報告 あと施工アンカーにより増設した片持ちスラブの長期載荷実験

高津 比呂人*1・宮内 靖昌*2・藤村 勝*3・伊藤 武司*3

要旨:あと施工アンカーにより施工した片持ちスラブの引張鉄筋に,曲げ引張応力を長期間作用させる実験 を実施し、スラブ先端のたわみ量は約1年9ヶ月を経てもわずかに増加し続けることを確認した。また、片 持ちスラブ端部の固定状態は、鉄筋の抜け出し等が生じることにより完全固定状態とはならず、引張鉄筋を 折り曲げ定着したもの、樹脂系定着材により定着したもの、無機系定着材により定着したものの順に完全固 定状態から離れる(半剛接状態となる)ことが確認された。ただしその鉄筋の長期載荷による抜け出し変形 の増加量は最大でも0.3mm程度と非常に小さな値となった。 キーワード: あと施工アンカー, 長期載荷, 片持ちスラブ

1. はじめに

改修工事で多用される接着系あと施工アンカーにつ いては、建築基準法において長期許容応力度が定められ ていないため主要構造材の接合には使用できない^{例えば1)} のが現状である。しかしながら近年,既存ストックの住 戸全体を大規模に改修して価値を高めるといった再生 手法に関する研究が進められており²⁾,このような大規 模改修を行う際には,あと施工アンカーを用いることで 平面計画の自由度が高まり、かつ施工の合理化を図るこ とができると考えられる。

そこで、本研究ではあと施工アンカーを用いて施工し た片持ちスラブの引張鉄筋に、曲げ引張応力を長期に作 用させた実験を実施し、アンカー筋の抜け出しなどの長 期性状を検討したのでここに報告する。

2. 長期載荷実験の概要

2.1 試験体

試験体は4体とし、それぞれ試験体固定用スタブから 片持ちスラブ(厚さ150mm)を跳ね出す形状とした。試 験体一覧を表-1に、試験体配筋図を図-1に示す。

No1 試験体では折り曲げ定着(定着長 40d_b, d_bは鉄筋

の呼び名)でスタブにスラブの引張鉄筋(SD295A)を 定着したのに対して, No2, No3, No4 試験体ではあと施 エアンカー筋(SD295A)をスラブの引張鉄筋としてス タブに定着した。No2, No4 試験体はともにエポキシ樹 脂を主剤としたカプセル方式の定着材を用いた(以下, 樹脂アンカー試験体と呼ぶ)が、鉄筋径および本数が 3-D13と2-D16で異なる。なお、3-D13の断面積が381mm² なのに対して、2-D16の断面積は 398mm² でありほぼ等 しい。No3 試験体では膨張性急硬モルタルをカプセル化 した定着材を用いた(以下, 無機アンカー試験体と呼ぶ)。

あと施工アンカー筋の有効埋め込み長さは 12db で共 通とし、鉄筋の先端は片側45度カットとした。

2.2 試験体の製作

試験体は最初にスタブの部分を製作し、スタブコンク

表一1 試験体一覧					
試験体	No1	No2	No3	No4	
鉄筋径 本数	3-D13	3-D13	3-D13	2-D16	
定着方法	折り曲げ 定着	樹脂 アンカー	無機 アンカー	樹脂 アンカー	
定着長	40d _b	12d _b	12d _b	$12d_{b}$	

*3 (株) 竹中工務店 東京本店 設計部 構造グループ

リート(目標圧縮強度(4週):21N/mm²)が所定の強度 を発現したことを確認後,スタブの所定の位置を穿孔し, 樹脂カプセルおよび無機カプセルをコンクリート孔に 装填してアンカー筋を回転と打撃によって埋め込んだ。 折り曲げ定着のNolについては,スタブコンクリート打 設前に,あらかじめ鉄筋をスタブ内に埋め込んでおいた。

あと施工アンカー筋施工後,スラブ部分の型枠および 溶接金網の配筋を行ってスラブコンクリート(目標圧縮 強度(4週):21N/mm²)を打設した。したがっていずれ の試験体にもスラブとスタブの界面には打継ぎ面が存 在することとなる。なお,スラブとスタブの界面に特別 な打継面の処理は行わなかった。アンカー施工時のスタ ブコンクリートの材料特性,長期載荷開始時のスラブコ ンクリートの材料特性,鉄筋の材料特性を**表-2**に示す。

