H型鉄骨内蔵 CES 柱の構造実験と変形能力評価 論文

石 鈞吉^{*1}・Juan Jose CASTRO^{*2}・松井 智哉^{*3}・倉本 洋^{*4}

要旨: H 型鉄骨を内蔵した CES 柱における軸力比の影響およびバンドプレートによる内蔵鉄骨の局部座屈 の抑制効果を把握することを目的とし、軸力比およびバンドプレート幅の異なる試験体を用いた静的載荷実 験を実施した。本論では、CES 柱の破壊性状、耐力および変形性能について考察するとともに、 2008 年度 に実施した CES 柱実験の結果を総合し、軸力比、鉄骨量およびシアスパン比などの主要パラメーターが変形 能力へ及ぼす影響を検討する。さらに、それらの影響を同時に考慮できる CES 柱の変形性能評価式を提案し、 実験結果との比較によりその精度を検証する。

キーワード: CES 柱,繊維補強コンクリート,バンドプレート,静的載荷実験,変形能力評価

1. はじめに

筆者らは、鉄骨鉄筋コンクリート構造から鉄筋を省略 した鉄骨コンクリート合成構造 (Concrete Encased Steel: 以下, CES 構造) に関する研究を継続的に行ってきてい る^{1)~6)}。これまでの研究により、CES構造柱は従来のSRC 構造柱と同等以上の復元力特性および損傷軽減効果が 得られることを明らかにした。しかしながら既往の研究 において, CES 構造柱では軸力比が大きくなると最大耐 力以降, 軸変形の増大とともに鉄骨が局部座屈を生じ, 軸力保持能力を失うという問題が残されている。

そこで本研究では, H型鉄骨を内蔵した CES 柱におけ る軸力比の影響およびバンドプレートによる内蔵鉄骨 の局部座屈の抑制効果を把握することを目的とし、軸力 比およびバンドプレート幅の異なる試験体を用いた静 的載荷実験を実施した。

本論では、CES 柱の破壊性状、耐力および変形性能に ついて考察するとともに、本実験結果と 2008 年度に実 施した CES 柱実験^{4)~5)}の結果を総合し、軸力比、内蔵鉄

☆── □ 武殿体── 見											
	specim	en	B30-a	B30-b	В30-с	B25-b	B25-c				
泪 3 供供 種類			Ŀ	ビニロン	ファイバ	-RF400	00				
ル八	、形式不住	混入量(%)			1.00%						
^牡 策时	幅	b(mm)		300							
竹工的回	せい	D(mm)			300						
内法	長さ	h(mm)			1200						
せん断スパン比 a/D			2.0								
		形状	H型鉄骨								
鉄骨		断面	200×150×6×9								
AV H	バンド	プレート幅	なし	50mm	50mm*	50mm	50mm*				
	載荷方	法	一定								
鉄骨比 A _s /bI			0.042								
載荷	軸力	N(kN)	1200 1000				00				
軸之	力比	N/N ₀		0.300		0.2	250				

骨量およびせん断スパン比等の主要パラメーターが CES 柱の変形能力に及ぼす影響を検証する。

2. 実験計画

2.1 試験体概要

表-1に試験体一覧を,図-1に試験体形状をそれぞ れ示す。実験に用いた試験体は5体であり、すべて柱断 面を 300mm×300mm とした。柱内法高さは 1,200mm (せ ん断スパン比: a/D=2.0) であり,内蔵鉄骨はH-200×150 ×6×9を用いている。試験体 B30-a 以外の試験体には鉄骨 フランジ両側面に5枚ずつバンドプレートを取り付けて いる。試験体 B30-b および試験体 B25-b ではバンドプレ ート幅はすべて 50mm であり、試験体 B30-c および試験 体 B25-c では柱頭部・柱脚部のみ 100mm のものを用い た。また、軸力比 (N/N₀) は、0.25 および 0.3 とした。 軸耐力 N₀は SRC 規準⁷⁾に準じて次式より算定した。

