪につ いて比較しやすいよう、それぞれ ε=0.03、ε=0.05、ε=0.06 までの範囲とし、限界歪の値を求めた 0.85N_{max}の点を三 角印で示した。なお、図中のマークは、NewRC モデルに

図-3 軸カー歪の関係

よる計算値を赤で、実験値を青でそれぞれ着色している。

最大耐力,初期剛性,および限界歪の全てにおいて, 良好な評価をすることができた試験体が存在する一方 で,実験値が NewRC モデルによる値を大幅に下回る結 果となった試験体も存在している。以下に,NewRC モデ ルによる最大耐力,初期剛性,および限界歪の評価精度 について検討を行った結果を示す。

4.1 最大耐力

表-3 および図-4に、NewRCモデルより求めた最大 耐力の計算値 N_{umax}と実験値 N_{max}の比較を示す。図-5(a) ~(d)に、最大耐力の計算値と実験値の比 N_{max}/N_{umax}と、 鉄骨ウェブのコンクリート拘束への寄与率 a、鉄骨の軸 力負担率 N_x/N_{umax},鉄骨フランジ幅厚比、および鉄骨ウ ェブ幅厚比との関係をそれぞれ示す。なお、図-4 の四 角囲みの 0.8~1.2 の数値は、N_{max}/N_{umax}の等値線を表す。

表-3 より, N_{max}/N_{umax} の平均値 0.97, 変動係数 0.12 となっており, 全体的に良い評価が出来ていると言える。 表-3 および図-4 を見ると, ほぼ全ての試験体の N_{max}/N_{umax} が 0.8~1.2 の間に収まっていることが分かる。 図-5(a)~(d)を見ると, N_{max}/N_{umax} に対する a, ウェブ幅 厚比の影響はあまり大きくないと言える。フランジ幅厚 比に関しては、その値が大きくなるにつれて N_{max}/N_{umax} は小さくなる傾向にあることが分かる。鉄骨断面形状の 影響について見ると, H形断面と十字形断面において大

衣一3 NEWRO 式・美敏値の取入強	表·	-3	NewRC 式 ·	・実験値の	の最大強度
---------------------	----	----	-----------	-------	-------

	試験体名	N _{max}	N _{umax}	N _{max} /N _{umax}	α	
第1 ¹⁾	SRC-C-1	1218	1299	0.94	0.41	
シリーズ	SRC-H-1	1050	1092	0.96	0.23	
第2 1)	SRC-C-2	1144	1024	1.12	0.18	
シリーズ	SRC-H-2	1035	954	1.08	0.10	
	C1-50	1995	2001	1.00	0.24	
	C1-100	1796	1967	0.91	0.34	
	C2-50	1884	1789	1.05	0.77	
文献 ²⁾	C2-100	1798	1755	1.02	0.77	
	C3-50	1898	1702	1.12	0.04	
	C3-100	1717	1685	1.02	0.04	
	M1-50	2217	1578	1.41	0.34	
	18SRC0	5488	6182	0.89		
	18SRC20	4234	4973	0.85	0.06	
文献 ³⁾	18SRC30	4430	5305	0.84		
	24SRC0	5488	6182	0.89		
	24SRC20	5978	6929	0.86	0.04	
	24SRC30	6272	7331	0.86		
	#40	4002	4041	0.99	0.11	
	#41	4369	4586	0.95	0.09	
	#42	4590	4701	0.98	0.12	
	#45	4831	5243	0.92	0.16	
	#46	5017	5272	0.95	0.16	
文献 ⁴⁾	#47	5414	6114	0.89	0.19	
	#48	4918	5288	0.93	0.16	
	#49	5810	6154	0.94	0.19	
	#52	5308	5511	0.96	0.21	
	#53	5635	6084	0.93	0.22	
	#54	6545	7331	0.89	0.21	
平 :	均値	-	-	0.97	-	
変動	脈数	-	-	0.12	-	
N _{max} :実験値[kN] N _{umax} :NewRCモデル[kN] α=T/ _w T _v						

幅厚比(フランジ)

(c) 幅厚比 (フランジ)

新潟大1)	十字形
□新潟大1)	H形
• 文献2)	十字形
○文献2)	H形
▲文献3)	H形
●文献4)	H形

(d) 幅厚比(ウェブ)図-5 N_{max}/N_{umax}と各種パラメータとの関係

幅厚比(ウェブ)

20 30 40

50

60

10

0

きな差異は見られない。

4.2 初期剛性

初期剛性は、図-6に示す $N_{max}/3$ の点における割線剛 性とした。表-4 および図-7に、NewRC モデルにより 求めた初期剛性と実験値との比較を、図-8(a)~(d)に、 初期剛性の計算値と実験値の比 K_{exp}/K_{cal} と、鉄骨断面積 比 A_s/A 、鉄骨降伏応力度 σ_y 、フランジ幅厚比、および帯 筋比 p_w との関係をそれぞれ示す。なお、図-7の四角囲 みの 0.4~1.2 の数値は、 K_{exp}/K_{cal} の等値線を示す。

