論文 コンクリートの分離抵抗性の簡易な定量評価方法の開発

梁 俊*1·丸屋 剛*2·坂本 淳*3

要旨:コンクリートの受け入れ検査はスランプ試験で行うが、スランプ試験は、コンクリートのコンシステンシーを評価する方法であり、コンクリートの分離抵抗性を直接的に評価することは難しい。一般に、スランプ試験後、スランプ板を叩いて、コンクリートの変形状態を観察することでコンクリートの分離抵抗性を判断することが多いが、定量的な評価には至っていない。本研究では、スランプが 5~15cm である土木用コンクリートを対象として、締固め完了エネルギーの観点から、スランプ試験後の試料をスランプフローが 47cm になるまで空気量測定時に使用するハンマーでスランプ板を叩いた後、コンクリート試料上面の円形の有無を確認することによりコンクリートの分離抵抗性を評価する簡易方法を提案した。 キーワード:締固め完了エネルギー、分離抵抗性、叩き試験、スランプフロー

1. はじめに

コンクリートのワーカビリティーは、コンシステンシ ーと分離抵抗性を含む多くの要因から定まると考えら れる。従来からコンクリートのワーカビリティーは、コ ンシステンシーの評価方法であるスランプ試験によっ て間接的に評価されてきた¹⁾。骨材や混和剤の種類が少 なかった時代には、コンクリートの分離抵抗性に影響す る要因が少なかったことで、スランプ試験により求めら れたコンシステンシーにより、ワーカビリティーの間接 的な評価が可能であったが、良質な骨材が枯渇化したこ とや多種多様な混和材の利用促進など、コンクリート用 材料が多様化されたことと混和剤の多機能化により、ス ランプ試験だけでコンクリートのフレッシュ性状を評 価することは難しくなっている。

同一のスランプであっても材料分離抵抗性が異なる コンクリートが多く存在することが報告されている²⁰。 このため、これまでは経験的に要求されたスランプを満 たせば、ある程度は材料分離抵抗性を満足し、施工に供 することができたが、今後は、このような考え方が困難 になると考えられる。

コンクリートのフレッシュ性状を評価する試験方法 はいくつか提案されているが^{3),4)},ほとんどが新たな装 置を使用する方法で現場での検査方法としては普及し にくい問題が存在する。

現場では、スランプ試験後、スランプ板を叩いて、コ ンクリートの変形状態を観察することでコンクリート の分離抵抗性を判断することが多いが、定量的な評価に は至っていない。石井ら⁵⁾は、現場での試験を想定し、 容易に入手できる器具を用いる簡易試験方法を提案し たが、試料の変形状態と分離抵抗性との関係についての 定量的な評価方法の提案には至ってない。本研究では, スランプが 5~15cm であるコンクリートを対象として, 締固め完了エネルギーの観点から,スランプ試験後の試 料をスランプフローが 47cm になるまで空気量測定時に 使用するハンマーでスランプ板を叩いた後,コンクリー ト試料上面の円形の有無を確認することによりコンク リートの分離抵抗性を評価する簡易方法を提案した。

2. 締固め完了エネルギーの評価方法

本研究は、コンクリートの分離抵抗性に関してコンク リートの締固め完了エネルギーの観点から検討を行っ たものである。コンクリートの締固め完了エネルギーを 測定する試験装置を**写真-1**に示す。本装置は逆回転偏 心モータ2台を備え、一定振幅により振動する振動台、デ ータを記録するためのコンピュータ、振動台の振動数を 変化させて加速度を調節するための制御盤の3点から構 成されている。測定の手順としては初めに、直径が24cm の試験容器の中でスランプ試験を行い、振動台にセット して振動をかける。その際に試料の上面の沈下量と振動 台の加速度、振動数を記録する。

