論文 廃瓦細骨材を用いた高炉 B 種コンクリートの破壊エネルギーの実験 的検討

Mwangi M MACHARIA^{*1}・大西 裕士^{*1}・河合 研至^{*2}・佐藤 良一^{*2}

要旨:本研究では、内部養生材として廃瓦細骨材(PCFA)を用いた高炉 B 種コンクリート(BB)の破壊エネルギ ーについて実験的検討を行った。PCFA 置換率は 12%, 23%, 35%および 46%とした。材齢 28 日における結 果は、置換率を問わず封緘条件は早期乾燥条件の破壊エネルギーより小さかった。また、早期乾燥条件下で は PCFA 置換率の増加は破壊エネルギーにさほどの影響を与えなかったことも確認された。強度およびヤン グ係数に関しては、PCFAを用いたコンクリートは無置換コンクリートのものに比べて、同等かそれ以上であ ったことが確認された。

キーワード:高炉 B種コンクリート,廃瓦細骨材,置換率,内部養生,破壊エネルギー,特性長さ

1. はじめに

建設リサイクル法やグリーン購入法が制定され、環 境負荷低減が重要視されるようになり,高炉B種セメ ントを用いたコンクリート(BB)は活用が進み、実構造 物に広く使用されている。BB は、初期材齢における 湿潤養生の良否が硬化後の品質に大きな影響を及ぼす とされている¹⁾。

上記を考慮し重松らは²⁾,早期脱枠された BB を想 定し、適度な吸水率と人工軽量骨材より小さい破砕値 を持つ廃瓦粗骨材を内部養生材として活用することに 着目し、品質向上を図った結果、水セメント比(W/C) 0.5, 乾燥開始材齢3日のBBの圧縮強度, 細孔容積は, 材齢 28 日において明らかに改善されることを報告し た。

一方,三谷ら³⁾は,廃瓦粗骨材を超高強度コンクリ ートに用いた場合の破壊エネルギー特性について, 廃 瓦粗骨材の BS 812 による破砕値が通常の砕石より大 きいことから,破壊エネルギーが低下し,結果的に斜 めひび割れ発生強度の低下をもたらすと報告している。 そこで筆者ら⁴⁾は,廃瓦粗骨材を置換した W/C=0.5 の 普通強度 BB の破壊エネルギーは無置換の BB に比べ て増加するが、置換率の増加に伴い破壊エネルギーは

減少傾向を示すことを報告した。

本研究では、上記と同様の普通強度の BB に対し、 粗骨材に比べて, 破砕値の影響が小さいと考えられ, さらに分散性に優れる廃瓦細骨材による内部養生効果 が破壊エネルギーおよび基礎力学的性状にどのような 影響を及ぼすかについて検討を試みた。

表-1 使用材料									
Materials	Туре	Properties	Notation						
	Ordinary Portland Cement	Density 3160kg/m ³ Specific surface area: 3390cm ² /g	NC						
Cement	Portland blast furnace cement-Type B	Density: 3020kg/m ³ Specific surface area: 3650cm ² /g	BB						
	Crushed quartz	d quartz Surface-dry Density: 2600kg/m ³ Water absorption: 1.06%, FM=2.86							
Fine	Crushed Limestone	Surface-dry Density: 2650kg/m ³ Water absorption: 1.22%, FM=2.80	LS						
	Porous ceramic Fine aggregate	Surface-dry Density: 2240kg/m ³ Water absorption: 9.5% Crush rate: 21%, FM=3.73	PCFA						
Course aggregates	Crushed gravel (Sandstone)	Surface-dry Density: 2620kg/m ³ Water absorption: 0.69% Crush rate: 12%	NCA						
Chemical admixtures	Air entraining agent Air entraining and water reducing	Polyalkylene glycol derivative Lignin sulfonic acid compound and polyol complex	AD						

表-2 コンクリートの配合

Name of Specimen						U	nit content	(kg/m^3)					
	W/C	Air (%)	s/a	W	С		05	18	DCEA	NCA			
				**	NC	BB	Q5	LS	ICIA	NCA			
NC	0.5	0.5 4.5	0.45	165	330	-	481	327	-	988 988			
BB						330	475	323					
BB-S12							420	285	81				
BB-S23					-		365	248	161				
BB-S35							310	211	242				
BB-S46							255	173	323				

