論文 PFBC 灰を用いた補修用モルタルの耐久性に関する研究

丸田 浩^{*1}・櫨原 弘貴^{*2}・添田 政司^{*3}・檀 博^{*4}

要旨:本研究では、PFBC 灰モルタルの補修材料への適応性について検討するため、強度特性では、PFBC 灰の置換率、細骨材の種類、水結合材比(W/B)および砂結合材比(S/B)による影響を検討した。耐久性の評価は、化学的抵抗性および塩化物イオンに対する抵抗性の検討を行った。その結果、PFBC 灰を用いた場合の配合としては、PFBC 灰の置換率 50%、細骨材には砕砂を用い、W/B42%、S/B2.6 と定めた。BC-P50 は、化学的抵抗性に優れていることが確認された。また、BC-P50 は浸透した塩化物イオンの多くが固定化されることから、塩化物イオンに対する抵抗性を有することが明らかとなった。 キーワード: PFBC 灰、強度特性、化学的抵抗性、塩化物イオン

1. はじめに

発電効率の改善および環境負荷低減を目的として開発 された加圧流動床複合発電(PFBC: Pressurized Fluidized Bed Combustion)方式の火力発電所が稼動している。こ の PFBC 方式は,石炭を加圧状態で燃焼させるため高効 率であると同時に,石炭に石灰石を混ぜて燃焼させるこ とにより硫黄酸化物を除去できる。この PFBC 方式から 排出される石炭灰を加圧流動床石炭灰(以下,PFBC 灰) という。PFBC 灰は,コンクリート用フライアッシュ JIS A 6201 の規格を満足していないことから,全量を産業廃 棄物処理されているのが現状である。そのため,PFBC 灰を土木資材としての有効利用が模索されている。自硬 性を有するという特徴に着目し,PFBC 灰を補修用モル タルのセメントの代替材として適用し,有効利用できな いかと考えた。

一方,コンクリート構造物の酸による化学的侵食や塩 化物イオンによる塩害の劣化が数多く報告されている。 PFBC 灰の化学的抵抗性の研究は,コンクリート材料と しての研究は行なわれている^{1),2)}が,モルタル材料とし ての研究は少ない。また,野田ら³⁾によって,PFBC 灰 は,フライアッシュと同程度の塩化物イオン浸透深さを 示しており,塩化物イオンに対する抵抗性を有している ことが明らかにされている。しかし,PFBC 灰を用いた モルタルの化学的抵抗性や塩化物イオンに対する抵抗性 のメカニズムは,明らかにされていない。

そこで、本研究は、PFBC 灰を用いたモルタルを化学

的侵食および塩害が懸念される環境下に補修材料として 適応可能かを明らかにするため、最適なモルタルの配合 を見い出し、化学的抵抗性および塩化物イオンに対する 抵抗性について検討を行った。

2. PFBC 灰とフライアッシュの相違

PFBC 灰の特徴を、同じ石炭灰であるフライアッシュ JIS II 種と比較して記す。写真-1 には、SEM による PFBC 灰とフライアッシュの粒子形状を示す。フライアッシュ の粒子形状は、球であるのに対し、PFBC 灰は、角張っ た不定形を示している。表-1 には、PFBC 灰およびフラ イアッシュの化学成分を示す。PFBC 灰の化学成分は、 フライアッシュに比べて SiO₂の含有量が少なく、JIS 規

(a) PFBC 灰 (b) フライアッシュ

写真-1 各石炭灰の SEM 画像

表-1 各石炭灰の化学成分表

		化学成分(%)							
	SiO ₂	Al_2O_3	CaO	SO_3	$\rm Fe_2O_3$	MgO			
フライアッシュ	55.4	26.9	4.1	0.7	3.7	0.4			
PFBC灰	32.9	19.2	21.3	4.6	2.9	0.7			

表-2 配合および強度

S/D	W/P		単位量	(kg/m³)		SP	曲げ強度(N/mm ²)		圧縮強度(N/mm ²)	
3/ F	(%)	W	Р	S	FA	(%)	7日	28日	7日	28日
3.0	40	180	450	1215	120	2.2	1.3	1.0	3.3	3.4