コンクリートの締固め性は、コンクリートのコンシス

写真-1 締固め試験装置

*1 大成建設(株) 技術センター 土木構工法研究室 博士(工学)(正会員)
*2 大成建設(株) 技術センター 土木構工法研究室 室長 博士(工学)(正会員)
*3 大成建設(株) 技術センター 土木技術開発プロジェクト室 主席研究員 博士(工学)(正会員)

テンシーに応じた締固め前における型枠中のコンクリ ートの見掛けのかさ密度から、コンクリートの配合の理 論密度に至る変形の容易さを表すものと考えることが できる。そこで、締固めの程度は、円筒容器中の試料の 最も高い部分を高さとする円筒体積に対するコンクリ ート試料の真の体積の比として捉え、これを締固め度 γ と定義する。締固め度 γは式(1)により表すことができ る⁶。

$$\gamma = \frac{H_0}{h} \times 100 = \frac{m}{\rho \times A \times h} \times 100 \tag{1}$$

ここに、 γ :締固め度(%), H_0 :配合に基づく理論上 の単位容積質量まで締め固められた時の試料の高さ (dm), h:任意の締固め時間における試料の高さ(dm), m: 試料の質量(kg), ρ :試料の単位容積質量(kg/dm³), A: 円筒容器の底面積(dm²)

変形進行曲線を式(2)に示す。なお,式中の各係数は図-1の模式図に対応する。

$$\gamma = \mathbf{C}_{i} + (\mathbf{C}_{f} - \mathbf{C}_{i})[1 - \exp(-\mathbf{b}E^{d})]$$
(2)

ここに、 γ :締固めエネルギー*E*におけるコンクリートの締固め度(%)、 C_i :初期締固め度(%)、 C_f :締固めエネルギーを無限大とした時の達成可能な締固め度(%) (硬練りコンクリートの場合は必ず締め固めることができるので、 C_f は100%と考えてよい)、b、d:実験定数 一方、締固めエネルギーは式(3)により求めることができる⁷⁾。

$$E_t = \frac{\rho \alpha_{\max}^2 t}{4\pi^2 f} \tag{3}$$

ここに, $E_t : t$ 秒間にコンクリートが受ける締固めエ ネルギー (J/dm³), t:振動時間(s), a_{max} :最大加速度 (m/s²), f:振動数(s⁻¹), ρ :試料の単位容積質量(kg/dm³) 本研究では,締固めを終了してもよいとされる締固め 度を,締固めが十分になされたと見なしてよい 99.5%と 設定し, **図**-1に示すように締固め度 99.5%までに与え られたエネルギーを締固め完了エネルギー(E99.5%)と 定義した⁶。

3. 使用材料およびコンクリートの配合

水セメント比を 55%,単位水量を 155kg/m³,細骨材率 を 40.5%に設定して目標スランプが 8cm,目標空気量が 4.5%の表-1に示す標準配合を選定した。使用材料を 表-2に示す。

表-1 コンクリートの配合

配合	W/C	s/a	単	単位量(m ³)	AE 減水剤		
	(%)	(%)	水	セメント	細骨	粗骨材 G		$C \times \%$		
			W	С	材 S	G1	G2			
標準	55	40.5	153	278	769	452	673	0.25		

表-2 使用材料

種	煩	品質							
セメント(C)		普通ポルトラントセメント:							
		密度 3.16g/cm ³							
細	c	千葉県君津産山砂:表乾密度2.65g/cm ³ ,							
有材	3	吸水率 1.56%							
粗骨材	01	青梅産石灰砕石(G _{MAX} 13mm):							
	91	表乾密度:2.66g/cm³, 吸水率 0.60%							
	60	青梅產石灰砕石(G _{MAX} 20mm):							
	62	表乾密度:2.65g/cm³, 吸水率 0.60%							
混和剤(Ad)		AE 減水剤(標準型), AE 剤							