*1 広島大学 工学研究科社会基盤環境工学専攻 (学生会員)

*2 広島大学 工学研究院社会環境空間部門 工博 (正会員)

Exposure condition	Ages (days)								
Exposure condition	3	7	28	91					
Exposed at the age of 3 days	Sealed	→ Drying							
Sealed condition	Sealed								

図-1 養生条件

2. 実験概要

2.1 使用材料

使用材料を表-1に示す。高炉スラグ 40~45%置換 の高炉セメントB種と比較用に普通ポルトランドセメ ントを使用した。

骨材は粗骨材として黒瀬町産石英斑岩砕石,細骨材と して黒瀬町産石英斑岩砕砂,戸高鉱山産石灰石砕砂, 江津産廃瓦を用いた。廃瓦細骨材は7日間吸水させた ものを表乾状態で使用した。BBは練混ぜ温度が強度 発現に影響を与えるため,使用材料は温度を一定にし, 練混ぜ温度が10℃以上となるように調節した。

コンクリートの配合を表-2 に示す。W/C は 0.5 とす る。目標スランプおよび空気量はそれぞれ 10±2cm お よび 4.5±1.5%とした。普通コンクリートを NC, 高炉 B 種コンクリートを BB と表す。S12, S23, S35 およ び S46 はそれぞれ廃瓦細骨材の細骨材容積置換率 12%, 23%, 35%および 46%を意味する。また,廃瓦細骨材 を PCFA と表す。

2.2 養生条件, 測定項目

供試体は、実験棟内で作製し、上面をシールし、恒 温恒湿室(20±1℃,60±5%R.H.) に移した。養生条件は、 図-1に示すように、早期脱枠を想定した材齢3日後気 中曝露と封緘養生の2種類とした。

測定項目は圧縮強度,割裂引張強度,収縮ひずみお よび破壊エネルギーである。圧縮・割裂引張強度は

50

Compressive Strength (N/mm²) 0 05 05 05

0

0

20

Sealed

図-2 破壊エネルギー試験体概要

PCFA 置換率 23%まで測定し,破壊エネルギーは 46% まで測定した。

2.3 試験方法

2.3.1 強度

圧縮強度(φ100mm×200mm)とヤング係数はそれぞ れ JIS A 1108 と JIS A 1149 に従い,養生条件ごとにそ れぞれ材齢 3・7・28・91 日で測定した。また,割裂引 張強度(φ150mm×200mm)は JIS A 1113 に従い,材齢 7 と 28 日で測定した。

2.3.2 収縮ひずみ

収縮は, 100mm×100mm×400mmの角柱供試体を用いて材齢1日からコンタクトゲージ法(JIS A 1129-2)に 基づいて収縮量を測定した。

2.3.3 破壊エネルギー試験方法

試験は、日本コンクリート工学協会の試験方法 ⁵に 準じて行い、試験体中央に幅 4mm、深さ 50mm の切欠 きを設けた。試験体の概要を図-2 に示す。

載荷は、荷重の降下域の変形を測定するため、容量 100kN の変位制御型試験機を用いて行った。試験体の スパンは 300mm とし、両支点はローラを配置して水 平方向に可動な構造とした。計測項目は、荷重および ひび割れ開口変位(COD)である。COD は試験体底面の 切欠き部中央で、クリップゲージ(感度:1/1000mm) に

40

Age (Days)