(*B30-c および B25-c のバンドプレート幅は、両端のみ 100mm とする。)

*1 大阪大学大学院 工学研究科地球総合工学専攻 修士(工学) (正会員) *2 大阪大学 国際教育交流センター 特任准教授 博士(工学) (正会員) *3 豊橋技術科学大学大学院 工学研究科建築・都市システム学系 助教 博士(工学) (正会員) *4 大阪大学大学院 工学研究科地球総合工学専攻 教授 博士(工学) (正会員)

$$N_0 = {}_c r_u \cdot \sigma_B \cdot {}_c A + {}_s \sigma_y \cdot {}_s A \tag{1}$$

$$_{c}r_{u} = 0.85 - 2.5_{s}p_{c} \tag{2}$$

ここで、 σ_B : コンクリートの圧縮強度、 $_{c}A$: コンクリート部分の断面積、 $_{p_c}$: 圧縮側鉄骨比である。

2.2 使用材料

表-2に鉄骨の材料特性を,表-3に繊維補強コンク リート (FRC)の材料特性を示す。鉄骨の鋼種は SS400 を用いた。FRC に使用した繊維は,直径 0.66m,長さ 30mm のビニロンファイバー (RF4000)であり,体積混入量を 1.0%とした。

2.3 載荷方法

載荷は図-2に示す載荷装置を用いて行った。載荷は, 試験体 B30-a, B30-b および B30-c では 1,200kN, 試験体 B25-b および B25-c では 1,000kN の一定軸力の下で,正 負逆対称曲げせん断加力を行った。水平力載荷は変形制 御とし,柱上下端の水平変位 δ と柱内法長さh で与えら れる相対部材角 (R=δ/h) で, R=0.0025, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04 および 0.05rad.の加力サイクル (図-3) により行った。

3. 実験結果

3.1 破壊性状および復元力特性

試験体の R=0.01rad.におけるひび割れ状況を図-4に, 最終破壊状況を写真-1にそれぞれ示す。なお,図-4 には太線で示されるひび割れ位置における最大ひび割 れ幅(mm)を併せて示す。また,実験結果一覧を表-4に, 水平荷重-水平変形関係を図-5にそれぞれ示す。図-5中の破線は累加強度理論により算定した終局曲げ強 度であり,載荷装置の特性による P-δ 効果の影響を考慮 したものを示している。また,▼印は最大耐力を,▽印 は鉄骨フランジが降伏した点をそれぞれ示している。

試験体 B30-a では, R=0.0025rad.で柱頭・柱脚部のスタ ブと柱の境界部にひび割れが発生し, 柱脚部付近に曲げ

表-2 鉄骨材料特性

種類		降伏点 (N/mm ²)	引張強度 (N/mm ²)	伸び (%)
フランジ	PL-9	322	473	38
ウェブ	PL-6	354	481	35
バンドプレート	PL-6	341	460	37

表一3 FRC 圧縮強度

specimen	圧縮強度 (N/mm ²)	材齢 (日)
B30-a	40.92	39
B30-b	43.01	44
В30-с	45.09	48
B25-b	46.21	57
B25-c	45.11	51

ひび割れが発生した。R=0.0091rad.の鉄骨の降伏とほぼ 同時に最大耐力 354.0kN に達した後,柱頭部付近にせん 断ひび割れが発生し,R=0.03rad.の載荷サイクルで急激 な耐力低下がみられた。

試験体 B30-b では、R=0.0091rad.で鉄骨が降伏し、 R=0.0101rad.で最大耐力 362.3kN に達した後、新たな曲 げひび割れの発生に加えて、柱頭・柱脚部付近でせん断 ひび割れが発生し、変形角の増大に伴い耐力は低下し、 R=0.003rad.の2サイクル目に急激な耐力低下を確認した。 バンドプレートにより変形能力の改善がわずかではあ るが認められた。しかし、急激な耐力低下への抑制効果 はほとんど認められなかった。