写真-2 加振前後の試料の状態例

4. 締固め完了エネルギーを受けたコンクリートの流動 状態に関する検討

標準配合のもとに、細骨材率、水セメント比、スラン プなどを変化させ、フレッシュ性状が相違するさまざま な配合を選定し、各配合の締固め完了エネルギーを計測 した。その後、各配合に対して沈下板と沈下板固定用フ レームを外した振動台の上でスランプ試験を行い、写真 -2に示すように、各配合の締固め完了エネルギーに相

配合	目標スラ	W/C	s/a	単	位	量	(kg/m^3)		AE 減水	スラン	締固め完了エネ	加振時	加振後(cm)	
	ンプ (cm)	(%)	(%)	W	С	S	G1	G2	剤 C×%	プ(cm)	ルギー (J/dm^3)	間 (s)	スランプ	スラン
													フロー	プ
標準	8	55	40.5	153	278	769	452	673	0.25	8.5	1.66	5.5	45.8	24.7
s/a の		FF	35.0	159	278	665	494	735	0.25	10.7	2.60	8.1	49.0	24.0
変更		55	45.0	199	278	855	418	622	0.25	10.5	1.73	5.7	48.8	24.5
	\backslash	30			510	690	406	604	0.25	0.3	11.4	32.2	48.3	21.0
W/Cの		40	10 E	159	383	734	431	642	0.25	5.2	4.16	12.4	48.7	24.0
変更		50	40. 5	199	310	741	443	664	0.25	7.3	2.16	6.9	46.9	24.0
		60			258	760	452	679	0.25	7.5	2.17	6.9	48.1	24.3
	8	55	55	153	278	1045	342	509	0.25	8.9	1.27	4.5	48.2	24.0
スラン	5		40.5	149	271	776	456	679	0.25	4.7	3.23	9.8	48.1	23.9
プ変更	12	55	40.5	162	295	741	441	662	0.25	11.2	1.03	3.8	46.7	24.4
	15		44.5	165	300	817	405	607	0.25	16.7	0. 80	3.2	46.5	24.3

表-3 コンクリートの配合および各種測定結果

当する振動エネルギーを与えて振動後のスランプとス ランプフローを求めた。与えるエネルギーは振動時間で 制御した。振動台の振動数は 35Hz,加速度は 13.5m/s² である。

計測した各配合の締固め完了エネルギーと振動台の 振動数, コンクリートが受ける加速度を式(3)に入力 して本実験で使用した振動台を用いて締固め完了エネ ルギーを与える場合の振動時間を計算した。測定結果お よび各配合の締固め完了エネルギーを表-3に示す。同 表が示すように, コンクリートのフレッシュ性状の変化 によりコンクリートの締固め容易さを示す締固め完了 エネルギーは相違して, 変動の幅は 0.8~11.4J/dm³にな っている。この幅を加振時間で示すと 3.2~32.2 秒であ る。

各配合の加振時間とスランプ,スランプフローの関係 図を図-2に示す。同図が示すように,締固め完了エネ

写真-3 叩き試験後分離の一例

ルギーの大きさを示す加振時間が 3.2~32.2 秒の大きい 幅で変動してもコンクリート試料の加振後のスランプ とスランプフローはほぼ一定であり,スランプフローは 47cm,スランプは 24cm 前後になっている。このことは, 配合が相違しても,締固め完了エネルギーを受けたコン クリート試料のスランプフローは一定になることを示 している。

コンクリートの締固め完了エネルギーは、型枠中のコ ンクリートの見掛けのかさ密度から、コンクリートの配 合の理論密度に至る変形の容易さを表すものである。し たがって、コンクリートの密度の細かな差を考慮しない 場合、締固め完了した型枠中のコンクリートの形は同じ 寸法である。スランプフロー47cmの試料の形をスランプ とスランプフローで示すことができると考えた場合、型 枠がない場合でもコンクリートの試料は締固め完了エ ネルギーを受けることで同じ形になったことを図-2 および表-3のデータが示している。

したがって、スランプが 5~15cm であるコンクリート において、叩きの回数と叩きに使用した道具に関係なく、 スランプ試験後の試料をスランプフローが 47cm になる まで叩くのに使用されたエネルギーを締固め完了エネ ルギーとして見なすことができる。