60

-⇔ - NC

-O-BB

80

100

- BB-S12 - BB-S2

⁽c) 材齢 28 日における圧縮強度とPCFA 置換率の関係

図-3 圧縮強度への廃瓦細骨材の内部養生効果

Name of specimen	Compressi	ve Strength	Splitting Stre	g Tensile ngth	Young's	Modulus			Fracture Er	nergy		Characteristic Length		
	$f_{c}(N/mm^{2})$		$f_t (N/mm^2)$		E_{c} (kN/mm ²)		No	G _f (N/mm)				I _{ch} (mm)		
	Drying	Sealed	Drying	Sealed	Drying	Sealed	NO.	Drying	Average	Sealed	Average	Drying	Sealed	
	42		2.22	2.02	25	29	1	0.152		0.163	0.145	150	170	
NC		4.4					2	0.156	0.160	0.126				
NC	45	44	5.25	5.25	55	30	3	0.178	0.109	0.145	0.145	430	472	
							4	0.223		0.207				
							1	0.147		0.133				
DD	25	40	2.04	2.14	22	20	2	0.170	0.155	0.104	0.117	570	440	
DD		40	2.94	5.14	32	30	3	0.155	0.155	0.113	0.117	578	440	
							4	0.148		0.118				
							1	0.163		0.144				
DD 612	20	41	2.16	2 27	20	22	2	0.163	0.161	0.142	0.142	472	404	
DD-312	30	41	5.10	5.57	29	52	3	0.133	0.101	0.145	0.145	472	472 440 404 383 490	
							4	0.184		0.140				
							1	0.150		0.110				
DD 522	27	41	2 8 2	2.54	20	25	2	0.181	0.172	0.166	0.126	527	292	
BB-323	57	41	2.65	5.54	29	35	3	0.186	0.172	0.129	0.150	557	365	
							4	0.171		0.140				
							1	0.158		0.133			490	
BB-S35	36	46	3.02	3 27	36	30	2	0.179	0.167	0.118	0.134	573		
	555 50	40	40 5.02	5.21	50	39	3	0.169	0.107	0.175	0.154	575		
							4	0.163		0.152				
							1	0.252		0.136				
BB \$46	37	44	3 5 2	33	34	32	2	0.163	0.155	0.184	0.143	402	528	
BB-846	57		5.52	5.5	34	32	3	0.119	0.155	0.150	0.145	492		
							4	0.184		0.193				

表-3 材齢 28 日におけるコンクリート特性

より計測した。

2.3.4 破壊エネルギー評価方法

コンクリートの破壊エネルギーは、以下の算定式(1) から求めた⁵⁾。また、特性長さ l_{ch} は式(2)より求めた⁶⁾

$$G_f = \frac{0.75W_0 + W_1}{A_{lig}}$$
(1)

ここで、 W_0 : 試験体が破断するまでの荷重-COD 曲線 下の面積[N・mm], W_1 : 試験体の自重及び載荷治具が なす仕事[N・mm], A_{lig} : リガメントの面積[mm²]

$$l_{ch} = \frac{E_c G_f}{f_t^2} \tag{2}$$

ここで、 E_c : ヤング係数[N/mm²], f_t : 引張強度[N/mm²]

3. 試験結果および考察

3.1 強度およびヤング係数

表-3 に結果の一覧を示す。図-3 に、圧縮強度への 廃瓦細骨材の内部養生効果を示す。図-3(a)、(b)より、 材齢早期から28日までは養生条件を問わずBB-S12お よびS23の圧縮強度発現は無置換のBBに比べて同程 度であるが、材齢28日以降では封緘養生の場合、増加 する傾向が確認された。NCとの比較においては、早 期乾燥の影響を受けたコンクリートの圧縮強度は全材 齢にわたり小さかったが、封緘条件の内部養生をした コンクリートの長期材齢では同等であることが確認さ れた。図-3(c)には材齢28日における圧縮強度とPCFA 置換率の関係を示す。図-3(c)より,乾燥条件下におい ては,内部養生をしたコンクリートは無置換に比べて 同等かそれ以上であり,PCFA 置換率の増加に伴う影 響がさほどなかった。封緘条件においては,置換率23% までは同程度であるが,置換率35%および46%につい ては増加が確認された。また,同図よりNC以外,早 期乾燥条件下の圧縮強度は置換率を問わず,封緘条件 より小さかったことが確認された。

図-4には、割裂引張強度への廃瓦細骨材の内部養生 効果を示す。早期乾燥条件下での割裂引張強度の発現 性状を示す図-4(a)より、BB-S12の割裂引張強度は BB に比べて同等であるが、NC に比べては小さいことが 確認された。BB-S23の材齢7日の割裂引張強度は BB および NC よりも小さいが、材齢28日強度は BB を上 回り NC と同等である。

封緘条件を示す図-4(b)より, BB-S12 および BB-S23 の割裂引張強度は材齢7日で BB と同等であり NC よ りは小さく, 材齢28日では BB および NC の強度を上 回る結果となった。