	圧縮強度	静弾性係数	引張強度
	[N/mm ²]	[N/mm ²]	[N/mm ²]
スタブコンクリート	22.7	2.24×10^{4}	1.99
スラブコンクリート	31.5	3.34×10^{4}	2.63
	降伏強度	弾性係数	引張強度
	降伏強度 [N/mm ²]	弾性係数 [N/mm ²]	引張強度 [N/mm ²]
鉄筋D13	降伏強度 <u>[N/mm²]</u> 361.3	弾性係数 [N/mm ²] 1.78×10 ⁵	引張強度 [N/mm ²] 500.1

表-2 コンクリート・鉄筋の材料特性

2.3 加力・計測

スタブを反力床に固定後,スタブとスラブの界面から 距離 1000mm の位置に設定した加力点におもり(2.61kN ×2=5.22kN)を載せることにより載荷を行った。載荷完 了後の状況を**写真-1**に示す。計測項目は,おもり直下 の鉛直変位,スラブとスタブ界面の目開き,主筋の抜け 出し変位,鉄筋のひずみ(鉄筋ひずみ計測位置は図-1 を参照)とした。

スラブとスタブの界面が完全固定とした場合に,スラ ブ自重とおもりによる載荷でスラブ端部に発生する曲 げモーメント M_cは以下の式(1)によって求められる。

```
M_c = wL^2/2 + Pl = 6.63 [kN \cdot m] (1)
```


写真-1 おもり載荷完了後の状況

 ここで、w:コンクリートの単位長さあたりの重量 (=24kN/m³×0.5m×0.15m=1.8kN/m),L:片持ちスラブ の全長(=1250mm),P:おもりの重量(=5.22kN),1: スラブとスタブ界面から加力点までの距離(=1000mm) この時、鉄筋に生ずる引張力Tは式(2)より、

 $T=M_c/j=75.7$ [kN]

(2)

(j:スラブ断面の応力中心間距離(=7d/8),d:スラブ の有効せい(=100mm))であり,3-D13および2-D16の 断面積で割るとそれぞれ199N/mm²,190N/mm²となる。

3. 実験結果

3.1 変形の推移

おもりによる載荷を開始してから 635 日(約1年9ヶ 月)後までの,おもり直下の鉛直変位(*WV)とスタブ とスラブ上面の目開き変形(*SH,ここでは図-2 に示 すスラブ上面に埋め込んだインサートとスタブ間の変 位を目開き変形と定義)の推移を図-3に示す。

おもり直下の鉛直変位*WV (図中,実線) については, 時間の経過に従って増加量は徐々に小さくなってはい るものの,全期間で変形が増加し続けていることがわか る。試験体間で載荷直後のおもり直下の鉛直変位が 1.26 ~2.58mm とばらつきが大きかったため,最終変形につ いても約 7mm~10mm と大きくばらついた。目開き変形 *SH (図中,一点鎖線) はあと施工アンカーの No2, No3, No4 試験体が 2mm を超えたのに対して折り曲げ定着の No1 試験体では 1mm 強に留まった。

おもり直下の鉛直変位の計測値からおもり載荷直後 の変位を差し引いて算定した鉛直変位増分の比較を図 -4 に示す。図より、本実験における長期載荷によるお もり直下の鉛直変位増分は、6~7mm であったことがわ かる。また、長期載荷による鉛直変位増分が最も小さい のは、3-D13 樹脂アンカーの No2 試験体で、次に小さい のが 3-D13 無機アンカーの No3 試験体で、3-D13 折り曲 げ定着の No1 試験体と 2-D16 樹脂アンカーの No4 試験 体はほぼ同じ値であったことが確認された。

3.2 主筋の抜け出し

載荷を開始してからの主筋抜け出し変位の推移を図 -5 に示す。ここでは、スラブ側面の主筋と同じ高さに 埋め込んだインサートとスタブ間の変位を主筋抜け出 し変位と定義し、図にはスラブの両側面の2点の計測値 の平均値を示した。この抜け出し変位についても載荷直

図-2 スタブとスラブ 上面の目開き変形(*SH)

後の値が 0.15~0.29mm となり試験体間のばらつきがや や大きかった。

図-3 に示すおもり直下の鉛直変位は載荷直後から全 期間概ね増加し続けていたのに対し,鉄筋抜け出し変位 は全試験体で経過日数 50~150 日においてほとんど変位 が進行しない状況が確認された。この時期は,図-6の 熱電対により計測した試験体周辺の気温の推移に示す 通り気温が上昇していた時期に相当する。気温がピーク となった 150 日過ぎから,鉄筋の抜け出し変位が増加し, 気温が最も低くなった 350 日でその増加が止まるという 傾向が見られた。これは温度の上昇によって,鉄筋やコ ンクリートが伸びたことに起因するものと推察される。