試験体 B30-c は、ひび割れの発生時期と履歴特性は試験体 B30-b とほぼ同様であったが、試験体 B30-b ほどせん断ひび割れは拡大せず、柱頭部における圧壊がより顕著であった。また、試験体 B30-b と比較するとバンドプレートによる最終変形能力の改善は認められなかった。

試験体 B25-b は、安定した履歴ループを描いており、 R=0.0083rad.で鉄骨が降伏し、R=0.0134rad.で最大耐力 361.5kN を記録した後、変形角の増加に伴い柱頭部の圧 壊が進行していき、耐力は緩やかに低下していったが、 軸力比 0.3 の試験体にみられるような急激な耐力低下は R=0.05rad.に至るまで確認されなかった。

試験体 B25-c は, 試験体 B25-b とほぼ同様の履歴特性 を示したが, R=0.04rad.の 2 サイクル目に耐力低下が確 認された。R=0.0082rad.で鉄骨が降伏し, 試験体 B25-b と比較すると, バンドプレートによる柱の変形能力改善 効果は認められなかった。

3.2 軸ひずみ推移状況

軸ひずみ-水平変形の関係を図-6に示す。また、▼ 印は最大耐力を、▽印は鉄骨フランジが降伏した点をそ れぞれ示している。試験体 B30-a では、最大耐力を記録 した R=0.010rad.までは一様な軸変形を繰り返し、急激な 耐力低下がみられた R=0.030rad.で軸ひずみも大きく進 行している。

試験体 B30-b および試験体 B30-c はほぼ同様に軸ひず みが推移している。最大耐力を迎えた R=0.010rad.まで一 様な軸方向変形を繰り返した後, R=0.020rad.までは軸ひ ずみは穏やかに推移しているが, R=0.030rad.以降急激に 軸ひずみが増大している。

試験体 B25-b および B25-c についてもほぼ同じように 推移しており, R=0.015rad.まで一様な変形を繰り返した 後, R=0.030rad.まで穏やかに軸ひずみが増大し, R=0.040rad.で大きく軸ひずみが増大していることが確 認できる。

以上のように、軸ひずみに関してもバンドプレートの 影響を確認することはできなかった。

表-4 実験結果一覧

spacimon	載荷方向	フランジ	ジ降伏時	最大耐力時			
specimen	单21月7月1日	R(x10 ⁻² rad.)	Q(kN)	R(x10 ⁻² rad.)	Q(kN)		
D 20 a	正	0.9100	354.0	1.0008	361.5		
Б30-а	負	-1.0100	-386.3	-1.0133	-386.3		
D20.1	正	0.9075	356.3	1.0075	362.3		
B30-0	負	-0.8140	-378.8	-1.0208	-392.3		
B 30 c	正	0.8000	358.5	1.0100	384.0		
взо-с	負	-0.7380	-359.3	-1.0160	-380.3		
P25 h	正	0.8316	331.5	1.3350	361.5		
B23-0	負	-0.8310	-352.5	-1.1560	-367.5		
B25-c	正	0.8170	333.0	1.3000	368.3		
В25-С	負	-0.6230	-328.5	-1.3070	-387.0		

図-6 軸ひずみー水平変形関係

4. 試験体の変形能力評価

4.1 各パラメーターについての検討

以上に示したように、バンドプレートの拘束による CES 柱の変形能力改善は確認できなかった。一方で、軸 力比に関しては僅かな変化であっても変形能力に大き な影響を及ぼすことが確認されている。また,2008年度 の実験においては、内蔵鉄骨量およびせん断スパン比も 変形性能に影響を及ぼすことが示されている。そこで, 本論では軸力比、内蔵鉄骨量およびせん断スパン比をパ ラメーターとし、それぞれの変形性能へ与える影響を考 察する。