表-4より, *K_{exp}/K_{cal}*の平均値は0.71, 変動係数は0.30 となっており,全体的にNewRCモデルによる計算値は, コンクリート拘束効果を無視し,構成材料の材料特性か ら求めた計算値(単純和)とほぼ同じ結果となった。ま た,図-7を見ると,初期剛性に関しては,多くの試験

図-6 初期剛性の定義

	試験体名	K _{exp}	K _{ca/} NewBC式	K _{ca/} 単純和	K _{exp} /K _{cal} NewBC式	K _{exp} / K _{cal} 単純和
꼌 1 ¹⁾	SRC-C-1	21.1	20.4	<u>半市七有山</u> 20.1	1.04	<u>半小七小山</u> 1.05
シリーズ	SRC-H-1	20.2	20.7	20.1	0.98	1.01
笙2 ¹⁾	SRC-C-2	9.8	23.8	23.7	0.41	0.42
シリーズ	SRC-H-2	23.5	24.0	23.7	0.98	0.99
	C1-50	13.0	22.3	26.8	0.58	0.49
	C1-100	12.3	22.5	26.8	0.55	0.46
	C2-50	16.3	22.3	26.8	0.73	0.61
文献 ²⁾	C2-100	14.1	22.5	26.8	0.63	0.53
	C3-50	15.3	23.5	26.8	0.65	0.57
	C3-100	13.8	23.7	26.8	0.58	0.51
	M1-50	27.0	21.1	26.8	1.28	1.01
	18SRC0	8.2	17.5	13.0	0.47	0.63
	18SRC20	8.5	18.3	13.0	0.46	0.65
++ ++ ³⁾	18SRC30	7.1	18.7	13.0	0.38	0.55
又厭	24SRC0	10.9	18.2	13.0	0.60	0.84
	24SRC20	9.5	18.8	13.0	0.50	0.73
	24SRC30	8.3	19.1	13.0	0.43	0.64
	#40	22.5	28.1	27.5	0.80	0.82
	#41	20.5	28.6	27.5	0.72	0.74
	#42	22.2	27.8	27.5	0.80	0.81
	#45	19.9	28.3	27.5	0.71	0.73
	#46	20.6	27.5	27.5	0.75	0.75
文献4)	#47	21.3	27.6	27.5	0.77	0.77
	#48	20.6	27.4	27.5	0.75	0.75
	#49	25.1	27.5	27.5	0.91	0.91
	#52	18.6	27.2	27.5	0.68	0.68
	#53	20.1	27.5	27.5	0.73	0.73
	#54	24.2	26.4	27.5	0.92	0.88
平均値		-	-	-	0.71	0.72
変動係数		-	-	-	0.30	0.24

 K_{exp} :初期剛性実験值[N/mm²] K_{cal} :初期剛性計算值[N/mm²]

図-7 K_{exp}とK_{cal}との関係

(d) p_w 図-8 K_{exp}/K_{cal}と各種パラメータとの関係

体において、計算値が実験値を大きく上回っていること が分かる。これについては、第1シリーズ¹⁾および第2 シリーズ¹⁾では試験体に変位計を直接取り付けて軸歪を 測定しているのに対して、文献³⁾および文献⁴⁾では試 験機の加力治具間の変位測定値から軸歪を求めており、 試験体端部の局所変形の影響を受けていることが考え られる。また、文献³⁾では軽量コンクリートを使用して おり、素材試験によるヤング係数がコンクリート強度と 比較してかなり小さいことも影響していると考えられ る(**表**-2参照)。図-8(c)を見ると、フランジ幅厚比が 大きくなるにつれて K_{exp}/K_{cal} の値が小さくなる傾向が見 られる。鉄骨断面形状の影響について見ると、H形断面 と十字形断面において大きな差異は見られない。

4.3 限界歪

変形性能の指標である限界歪は、曲げせん断を受ける SRC 部材に倣い、図-9に示す(1)の軸力-軸歪関係 において、N_{max}以降に 0.85N_{max}まで強度が低下した点の 軸歪とした。(2)の軸力-軸歪関係のように 0.85N_{max}まで 強度が低下する前に実験を終了している試験体や、(3)の軸力-軸歪関係のように終了時においても 0.85N_{max}ま で強度が低下しない試験体については、実験終了時の軸 歪を限界歪とした。

表-5 および図-10 に、NewRC モデルにより求めた 限界歪の計算値と実験値との比較をそれぞれ示す。また、 図-11 に限界歪の計算値と実験値の比 $\varepsilon_{u exp}/\varepsilon_{u cal}$ と、鉄 骨断面積比 A_s/A ,鉄骨降伏応力度 σ_{y} 、フランジ幅厚比、 および帯筋比 p_{u} との関係をそれぞれ示す。なお、図-10 の四角囲みの 0.5~2.5 の数値は、 $\varepsilon_{u exp}/\varepsilon_{u cal}$ の等値を示す。 また、図-10 および図-11 において、 0.85 N_{max} まで強 度が低下する前に実験を終了している試験体(図-9 参 照)のマークを緑色で着色している。