*1 福岡大学大学院 工学研究科 資源循環・環境工学専攻 修士(工学)(学生会員)

*2 福岡大学 工学部社会デザイン工学科 博士 (工学) (正会員)

*3 福岡大学大学院 工学研究科 資源循環・環境工学専攻 博士(工学)(正会員)

*4 九州電力㈱ 技術本部総合研究所

材料	略語	物理的性質						
普通ポルトランドセメント	OPC	密度:3.16g/cm ³ , 比表面積:3,340cm ² /g						
高炉セメントB種(6000ブレーン)	BC	密度:3.02g/cm ³ , 比表面積:4,400cm ² /g						
PFBC灰	Р	密度:2.64g/cm ³ , 比表面積:4,250cm ² /g						
海砂		表乾密度:2.58g/cm ² , 吸水率:0.96%						
砕砂	S	表乾密度:2.85g/cm ² , 吸水率:0.80%						
石灰砕砂		表乾密度:2.67g/cm ² ,吸水率:0.89%						
フライアッシュ JIS II 種	FA	密度:2.33g/cm ³ , 比表面積:3,940cm ² /g						
高性能AE減水剤	SP	-						

表-3 使用材料および物理的性質

表-4 モルタルの配合例

W/P			単位量(kg/m ³)						
配合名	S/B	(%)	\W/	В			S	E۸	3F (%)
	(/0)	vv	OPC	BC	Р	(砕砂)	ТА		
Ν			255	606	-	-	1418	129	1.1
BB	2.6	42	253	-	601	-	1407	128	0.8
BC-P50			249	-	296	296	1387	126	1.2

格の 45%以上を満足していないため,JIS 規格外となっ ていることや,CaO および SO₃の含有量が多い。表-2 には、PFBC 灰のみを結合材として作製したモルタル配 合および材齢7,28日まで水中養生を行った後の曲げお よび圧縮強度を示す。この結果から PFBC 灰は、自硬性 を有している材料であることが確認された。

3. PFBC 灰モルタルの強度特性

3.1 実験概要

表-3には、使用材料および物理的性質を示す。PFBC 灰モルタルの配合は,結合材として,耐久性の向上を図 るため, 高炉セメント B 種 6000 ブレーンを使用し, 高 炉セメントに PFBC 灰を 40, 50, 60, 70% の 4 水準を置 換することとした。細骨材には海砂, 砕砂, 石灰砕砂の 3 種類を用いた。いずれの配合も流動性の向上のため、 FA を細骨材として,容積比で10%混和することとした。 また, W/B は 40, 42, 45, 47% (SP 添加率は, それぞ れ 1.4, 1.2, 1.0, 0.8%) の 4 水準, S/B は 2.2, 2.4, 2.6 の3 水準で検討した。フロー値はいずれも 200±10mm になるように SP を添加して調整した。その他,比較用 のモルタルとして, 普通ポルトランドセメント単味の配 合(N),高炉セメント単味の配合(BB)についても別 途作製した。モルタルの配合は合計 15 通りで検討を行な った。その配合の一例を表-4 に示す。曲げおよび圧縮 強度試験の試験方法は、28 日間水中養生した 40×40× 160mmの角柱供試体を用いて JIS R 5201 に準拠して行っ た。強度の規格値は、日本下水道事業団体のマニュアル ⁴⁾ に準拠し, 材齢 28 日目の曲げ強度を 7N/mm², 圧縮強 度を 45N/mm² と設定した。

3.2 実験結果および考察

PFBC 灰置換率の選定

図-1には、PFBC 灰の置換率を変化させた場合の曲げ

におよび圧縮強度を示す。この結果,置換率が大きくな 従って,曲げおよび圧縮強度は,小さくなる傾向を示し, 50%以下で規格値を満足することが分かった。これは, 置換率が小さくなるとセメント量の増加に伴って,水和 生成物量が多くなり,内部構造が緻密になったものと考 えられる。一般的な化学的抵抗性は,セメント成分のCaO が多いほど低くなる。そのため,PFBC 灰の有効利用量 や化学的抵抗性を考慮して,置換率 50%とした。