図-4(c)には、材齢 28 日における割裂引張強度と PCFA 置換率の関係を示す。図より、本研究で得られ た割裂引張強度には少しのばらつきがあるが、PCFA 置換による影響はさほどなかったことが確認できた。

図-5 には、材齢 28 日における割裂引張強度と圧縮 強度の関係を示す。図-5 より、本研究で得られた割裂 引張強度は養生条件を問わず土木学会の推定式ⁿで求 めた一般に用いられる普通コンクリートの引張強度よ りも大きいことが確認された。

図-6には、材齢28日におけるヤング係数とPCFA 置換率の関係を示す。図中の実線は早期乾燥条件の平 均したものを示し、破線は封緘条件の平均値を示す。 ただし、平均は異常値を除いたものである。廃瓦粗骨 材を用いた既往の研究⁴⁾では置換率の増加に伴い、ヤ ング係数の低下が見られたが、本研究では同様の傾向 を示さず、無置換のものと同程度である。通常では、 廃瓦骨材のような密度の低い骨材をコンクリートに用 いるとヤング係数が減少傾向を示す⁸⁾ので、なぜ本研 究では異なる傾向を示しているかのさらなる検討が必 要だと考えられる。図-7には、ヤング係数と圧縮強度 の関係を示す。この図より、本研究で得られたヤング 係数は通常用いられる骨材を使用した普通コンクリー ト^のに比べて同等かそれ以上であったことが確認され た。

3.2 収縮ひずみ

図-8に収縮ひずみと材齢の関係を示す。実線は封緘, 材齢3日で分岐した破線は早期乾燥させた場合の収縮 を示している。

図-5 材齢 28 日における割裂引張強度と圧縮強度の関係

図-6 材齢 28 日におけるヤング係数と PCFA 置換率の関係

図-7 材齢 28 日におけるヤング係数と圧縮強度の関係

10 村師 28 日における破 ギーと置換率の関係 図-11 材齢 28 日における破壊エネル ギー比 図-12 材齢 28 日における特性長さ と置換率の関係

自己収縮についてはBB-S12 およびBB-S23 はNCに 対し大きく収縮する傾向を示しているが,BB に対し ては若干小さい程度であった。乾燥収縮については, BB-S23 は BB に対し小さく NC と同等であったが、 BB-S12 は NC の乾燥収縮より大きく,BB に比べて同 等であった。これらの収縮ひずみは材齢1日までの自 己収縮ひずみが無視されているので、材齢1日までの 自己収縮ひずみを取り入れて検討する必要がある。

3.3 破壊エネルギー

図-9にそれぞれの配合の荷重-COD 曲線を示す。凡 例には養生条件およびそれに対する破壊エネルギーを 平均したものを示す。それぞれの配合の破壊エネルギ ーの詳細な比較は図-10 に示されている。図中の数字 は、無置換 BB の破壊エネルギーを1 とした時の各配 合の破壊エネルギーの比率を示している。図-10 より、 早期乾燥条件においては PCFA 置換率の増加に伴う破 壊エネルギーの変化がさほどなかったことがわかる。 NC に比べてもほとんど変化がないことがわかる。

また同図より,封緘養生においては PCFA 置換率 12%の破壊エネルギーは BB に比べて約 20%の増加が あり,その後の置換率の増加に伴う破壊エネルギーの 変化は見られなかった。

図-11 には, 材齢 28 日における無置換コンクリート BB の破壊エネルギーを 1 とした場合の各配合の破壊 エネルギーの比をとったものである。図中の実線は早 期乾燥条件を示し,破線は封緘条件を示す。また,図 中に比較のために粗骨材置換を行った既往の研究⁴⁾の 破壊エネルギー比も載せている。図-11 より,既往の 研究では廃瓦粗骨材を用いることで,養生条件を問わ ず,BB に対して破壊エネルギーの増加が得られてい るが,置換率の増加に伴い減少傾向を示している。本 研究では,得られた破壊エネルギーはさほどの変化が なく,廃瓦粗骨材を用いた場合と異なる傾向を示して いることは同図から明らかとなっている。