締固め完了エネルギーの定義からわかるように, 締 固め完了エネルギーはコンクリートを締め固めるのに

	W/C (%)	/	₩位書 (1-~/m ³)					AE 減水剤	フニン	叩き試験後スランプフロー(cm)				
配合		s/a	中1业里 (Kg/Ⅲ)				$C \times \%$	スワン	32	37	42	47	52	
		(%)	W	С	S	G1	G2	0.25) (cm)	上径	上径	上径	上径	上径
標準	55	40.5	153	278	769	452	673	0.25	9.0	12.3	12.0	11.3	12.8	無
		43.5	129	235	875				0.0	10.0	崩れ	崩れ	崩れ	崩れ
1-1)粗骨材量,₩/C	FF	42.0	141	256	824	110	679	0.95	3.5	10.0	9.0	9.8	10.0	10.5
一定で s/a を変更	99	39.0	164	298	728	448	072	0.25	18.4	26.3	29.7	無	無	無
		37.5	175	318	682				21.2	26.4	27.5	無	無	無
1-2)1-1)に対し		43.5	155	282	822	427	636	0.25	8.2	9.5	9.4	9.7	10.3	10.1
て単位水量を修	FF	42.0	155	282	794	439	653	0.25	9.5	11.7	11.8	13.2	14.3	無
正してスランプ 8	55	39.0	150	273	746	466	694	0.25	9.5	13.9	14.3	12.8	無	無
~10cm に調整		37.5	148	269	720	486	715	0.25	9.7	11.2	12.0	無	無	無
2-1) 細・粗骨材量	62 58	40.5 159 258 156 268 150 288 147 298	258					12.0	18.0	171	無	無	無	
一定でCの増減で			156	268	754	450	675	0.25	9.7	11.1	11.6	11.6	無	無
ペーストの粘性	52		150	288	754				8.0	9.5	11	10.9	12.3	14.1
変更	49						5.0	10.0	9.8	10.8	10.9	11.5		
2-2) 2-1) に対し	62		151	244	767	458	687	0.25	8.2	11.2	11.1	無	無	無
て各単位量を調	58	10 5	152	262	762	454	681	0.25	8.5	12.0	13.6	15.2	無	無
整してスランプ	52	40. 5	150	288	754	450	675	0.25	8.0	9.5	11	10.9	12.3	14.1
を8~10cmに調整	49		153	312	744	443	665	0.25	8.7	9.2	9.7	11.3	12.0	12.6
水+20 kg/m ³	—	173					20.4	24.9	無	無	無	無		
水+15 kg/m ³	_		168						18.5	19.9	無	無	無	無
水+10 kg/m ³	_		163						17.9	20.2	24.3	無	無	無
水+5 kg/m³	—	40.5	158	282	752	448	672	0.25	14.9	18.4	22.2	23.5	無	無
水-15 kg/m ³	—		138						7.9	10.0	9.5	9.2	9.4	10.5
水-10 kg/m ³	—		143						5.0	10.1	9.4	9.5	9.7	10.6
水-5 kg/m ³	_		148						4.3	9.7	9.4	9.3	9.3	10.4

表-4 コンクリートの配合

必要な最小のエネルギーである。コンクリートを締め固 めるためには少なくとも締固め完了エネルギー以上の エネルギーを与えなければならない。したがって,スラ ンプ板を叩いてコンクリート試料のスランプフローが 47cmになるまで,つまり締固め完了エネルギーを受ける までに**写真-3**が示すような崩れ,分離,水跡などが発 生する場合には,材料分離抵抗性が不足した配合である と判断することができる。