(2) 細骨材種類の選定

図-2には、W/B48%、S/B3.0一定とし、細骨材の種類

が異なる場合の曲げおよび圧縮強度を示す。この結果, 砕砂を使用した場合の曲げおよび圧縮強度は,海砂や石 灰砕砂を使用したものよりも大きくなった。これは,砕 砂の密度は,他の細骨材よりも大きいため硬化性状を持 つ結合材の単位量が増加したことや砕砂自体が硬質であ ったことによるものと考えられる。したがって,以後の 試験の細骨材には砕砂を用いることとした。

(3) W/Bの選定

次に、図-3には、S/Bを2.6と一定とし、W/Bを変化 させた場合の曲げおよび圧縮強度を示す。曲げ強度は、 W/Bの違いによる顕著な差は確認されなかったものの、 圧縮強度においては、W/Bが大きくなるに従って、強度 が低下した。しかし、W/B40%になると所定の流動性を 確保するために SP 添加量が多くなり、粘性が高くなっ たため、施工性に劣るものと判断した。したがって、W/B は42%と定めた。

(4) S/Bの選定

図-4には、W/B42%を一定とし、S/B を変化させた場合の曲げおよび圧縮強度を示す。曲げ、圧縮強度ともに S/B が大きくなるに従って、強度も大きくなる傾向を示した。いずれの場合も規格値を満足する結果を示しているが、化学的抵抗性を考慮して、結合材量の少ない S/B2.6とした。

以上のことから,規格値を満足し,施工性や化学的抵抗性を考慮した結果,補修用 PFBC 灰モルタルの配合は,結合材に対する置換率 50%,細骨材として砕砂,W/B42%,S/B2.6 と定めた。

図-5には、各種モルタルの曲げおよび圧縮強度を示 しているが、BC-P50の強度は、やはりセメント量が少な いためBB、Nに比べると小さくなっている。

4. PFBC灰モルタルの耐久性

4.1 実験概要

各耐久性の評価に用いた配合は,**表**-4に示すBC-P50, N, BBの3配合である。**表**-5には,各結合材料の化学 的成分の総和を示している。

(1) 硫酸浸漬試験

硫酸浸漬試験は、28 日間水中養生を行った φ 75× 150mmの円柱供試体を用いて、濃度 5%硫酸水溶液に浸 漬させ、所定の材齢にて質量を測定して質量変化率を算 出した。また、硫酸浸透深さは、試験開始 28 日目で供試 体を割裂し、フェノールフタレイン 1%溶液を噴霧し、 呈色反応していない範囲を測定した。日本下水道事業団 体のマニュアル⁴に準拠し、その規格値を**表-6**に示す。

(2) 水酸化カルシウム量の測定

水酸化カルシウムの定量は,水中養生を7,28日間行 った供試体をドリル法により供試体表面から5mm以降 の深部から粉末試料を0.6g程度採取し,示差熱・熱重量 同時測定装置(TG-DTA)を使用し,470~530℃付近で DTAのピークから脱水反応域を読み取ってその範囲の 減量から求めた。

(3) 塩水浸漬試験

塩水浸漬試験は、28日間水中養生を行った φ 100× 100mmの円柱供試体の試験面以外をエポキシ樹脂で被 覆し,濃度10%塩化ナトリウム水溶液に9カ月間の浸漬を 行った。その後、ドリル法により試験面から5mm毎の粉 末を採取し、JCI-SC4に準拠し、試験面から10mmまで の塩化物イオンを除して,見かけの拡散係数を算出した。

(4) 電気泳動試験

電気泳動試験は、水中養生28日間行った φ 100×50mm

表-5 各結合材料の化学的成分

\sim					化学成分(%))			
	CaO	SiO ₂	AI_2O_3	Fe_2O_3	SO ₃	MgO	Na₂O	K₂O	その他
OPC	64.63	20.65	5.15	2.96	1.93	1.03	0.30	0.36	2.99
BC	55.40	26.28	8.87	1.69	2.51	2.98	0.30	0.34	1.63
Р	21.32	32.93	19.25	2.89	4.59	0.70	0.12	0.15	18.05