表-5に過去の試験体一覧を,軸力比,内蔵鉄骨量お よびせん断スパン比の三つのパラメーターと各試験体 の限界変形角 R₈₀, R₈₅, R₉₀の値を表-6に示す。限界変 形角 R₈₀, R₈₅, R₉₀はそれぞれ最大耐力の 80%, 85% およ び90%まで耐力が低下した時の層間変形角である。以下 では,これらの限界変形角と,主要パラメーターである 軸力比、内蔵鉄骨量およびせん断スパン比の関係につい て考察する。

図-7に R_{80 exp}-N/N₀関係を示す。軸力比 N/N₀のみを

ŧ

パラメーターとする試験体 B1, B2, B3, B25-c および B3-a について比較する。軸力比はそれぞれ 0.1, 0.2, 0.3, 0.25 および 0.3 であり、内蔵鉄骨量 A_/BD は 0.042、せん 断スパン比は2.0 である。限界変形角 R_{80 exp}と軸力比 N/N₀ の関係はほぼ直線の分布として現れることがわかる。

図-8に R_{80 exp}-A_s/BD 相関関係を示す。内蔵鉄骨量 A_s/BD のみをパラメーターとする試験体 B3L, B3, B30-a および B3H について比較する。内蔵鉄骨量 AgBD はそ れぞれ 0.029, 0.042 および 0.070 であり、軸力比は 0.3、 せん断スパン比は 2.0 である。限界変形角 R₈₀ と内蔵鉄 骨量A、/BDの関係もほぼ直線の分布として現れることが わかる。

図-9に R_{80 exp}-a/D 関係を示す。せん断スパン比 a/D のみをパラメーターとする試験体 A2, B2, C2 および D2 について比較する。せん断スパン比 a/D はそれぞれ 2.5, 2.0, 1.5 および 1.0 であり、軸力比は 0.2, 内蔵鉄骨 量 A_s/BD は 0.042 である。限界変形角 R_{80 exp}とせん断ス パン比 a/D の関係にも直線的な分布がみられた。

以上に示したように, 軸力比, 内蔵鉄骨量およびせん 断スパン比の各主要パラメーターと柱の限界変形角 R₈₀

₹—	6	各パ	ラメ	ーター	と限界変	変形角	RΟ	の値
----	---	----	----	-----	------	------------	----	----

表一5 2008 年度の試験体一見									11	0 12	~) /-	->-2	山以小汉	. //> // // /	の喧		
specimen A2 B1 B2 B3 B3H B3L C2 D2							Specimen	N/N 0	A_s/BD	a/D	$R_{80 exp}$	R 85 exp	$R_{90 exp}$				
混入緯	钱維	種類	ビニロンファイバーRF4000							B1	0.100	0.042	2.00	0.0650	0.0550	0.0480	
	12	混入量(%					1.00%			A2	0.200	0.042	2.50	0.0447	0.0360	0.0278	
柱断面 <u>Hall B(mm)</u> 300 200					B2	0.200	0.042	2.00	0.0428	0.0360	0.0296						
内法長	- <u>しい</u> 手さ	h(mm)	1500	500 1200 900 600						600	C2	0.200	0.042	1.50	0.0271	0.0215	0.0183
せん断ス	ペン比	a/D	2.5				2.0		1.5	1.0	D2	0.200	0.042	1.00	0.0236	0.0205	0.0180
斜骨		形状		H型鉄骨						B25-c	0.250	0.042	2.00	0.0330	0.0281	0.0195	
断面 200×150×6×9 200×150×9×16 150×150×6×6 200×150×6×9				B3	0.300	0.042	2.00	0.0170	0.0155	0.0144							
載荷方法					B3L	0.300	0.029	2.00	0.0150	0.0140	0.0127						
鉄骨比 A _s /bD 0.042 0.070 0.029 0.042		042	B3H	0.300	0.070	2.00	0.0220	0.0180	0.0150								
東何幣 軸力	<u>#</u> 刀 比	N(KN) N/No	800	400	800	1200	1365	1130	0.	2	B30-a	0.300	0.042	2.00	0.0205	0.0183	0.0155