その後,再び気温の上昇がピークを迎えた 500 日過ぎ から鉄筋の抜け出し変位が増加する傾向が見られた。特 に 3-D13 折り曲げ定着の Nol では他の試験体よりも増加 量が大きいことが確認された。

3.3 主筋ひずみ

載荷を開始してからの主筋ひずみの推移を図-7に示 す。主筋ひずみについては、時間の経過に伴う変動はほ とんど見られなかった。3-D13 折り曲げ定着の No1 試験 体のスラブとスタブ界面の鉄筋ひずみ(1U1, 1U2)と 3-D13 樹脂アンカーの No2 試験体のスラブとスタブ界面 の鉄筋ひずみ(2U1, 2U2)がほぼ等しいのに対して、 3-D13 無機アンカーの No3 試験体の鉄筋ひずみ(3U1, 3U2)はそれらに比べて 100 μ程度小さい値となった。 2-D16 樹脂アンカーの No4 試験体の鉄筋ひずみ(4U1, 4U2) も No3 とほぼ同等であった。

3-D13 折り曲げ定着の Nol 試験体において,図-5 に 示した主筋抜け出し変位が大きく増加する点で,折り曲 げ起点近い 1U3,1U4 のひずみが若干変動する状況が確 認された。鉄筋の抜け出しによってひずみが折り曲げ起 点側にシフトしたことが原因と考えられる。

3.4 ひび割れ状況

載荷後 635 日のひび割れ状況を図-8 に示す。載荷直 後にはスラブとスタブの界面にのみひび割れの発生が

見られたが,載荷から3日後にスラブ部分にひび割れが 発生したことを目視で確認した。その後ひび割れ本数は 徐々に増え,時間の経過に従ってひび割れ同士の間隔が 狭くなる傾向が見られた。

最終的に、3-D13 樹脂アンカーの試験体(No2)のひ び割れ本数が最も少なく、3-D13 無機アンカーの試験体 (No3)のひび割れ本数が最も多くなったと見受けられ る。しかしながら、各試験体のスラブとスタブの界面を 除く最大ひび割れ幅は、クラックスケールで計測したと ころせいぜい0.1mm 程度であり、耐久性に与える影響は ほとんどないといえる。

3.5 おもり撤去後の性状

本実験では、おもりによる載荷を開始してから 636 日 でおもりを撤去することにより除荷を行った。おもり撤 去から約4週間のおもり直下位置での鉛直変位の推移を 図-9に、計測された主筋抜け出し変位からおもり載荷 直後の変位を差し引いて算定した主筋抜け出し変位増 分の推移を図-10に示す。

図-9より,除荷から時間の経過に従って変形が若干 ではあるが回復する様子が確認された。また,図より本 実験におけるおもり直下の非回復鉛直変形は5~7mmで あったといえる。非回復鉛直変形が最も小さかったのは, 3-D13樹脂アンカーのNo2試験体であり,その他の試験 体についてはほとんど差が無い。一方,図-10に示す主 筋の抜け出し変位増分については、いずれも0.2mm以下 の小さな変形に回復した。主筋の抜け出し変位について は、除荷後の時間の経過に従って抜け出し変形が回復す る様子は確認されなかった。

図より、本実験における長期載荷による鉄筋の抜け出 し量は、3-D13 折り曲げ定着の No1 試験体と 2-D16 樹脂

アンカーの No4 試験体が約 0.2mm とほぼ等しく, 3-D13 樹脂アンカーの No2 試験体が約 0.1mm, 3-D13 無機アン カーの No3 試験体が約 0.05mm で最も小さいという結果 であった。

4. 実験結果の考察

ここでは、変位計および鉄筋ひずみの計測結果から算 出したスラブとスタブの界面に発生している曲げモー メント(M_m)と、スラブとスタブが完全固定であると仮 定した場合の曲げモーメント(M_c)の比を算出して比較 を行う。