5. 叩き後の試料形状による分離抵抗性評価方法の検討

前章での検討結果より、スランプ試験後の試料をスラ ンプフローが 47cm になるまで叩いて崩れなどの有無を 確認することで締固め完了エネルギーを受けるまでの コンクリートの分離の有無を判断できることが明らか になった。しかし、47cm になるまで叩いて崩れなどがな い配合であっても施工に最適な配合であるとは言い切 れない。したがって、最適な配合を判断する方法を検討 する必要がある。石井ら⁵⁾は、叩き試験後、試料上部の 円形の有無がコンクリートの分離抵抗性を判定する指 標になりえると指摘している。

コンクリートの材料分離をモルタルと粗骨材の分離 とすると、材料分離抵抗性は、モルタルの塑性粘度によ って支配的な影響を受けると考えられる。塑性粘度の大 きなモルタル組成であるコンクリートの場合、叩きによ って衝撃を加えた際に、試料の上部は粘性の影響が卓越 し変形を起こさず、試料の下部のみが変形することとな る⁵⁾。しかし、塑性粘度が小さければ試料は上部でも変 形し、この結果、試料上面の円形を保持しなくなる。こ のようなことから、試料上部の円形の保持性によって、 材料分離抵抗性を評価できるものと考えられる。

そこで、コンクリートの分離抵抗性を定量的に評価す るため、スランプ試験後の試料のスランプフローが 32、 37、42、47、52cmになるように、空気量測定時に使用す るハンマーでスランプ板を叩き、スランプフローの変化

写真-4 叩き試験による試料上面の円形変化状態(標準配合)

図-3 W/C 一定で s/a を変化させた配合の実験結果

の伴う上面円形の変化を観察した。標準配合を用いて叩きを行った後の写真を一例として**写真-4**に示す。

実験で使用したコンクリートの配合は、現実的な配合 選定の過程を想定して、つぎのように選定した。まず、 細骨材率の変化を想定して、前章で選定した標準配合を もとに、W/C一定でs/aを43.5,42.0,40.5,39.0,37.5% に変化させた配合を用いて試験を行った(表-4,1-1))。 なお、粗骨材の噛合せの影響を避けるために粗骨材の量 は一定にした。細骨材の体積の変化をペーストの体積で 補充することで、モルタルの粘性を変化させた。

次に、単位水量を調整して、W/C 一定で s/a を 43.5, 42.0,40.5,39.0,37.5%に変化させた各配合のスラン プを 8~10cm に合わせた配合を用いて再び同じ実験を行 った(表-4,1-2))。配合および実験結果を表-4に 示す。

W/C 一定で s/a を 43.5, 42.0, 40.5, 39.0, 37.5% に変化させた配合の実験結果を図−3に、スランプを合わせた配合の実験結果を図−4に示す。叩き後の試料上面の円形ありを 1, 円形なしを 0 として、スランプフローの変化に伴う試料上面の円形の有無を示した。また、試料が崩れて円形の有無を判断できない場合も 0 にした。図−3 が示すように、標準配合は、スランプフローが47cm になるまで上面の円形を保持するが、52cm になる

図-4 W/C 一定で s/a を変化させた配合の実験結果 (スランプ 8cm に合わせた後)

と円形がなくなる。それに対して, s/a を小さくして標 準配合に比較して分離傾向になっている配合は, スラン プフローが 47cm になる前に円形がなくなる。逆に, s/a を大きくした配合は、スランプフローが 47cm を超えて も上面の円形は保持されている。すなわち、標準配合は 締固め完了エネルギーを受けるまでは上面の円形を保 持するが、締固め完了エネルギー以上のエネルギーを受 けると円形はなくなることを意味する。また, s/a を大 きくした配合はスランプフローが 47cm を超えても円形 がなくならないが、分離傾向の配合は締固め完了エネル ギーを受け終わる前に円形がなくなる。単位水量を調整 してスランプを合わせても同じ結果になることを図ー 4が示している。スランプ試験後の試料をスランプフロ ーが 47cm まで叩いて試料上面の円形の有無を確認する ことで、コンクリートの s/a の変化による分離抵抗性の 変化を評価できることを示している。