には比例的な関係が認められる。また、これらの関係は 限界変形角 R₈₅, R₉₀についても同様に確認された。

そこで,次節ではこれらの影響を総合的に評価できる 変形能力評価式の提案を試みる。

4.2 変形能力評価式の提案

図-7~9で得られた軸力比,鉄骨量およびせん断ス パン比の三つのパラメーターと限界変形角 R₈₀の関係を 以下に示す。

 $R_{\rm s0\,eyn} = -0.253 \cdot N/N_0 + 0.09 \tag{3}$

 $R_{\rm 80 exp} = 0.165 \cdot As/BD + 0.011 \tag{4}$

$$R_{\rm 80exp} = 0.016 \cdot a/D + 0.007 \tag{5}$$

ここで,

 $R_{80cal} = x_1 \cdot N/N_0 + x_2 \cdot A_s/BD + x_3 \cdot a/D + x_4$ (6)

を仮定し,式(3),(4)および(5)とそれぞれ連立させることにより以下の式を得る。

 $(x_1 + 0.253) \cdot N/N_0 + x_2 \cdot A_s/BD + x_3 \cdot a/D + x_4 - 0.09 = 0$ (7)

 $x_1 \cdot N/N_0 + (x_2 - 0.165) \cdot A_s/BD + x_3 \cdot a/D + x_4 - 0.011 = 0$ (8)

 $x_1 \cdot N/N_0 + x_2 \cdot A_s/BD + (x_3 - 0.016) \cdot a/D + x_4 - 0.007 = 0$ (9)

ここで,式(7),(8)および(9)に関して,各パラメータ ーN/N₀,A_s/BD, a/D がそれぞれ変化するので,方程式を 立てられなくなる。したがって,各パラメーター(N/N₀, A_s/BD, a/D)の影響を無視するため, x_1 +0.2523=0, x_2 -0.1647=0, x_3 -0.016=0とし,式(7),(8)および(9)より x_4 の値を求める。その結果 x_4 の値はそれぞれ 0.0509, 0.0544,0.05034となった。これらの平均値は0.053であ り,これを x_4 の値とすると,限界変形角 R_{80} を用いた変 形能力の評価式は以下のようになる。

 $R_{80cal} = -0.253 \cdot N/N_0 + 0.165 \cdot A_s/BD + 0.016 \cdot a/D + 0.053$ (10) 同様の方法で R_{85} , R_{90} についても検討した結果,次式 を得た。

 $R_{85cal} = -0.207 \cdot N/N_0 + 0.097 \cdot A_s/BD + 0.012 \cdot a/D + 0.042 \quad (11)$ $R_{90cal} = -0.198 \cdot N/N_0 + 0.051 \cdot A_s/BD + 0.0071 \cdot a/D + 0.052 \quad (12)$

4.3 変形能力評価式の妥当性の検証

表-7に式(10),(11)および(12)より求めた R₈₀, R₈₅および R₉₀の計算結果を示す。式(10),(11)および(12)に着目してみると、軸力比の増加に伴い急激に耐力が低下し CES 柱の変形能力が劣化することがわかる。一方、鉄骨 量とせん断スパン比の増加に伴って、柱の変形能力は向上する傾向が現れた。

図-10,図-11 および図-12 に計算結果 R_{cal}と実験結 果 R_{exp}の関係を示す。限界変形角 R₈₀, R₈₅, R₉₀の計算値 と実験値の比 (n=R_{cal}/R_{exp})の平均値はそれぞれ 0.95, 0.97 および 1.03,標準偏差は 0.12,0.16 および 0.17 であり試 験体の変形能力を精度よく評価できていると言える。