図-10 で見られるように、すべての配合において、 封緘条件下の破壊エネルギーは早期乾燥条件下の破壊 エネルギーより小さい(約 20%)ことがわかる。この差 が生じる原因はまだ明確ではないが、岡島ら⁹⁰は含水 率の高いコンクリートは含水により固体の表面エネル ギーが低下することにより強度が低下すると報告して いる。この考え方が本研究で適用できるならば、封緘 条件は材齢3日で気中曝露をした供試体より含水率が 高いことから破壊エネルギーが低下したという推測も できる。

図-12 にコンクリートの曲げ強度に影響を及ぼす特 性長さ[¬]と PCFA 置換率の関係を示す。図-12 より, 本研究で得られた特性長さは,二乗で反比例する割裂 引張強度の影響を受けてばらつきがあるが, PCFA 置 換率との関係に規則性は見出しにくい.そこで全ての 置換率に対し置換と無置換を比較すれば、乾燥暴露し た場合 1.0~0.85、封緘養生した場合 0.95~1.1 にあ り置換率による大きな差はなかった。既往の研究⁴⁾で は,特性長さが廃瓦粗骨材置換の影響を受けていると 報告されているが,本研究では PCFA 置換の特性長さ への大きな影響は見られなかった。

4. 結論

細骨材を廃瓦で置換した高炉 B 種コンクリート, 普 通コンクリートの圧縮強度,割裂引張強度,ヤング係 数,収縮ひずみおよび破壊エネルギーを実験的に検討 した。本研究の範囲内で明らかになったことをまとめ ると以下の通りである。

- (1) 廃瓦細骨材を用いたコンクリートの圧縮強度は無 置換の高炉B種コンクリートに比べて、同等かそれ 以上であることが確認された。
- (2) 材齢初期においては, 廃瓦細骨材の内部養生効果に よる割裂引張強度への影響は確認されなかった。
- (3) 廃瓦細骨材を置換することによるヤング係数への 影響は小さかった。
- (4) 廃瓦細骨材の内部養生効果による材齢1日以降の自 己収縮の低減効果は置換率12%および23%において

ほとんど認められないが,乾燥収縮については置換 率23%のみ,低減効果が確認された。

- (5) 封緘養生条件は,材齢3日気中曝露条件の破壊エネ ルギーより小さいことが確認された。
- (6) 廃瓦細骨材置換による材齢3日気中曝露条件の破壊 エネルギーへの影響はさほどなく,無置換の高炉B 種コンクリートに比べて同等であったことが確認 された。封緘条件については,廃瓦細骨材置換率12% は無置換に比べて破壊エネルギーの増加が見らた が,その後の置換率の増加に伴う破壊エネルギーの 変化はさほどなかった。また,普通コンクリートに 比べても,廃瓦細骨材を用いたコンクリートの破壊 エネルギーは同等であったことが確認された。
- (7) 廃瓦細骨材を用いたコンクリートの特性長さは無 置換に比べてさほどの変化が見られなかった。

参考文献

- 高炉スラグ微粉末を用いたコンクリートの施工指 針、土木学会。
- 2) 重松明,温品達也,木村守,佐藤良一:廃瓦粗骨 材の内部養生による高炉B種コンクリートの性能 向上について、コンクリート工学年次論文集, Vol.31, No.1, pp.205-210, 2009。
- 3) 三谷昂大,大賀琢麻,佐藤良一:超高強度 RC は りの斜めひび割れ発生強度に及ぼす収縮と寸法効 果の評価について、コンクリート工学年次論文集, Vol.32, No.2, pp.667-672, 2010。
- Macharia M M. et al: Study on Mechanical Properties of Portland Blast Furnace Cement-Type B Concrete with Partial Replacement of Aggregate with Porous Ceramic Course Aggregate, コンクリート工学年次 論文集, Vol.33, No.1, pp.113-118, 2011。
- 5) 社団法人 日本コンクリート工学協会:コンクリ ートの破壊特性の試験方法に関する調査研究委員 会報告書, 2001。
- Gustafsson, P. J. et al: Sensitivity in Shear Strength of Longitudinally Reinforced Concrete Beams to Fracture Energy of Concrete, ACI Structural Journal, May-June, pp.286-294, 1988.
- 7) JSCE(2007): コンクリート標準示方書, 設計編.
- A. M. Neville, "Properties of Concrete" Fourth Edition, 1995, pp.418-419.
- 岡島達雄:コンクリートの力学的性質と水分,セ メント・コンクリート, No.464, pp.18-26, 1985.