ペーストの粘性の変化の影響を確認するため,標準 配合をもとに,細骨材率,粗骨材の量を一定にして,単 位セメント量を±10,±20 kg/m³ 増減した配合を用いて, 同じようにスランプ試験後の試料のスランプフローが 47cm になるまで叩き試験を行った(表-4,2-1))。配 合および試験の結果を表-4および図-5に示す。図-5が示すように,セメントの量が増えてペーストの粘性

ト試料上面の円形の有無

が大きくなった配合はスランプフローが 47cm を超えて も試料上面の円形を保持するが,セメントの量が減らさ れてコンクリートの粘性が小さくなった配合はスラン プフローが47cmになる前に試料上面の円形がなくなる。 表-4のデータからわかるように,単位水量を調整して スランプを8~10cmに調整しても実験の結果には変化が ない(表-4, 2-2))。ペーストの粘性の変化もこの評 価方法で評価できることを示している。

単位水量が変動した場合の影響を確認するため,標準 配合のコンクリートに,±5,±10,±15,+20kg/m³加 減水して,試料上面の円形の有無を確認した。配合およ び試験の結果を表-4および図-6に示す。図-6に示 すように,水を5kg/m³減らした配合は標準配合と同じよ うにスランプフロー47cm まで試料上面の円形を保持し ているが,加水によりコンクリート粘性の低減した配合 はスランプフロー47cm になる前に試料上面の円形がな くなり,減水によりコンクリートの粘性が増えた配合は スランプフローが 47cm を超えても試料上面の円形が存 在していることがわかる。単位水量の変化が5kg/m³以上 であればコンクリートの粘性の変化をこの方法で評価 できることを示している。

6. まとめ

本研究では、スランプ試験後の試料をスランプフロー が 47cm になるまで空気量測定時に使用するハンマーで スランプ板を叩き、上面円形の有無を観察することでコ ンクリートの材料分離抵抗性を評価する方法を検討し た結果、以下のことが明らかとなった。

(1) スランプ試験後のコンクリート試料に締固めエネル ギーに相当するエネルギーを与えると、スランプフ ローは47cm程度まで広がる。したがって、スランプ

図-6 単位水量の増減によるコンクリートの コンクリート試料上面の円形の有無

フロー47cm まで広がるまでに受けたエネルギーが締 固め完了エネルギーであると考えられる。

(2) スランプ試験後の試料をスランプフロー47cm まで 叩いた後の試料上面の円形の有無からスランプが 5 ~15cm であるコンクリートの材料分離抵抗性の程 度を判断できると考えられる。円形が残らなければ 材料分離抵抗性が低い。

参考文献

- 村田二郎,國府勝郎,辻幸和:新訂第六版コンクリー ト工学(1)施工,彰国社刊, pp. 95-102, 2003.4
- 日本コンクリート工学協会:施工の確実性を判定す るためのコンクリートの試験方法とその適用性に 関する研究報告書, pp. 67-72, 2009.7
- 藤代勝,坂井吾郎,坂田昇,新藤竹文:フレッシュ コンクリートの粘性評価手法に関する研究,コンク リート工学年次論文集, Vol. 28, No. 1, pp. 1073-1078, 2006.6
- 4) 土木学会,施工性能にもとづくコンクリートの配合設計・施工指針(案),pp.57-75,2007.3
- 5) 石井佑大,宇治公隆,上野敦:タンピング試験にお けるワーカビリティーの簡易評価方法の検討,コ ンクリート工学年次論文集, Vol. 30, No. 2, 2008
- 6) 梁俊,國府勝郎,宇治公隆,上野敦:フレッシュコン クリートの締固め性試験法に関する研究,土木学会論 文集 Vol. 62, No. 2, pp.416-427, 2006.6
- 7) 國府勝郎,上野敦:締固め仕事量の評価に基づく超硬 練りコンクリートの配合設計,土木学会論文集,No. 532/V-30, pp. 109-118, 1996.2