算出に際しては以下の仮定を行った(図-11)。

- (a) おもりを乗せるとスラブとスタブの界面にひび割 れが生じてスラブとスタブが離間する。
- (b) スラブとスタブの接している部分の長さを中立軸 深さX_nと定義し、そのX_nをスラブとスタブ上面の 目開き変位と主筋の抜け出し変位の計測値から幾 何学的に算出する。
- (c) 鉄筋ひずみの計測値に弾性係数と鉄筋断面積を掛けて、鉄筋引張力 Tmを求める。コンクリートによる圧縮力 Cmは Tmと等しいとし、コンクリートの応力度分布は三角形分布とする。なお、スタブとスラブが離間していると仮定したため、コンクリートは引張力を負担しない。
- (d) 先ほど求めた X_nより応力中心間距離 j_mが計算できるので,界面で発生しているモーメント M_mを式(3)により求める。

 $M_m = T_m \times j_m$

以上の仮定に基づいて算出した中立軸深さ X_nと曲げ モーメント M_mの推移を図-12, 13 に示す。

(3)

中立軸深さ X_n は 3-D13 折り曲げ定着の No1 が 60mm 程度なのに対して,残りのあと施工アンカーの 3 体の試 験体では約 90mm となった。一方,計測値から算出した 曲げモーメント M_m は 3-D13 折り曲げ定着の No1 が最も 大きく,以下大きい順に 3-D13 樹脂アンカー (No2), 2-D16 樹脂アンカー (No4), 3-D13 無機アンカー (No3) となった。

ここで得られた計算値 M_mと完全固定(剛接)である と仮定した時の曲げモーメント M_cの比の推移を図-14 に示す。図より最も完全固定に近いのは 3-D13 折り曲げ 定着の Nol ではあるが、その値は 1 以下であり、完全固 定とピンの間である(半剛接の状態である)ことがわか る。以下、3-D13 樹脂アンカー(No2)、2-D16 樹脂アン カー(No4)、3-D13 無機アンカー(No3)の順に完全固 定状態から離れることが確認された。また、時間経過に よる変動はほとんどないことも確認できる。

ここで、No1 試験体では主筋の抜け出し変位が他の試 験体に比べて大きいため、中立軸深さ X_n の計算値が小さ くなる。そのため、応力中心間距離 j_m が大きくなり、こ れが原因で M_m の計算値が大きくなったものと考えられ る。鉄筋引張力 T_m がほぼ同じ場合、中立軸深さ X_n が小 さくなれば、その分コンクリートの圧縮縁ひずみ ε_c が大 きくなることが推察される。 T_m 、 X_n 、スラブコンクリー トの静弾性係数を用いて算出した ε_c の推移を図-15 に 示す。図より、3-D13 折り曲げ定着の No1 試験体ではコ ンクリートの圧縮縁ひずみが他の試験体に比べ3割程度

大きかったことがわかる。一方で、 ε 。の値は相対的に小 さく、大きく増加はしていないことから、コンクリート のクリープ変形が進行していたとは考えにくい。したが って、長期載荷によりおもり直下の鉛直変位が進行した 主要因は、スラブに順次ひび割れが発生したことによる 変形の蓄積と剛性の低下にあったと推察される。このこ とは、長期載荷によるおもり直下の鉛直変位が最も小さ かった 3-D13 樹脂アンカーの No2 試験体でひび割れ本数 が少なかったこととも因果関係にあるといえる。

5. まとめ

あと施工アンカーを用いた片持ちスラブの長期載荷 実験を行い以下の知見を得た。

- おもり直下の鉛直変位は約1年9ヶ月を経てもわず かではあるが増加を続けた。
- (2) 載荷直後にはスラブとスタブの界面にのみひび割れが発生したが、その後スラブ部分にひび割れが発生し、時間の経過に従ってひび割れ本数は徐々に増え、ひび割れとひび割れの間隔が狭くなっていく傾向が見られた。
- (3) すべての試験体で完全固定の状態ではなく、スタブからの主筋の抜け出しが生じることによって完全固定の状態から離れた(半剛接合状態になった)と考えられる。3-D13 折り曲げ定着が完全固定状態に最も近く、以下 3-D13 樹脂アンカー、2-D16 樹脂アンカー、3-D13 無機アンカーの順に完全固定の状態から離れていった。
- (4) 本実験における鉄筋の抜け出し変形の増加量は最 大でも0.3mm 程度と非常に小さい値であった。

参考文献

- 国土交通省:あと施工アンカー・連続繊維補強設計・施工指針,国住指第501号別添,2006.5
- 川西泰一郎:ひばりが丘団地既存住棟におけるルネ ッサンス計画 1-住棟単位での改修技術の開発-, コンクリート工学, Vol.48, No.10, pp.34-40, 2010.10