表-7 R₈₀, R₈₅, R₉₀の計算結果

	I Contraction of the second se	r			1	
Specimen	$R_{80 cal}$	$R_{85 cal}$	$R_{90 cal}$	n ₈₀	n ₈₅	n ₉₀
B1	0.0657	0.0547	0.0485	1.01	1.00	1.01
A2	0.0485	0.0396	0.0322	1.08	1.10	1.16
B2	0.0405	0.0340	0.0287	0.95	0.94	0.97
C2	0.0325	0.0284	0.0251	1.20	1.32	1.38
D2	0.0245	0.0228	0.0216	1.04	1.11	1.20
B25-c	0.0278	0.0237	0.0188	0.84	0.84	0.96
B3	0.0152	0.0133	0.0129	0.90	0.86	0.89
B3L	0.0131	0.0121	0.0122	0.87	0.86	0.96
B3H	0.0198	0.0160	0.0143	0.90	0.89	0.95
B30-a	0.0152	0.0133	0.0129	0.74	0.73	0.83
平均	回值	1	n	0.95	0.97	1.03
標準	偏差		σ	0.12	0.16	0.17

 $(*n=R_{cal}/R_{exp})$

5. まとめ

CES 柱における軸力比の影響およびバンドプレートに よる局部座屈の抑制効果を把握することを目的とした静 的載荷実験を行った。また、変形能力評価式を提案し、 軸力比、鉄骨量およびせん断スパン比の3つの主要パラ メーターが変形能力へ与える影響について検討した。 本研究で得られた知見を以下に要約する。

0.10

図-10 R₉₀の計算値と実験結果の比較

図-12 R₉₀の計算値と実験結果の比較

- (1) CES 柱において, バンドプレートによる局部座屈の 抑制および変形能力の向上などの効果は確認できな かった。
- (2) 各主要パラメーターの中でも、軸力比は、僅かな変 化であっても変形能力に与える影響は極めて大きい。
- (3) 軸力比,内蔵鉄骨量およびせん断スパン比の三つの 主要パラメーターと各試験体の限界変形角 R₈₀, R₈₅ および R₉₀の間には線形比例関係がある。
- (4) 各パラメーターと限界変形角の間に得られた関係を 用いて、それらを総合的に評価できる変形能力評価 式を提案した。
- (5) 提案した変形能力評価式の精度を検証した結果,限 界変形角 R₈₀, R₈₅, R₉₀の計算値と実験値の比 (n=R_{cal}/R_{exp})の平均値は0.95, 0.97 および1.03,標 準偏差は0.12, 0.16 および0.17 となり,実験結果と 極めてよい対応を示した。

なお、今回の変形能力評価式は限られた範囲の実験デ ータに基づくものである。変形能力評価式の妥当性にあ たっては、今後、幅広いパラメーターを含む構造実験を 実施し、さらなる検討を進める予定である。また、本手 法は、パラメーターが増えても同様の検証が可能である。

参考文献

- 柴山 豊, 倉本 洋, 永田 諭, 川崎清彦: 繊維補 強コンクリートパネルで被覆した鉄骨コンクリー ト柱の復元力特性に関する研究, コンクリート工学 年次論文集, Vol.27, No.2, pp.241-246
- 田口 孝,永田 諭,松井智哉,倉本 洋:H型鉄 骨を内蔵した CES 柱の構造特性,コンクリート工 学年次論文集, Vol.28, No.2, pp.1273-1278, 2006.7
- 永田 諭,松井智哉,倉本 洋:鉄骨コンクリート 造柱梁接合部の構造性能に関する基礎研究、コンク リート工学年次論文集, Vol.28, No.2, pp.1267-1272, 2006.7
- 倉本 洋,松井智哉,今村岳大,田口 孝:CES 合 成構造平面架構の構造性能,日本建築学会構造系論 文集,No.629, pp.1103-1110, 2008.7
- 5) 松井智哉, 溝淵博己, 倉本 洋:H型鉄骨内蔵 CES 柱の構造実験と FEM 解析, コンクリート工学年次 論文集, Vol.32, No.2, pp.1171-1176
- 6) 松井智哉,溝淵博己,藤本利昭,倉本 洋:シアス パン比が異なる CES 柱の静的載荷実験,コンクリー
 ト工学年次論文集, Vol.31, No.2, pp.1165-1170
- 7) 日本建築学会:鉄骨鉄筋コンクリート構造計算規
 準・同解説,2001