の供試体の円周面をエポキシ樹脂で被覆した供試体を用 いて,JSCE-G571に準じて行い,実効拡散係数を算出し た。その後,松崎ら⁵⁾によって提案されている手法によ って,電気泳動試験終了後の供試体内の固定化塩化物イ オン量を測定した。

(5) 細孔径分布の測定

細孔径分布の測定は、28日間水中養生したモルタル供 試体と電気泳動試験終了後のモルタル供試体を用いて、 水銀圧入法(圧力0~200MPa)により細孔径分布の測定 を行った。なお、28日間水中養生した測定試料は、アセ トンにより水和反応を停止させた。

(6) EPMA分析

EPMA分析は、100×100×400の角柱型枠に基板コンク リートを80mm打設し、その上にモルタルを20mm打設し て、打設上面以外をエポキシ樹脂で被覆した供試体を用 いて、塩害環境下に1年間曝露し、塩分の分布状況をマッ ピングによって調べた。

4.2 実験結果および考察

(1) 化学的抵抗性の検討

写真-2には、硫酸浸漬試験の過程における供試体の 外観を示す。N, BBは、浸漬14日目で供試体表面が侵食 され始め、細骨材が露出してきた。28日目になると、供 試体の上部、底部に丸みが帯びてきた。一方, BC-P50の 外観は、浸漬14日目では変化なく、浸漬28日目において も若干細骨材が露出している程度であった。

図-6には、硫酸浸漬試験における質量変化率の経時変化を示す。Nの場合は、試験開始後から質量は急激な低下を示し、浸漬28日目では-26.8%まで低下した。BBの場合は、急激な低下は見られなかったが、28日目になると-11.4%まで低下し、いずれも規格値を満足することができなかった。一方、BC-P50の場合は、試験開始後14日まではPFBC灰に多く含まれるSO₃によって供試体が膨張したため、質量が僅かながら増加し、28日目においても質量の低下は確認されず、規格値を十分に満足する結果を示した。

図-7には、硫酸浸透深さの測定結果を示す。BC-P50 の硫酸浸透深さは、N、BBより小さくなる結果を示した。 Nは4.77mm、BBは4.26mmと3mmを上回り、規格値を 満足していないが、BC-P50は2.89mmと満足している。 これは、BC-P50はセメント量が少ないことから、Ca(OH)2 の生成量が少なかったためと推察される。そこで次に 表-6 硫酸浸漬試験の規格値⁴⁾

試験	規格値					
硫酸浸漬試験	質量変化率	±10%以内				
(促進材齢28日)	硫酸浸透深さ	3mm以下				

写真-2 供試体の外観状況

Ca(OH)2の定量を行い、検討を加えた。

図-8には、TG-TDAで求めた各種モルタルのCa(OH)₂の 生成量の経時変化を示す。N、BBのCa(OH)₂の生成量は、 材齢が経つにつれて増加しているが、一方のBC-P50の場 合は、材齢の経過に拘らず、Ca(OH)₂の生成量は少ない。 よって、硫酸イオンとの反応で生成される石膏の量が他 のモルタルよりも少なかったことがBC-P50が化学的抵 抗性を有している要因と考えられた。

(2) 塩化物イオンに対する抵抗性の検討

図-9 には, EPMA によって測定した塩化物イオンの 浸透状況を示す。赤色の線は, モルタル部とコンクリー

ト部の境界線を示している。BC-P50の塩化物イオン浸透 深さは、BB、Nが 5.0mm 程度に対して、3.5mm 程度と 小さくなっていることが確認された。そこで、PFBC 灰 の塩化物イオンに対する抵抗性のメカニズムを明らかに するために、以下の検討を行なった。

図-10には、各種モルタルの見かけの拡散係数を示す。 BC-P50の見かけの拡散係数は、Nより小さく、BBより 大きくなる結果を示した。強度がNよりも小さいにも関 らず、塩化物イオンの浸透を抑制したのは、塩化物イオ ンが固定化したことによると推察される。