表-5より, $\varepsilon_{u exp}/\varepsilon_{u cal}$ の平均値は 1.06, 変動係数は 0.43 となっており,全体的に比較的良好な評価ができている と言える。図-10を見ると,多くの試験体において,限 界歪の実験値が NewRC モデルによる計算値を上回って おり,全体的に比較的良好な評価ができていると言える。 また,鉄骨断面形状の影響について見ると,十字形鉄骨 を用いた試験体は $\varepsilon_{u exp}/\varepsilon_{u cal}$ が大きく,H 形鋼を用いた試 験体は $\varepsilon_{u exp}/\varepsilon_{u cal}$ が大きく,H 形鋼を用いた試 験体は $\varepsilon_{u exp}/\varepsilon_{u cal}$ が大きく,H 形鋼を用いた試 験体は $\varepsilon_{u exp}/\varepsilon_{u cal}$ が大きく,H 新鋼を用いた試 験体は $\varepsilon_{u exp}/\varepsilon_{u cal}$ が大きく, B = 1 (**c**)を見ると,フランジ幅厚比が小さい場合,計算値は 安全側の評価となる場合が多い。図-11(**d**)を見ると, p_w の値が大きい場合 $\varepsilon_{u exp}/\varepsilon_{u cal}$ のばらつきが大きくなるこ とが分かる。

5. まとめ

鉄骨ウェブの寄与率を指標とし、鉄骨によるコンクリ ート拘束効果を考慮した SRC 柱の軸力ー軸歪関係モデ

表一5 限界歪

	試験体名	ε _{uexp}	E _{u cal}	ε _{u exp} /ε _{u cal}
第1 ¹⁾	SRC-C-1	0.0600	0.0600	1.00
シリーズ	SRC-H-1	0.0600	0.0312	1.92
第2 ¹⁾	SRC-C-2	0.0075	0.0091	0.83
シリーズ	SRC-H-2	0.0038	0.0079	0.48
	C1-50	0.0300	0.0116	2.57
	C1-100	0.0203	0.0100	2.03
	C2-50	0.0108	0.0104	1.04
文 献 ²⁾	C2-100	0.0084	0.0089	0.94
	C3-50	0.0084	0.0067	1.26
	C3-100	0.0079	0.0058	1.35
	M1-50	0.0071	0.0076	0.93
	18SRC0	0.0056	0.0079	0.70
	18SRC20	0.0065	0.0065	1.01
文献 ³⁾	18SRC30	0.0068	0.0061	1.12
	24SRC0	0.0050	0.0066	0.75
	24SRC20	0.0055	0.0059	0.92
	24SRC30	0.0062	0.0057	1.10
	#40	0.0040	0.0052	0.77
	#41	0.0041	0.0057	0.72
	#42	0.0049	0.0058	0.85
	#45	0.0039	0.0063	0.62
	#46	0.0054	0.0067	0.80
文献4)	#47	0.0125	0.0091	1.37
	#48	0.0081	0.0071	1.14
	#49	0.0105	0.0095	1.10
	#52	0.0056	0.0078	0.73
	#53	0.0072	0.0088	0.81
	#54	0.0100	0.0126	0.79
平均值		-	-	1.06
変動係数		-	_	0.43

ε_{u exp}:限界歪実験値 ε_{u cal}:限界歪計算値

ルを提案し,最大耐力,初期鋼性,および変形性能の指 標である限界歪について実験値と比較検討した。その結 果,以下のことが明らかになった。

・最大耐力については、良好な評価ができた。

 初期剛性については、実験値を大幅に上回る試験体が 多く、小歪領域における軸歪測定方法が実験値に及ぼす 影響等について、さらに検討が必要である。

・限界歪については、全体的に比較的良好な評価ができている。しかし、一部に大きく安全側、あるいは危険側の評価となっている試験体も存在しており、さらに検討する必要がある。

図-11 $\varepsilon_{u exp}/\varepsilon_{u cal}$ と各種パラメータとの関係

参考文献

- 土井希祐, 尹航: 単純圧縮力を受ける SRC 柱部材の 最大耐力および変形性能に及ぼす内蔵鉄骨のコン クリート拘束効果, コンクリート工学年次論文集, Vol.30, No.3, pp.1393-1398, 2008.7
- 2) 堺純一,田中照久:十字形鉄骨を内蔵した鉄骨鉄筋 コンクリート部材のコンクリートの構成則に関す る実験的研究,日本建築学会大会学術講演梗概集 (中国),pp.1157-1158,2008.9
- (中威雄,他:鉄骨コンクリートおよび鉄骨鉄筋コン クリート部材の圧縮耐力,日本建築学会大会学術講 演梗概集(東北),pp.1535-1536,1973.10
- SRC 造への高張力鋼適用に関する調査研究委員会:高張力鋼を用いた SRC 構造の開発研究,社団法 人鋼材倶楽部, pp.86-96, 1989
- 5) 国土開発技術センター:コンファインドコンクリートの力学特性に関する資料のとりまとめ、平成4年度 NewRC 研究開発概要報告書、C-7)、1992