次に、図-11には電気泳動試験における実効拡散係数 を示す。BC-P50の実効拡散係数は、見かけの拡散係数で 得られた結果とは異なり、Nの1/2、BBの3/4と小さく なる結果を示した。その要因を明らかにするため、表-5 に示した化学成分のAl₂O₃から、各種モルタルの結合材 における Al_2O_3 の含有量を算出してみると, BC-P50 は 83.1kg/m³, BB は 53.3kg/m³, N は 30.5kg/m³ となり, そ れぞれ BB の 1.6 倍程度, N の 2.7 倍程度であった。塩化 物イオンの固定化には, Al_2O_3 が寄与していることによ ると考えられる⁶。図-12 には,電気泳動終了後の各種 モルタルの固定化塩化物イオン量を示す。BC-P50 の固定 化塩化物イオン量は, BB, N よりも大きくなり, N の 2.6 倍程度, BB の 2.0 倍程度になる結果を示した。この ことから, BC-P50 は,固定化された多くの塩化物イオン が,結晶構造の緻密化,あるいは電荷的なものに影響を 与えたことで,実効拡散係数が他のモルタルよりも低く なったものと思われる。

図-13 には,水中養生 28 日後および電気泳動終了後 細孔径分布を示す。一般的に細孔径 15~15000nm の範囲 は拡散性状と物質移動に密接な関係がある⁷⁾と言われて

おり、その範囲から特に顕著な差が見られた範囲を図中 に拡大して示している。28日間水中養生した BC-P50の 細孔容積は、N よりも少なく、BB よりも多くなってい るが、電気泳動終了後は、N、BB よりも少なくなる結果 を示している。この結果は、BC-P50に浸透した塩化物イ オンの多くが固定化され、細孔構造を変化させたことを 表していると考えられる。

以上のことから, BC-P50 は, 内部構造がポーラスであ るため初期は塩化物イオンが浸透し易いが, 多量に固定 化することで, 細孔構造が変化し, 長期的には浸透を抑 制することが分かった。

5. まとめ

本研究により得られた知見を以下に示す。

- 施工性を考慮し、曲げおよび圧縮強度の規格値を十分に満足した配合は、細骨材には砕砂を用い、 W/B42%、S/B2.6となった。
- (2) 化学的抵抗性の検討では, BC-P50はN, BBと比べ, Ca(OH)₂の生成量が少ないため,生成される石膏が 少なく,そのため規格値を十分に満足し,化学的抵 抗性を有していることを確認した。
- (3) BC-P50 の塩化物イオンに対する抵抗性は、内部構造がポーラスであるため初期は塩化物イオンが浸透し易いが、浸透した塩化物イオンの多くが固定化することで、細孔構造が変化し、長期的には浸透を抑制することが確認された。
- (4) 化学的侵食や塩害が懸念される構造物への補修材料としての適応性を十分に有している補修用モルタルの開発をすることができた。

参考文献

- 堀口 至,市坪 誠,田中 雅章,福本 直:耐 硫酸性を有する PFBC 灰硬化体の圧縮強度,コンク リート工学年次論文集,vol.30, No.2, 2008
- 堀口 至,福本 直,岩田 数典,市坪 誠: PFBC 灰硬化体の耐硫酸性に対する微細構造の影響,コ

ンリート工学年次論文集, vol.30, No.2, 2008

- 野田 翼,中下 明文,佐藤 良一:加圧流動灰混 入コンクリートの強度発現と耐久性に関する実験 的検討,コンクリート工学年次論文集,vol.28, No.1, 2006
- 4) 日本下水道事業団体:下水道コンクリート構造物の 防食抑制技術および防食技術指針・同マニュアル, 平成17年9月
- M.Shinichiro, T.Iyoda, T.Uomoto : Fundamental study on the state of chloride ion at different depth from the surface of concrete, The 4th ACF International conference 2010 (Taipei), 2010.3
- 平尾 宙,横山 滋:セメント硬化体における塩化 物イオンの固定性状,コンクリート工学年次論文集, Vol.23, No.2, 2001
- 7) 佐々木謙二・品田健太・佐伯竜彦:セメント系硬化 体の細孔構造と塩化物イオン拡散係数の関係に関 する検討、コンクリート構造物の補修、補強、アッ プグレード論文報告集、第5巻、pp.275-280, 2005.10