論文 袖壁端部の拘束が袖壁付き RC 柱の靱性能に及ぼす影響

磯 雅人^{*1}·本間 礼人^{*2}·上原 正敬^{*3}·小川 敦久^{*4}

要旨:本論文は,袖壁付き RC柱の靱性能に与える袖壁圧縮端部の影響を明らかにしたものである。試験体は,袖壁圧縮端部のディテールが与える変形性能への影響を確認するため,その変動要因を横補強筋量,拘束筋の 有無,繊維補強コンクリートの使用の有無とした計5体の袖壁付き RC柱の試験体を計画した。実験の結果,靱 性能を向上させるためには,袖壁圧縮端部のコンクリートに圧縮靱性を付与させることが重要であり,その方 法は,袖壁圧縮端部に拘束筋を配すること。コンクリートの代替として繊維補強コンクリートを使用すること が有効である。その他,降伏変形および限界変形の評価手法を示し,その精度について検証した。 キーワード:袖壁付き RC柱,靱性能,拘束,降伏変形,限界変形

1. はじめに

袖壁付き RC 柱の構造性能は,独立柱に比べて剛性や 耐力が高いという特徴を有し,それらを活かした利用方 法も考えられる。しかしながら,当該部材における過去 の震災事例や実験では,脆性的な破壊を示すことが多く 報告されたことから,その取扱いについて注意が喚起さ れた。一方で,当該部材の構造性能を評価するためのデ ータは柱や梁に比べて乏しく,さらには,その断面形状 や袖壁の取り付き方も様々であるため,そのモデル化を より困難とさせていた。以上の理由から,現在は,袖壁 に構造スリットを入れるなど,袖壁の影響を可能な限り 抑え,そのモデル化を明確にするための取り組みが行わ れている。しかしながら,近年の震災事例において,ス リットを入れた建物が地震時に大きな変形を生じたため に,損傷や残留変形が大きくなり,その後の建物の使用 が困難となる問題も顕在化してきた。

ところで2010年2月にRC規準¹⁾が改定され,袖壁付 きRC柱の許容耐力があらたに示され,その合理的な設 計手法が提示された。以上の理由から,それらを構造要 素として利用することの気運が徐々に高まりつつある。

一方,筆者らは,新築建物に袖壁付き RC 柱を構造要素として利用するための研究を継続的に実施しており, その構造性能(剛性,耐力,変形性能等)の評価手法^{2),3),4)}を示してきた。本研究では,袖壁付き RC 柱の靱性能に与える袖壁圧縮端部のディテールやコンクリートの仕様による影響を構造実験により明らかにする。

	ĒΤ.	製作力	市初の111家 p(%)	型 使 肋 D on	しの1工作末 (%)	相壁 雪部 拘束筋の 有	s 「無	PVA絨稚 V _€ (%)	wQmu (kN)	wQsu (kN)	相壁付きRC柱 全体の破壊モート	CQmu (kN)	(kN)	社部の破壊モード
1 RC-42/63-N		2-D6(SD295A) 0.42	@50 2-D6(SD2 0.6	95A)@100 63	· 無			392	683	曲げ破壊	98.1	261		
2 RC-95/127-N								382	867		97.6	442	曲げ破壊	
3 F	3 RC-95/127-□C		2-D10(SD295A	@50 2-D6(SD2	2-D6(SD295A)@50		袖壁外端: 角形拘束筋(D6@50)		386		876	97.8		448
4 F	4 RC-95/127-OC		0.95	1.2	27	袖壁外端: 円形拘束筋(D6@50)		/	408	932		98.8	470	
5 F	5 FRC0.5-95/127-□C					袖壁外端: 角形拘束筋(D6@50)		0.5	411	934		98.9	470	
■柱袖袖柱 柱袖設軸破共断壁壁内 主壁計力壊量力 主壁計力壊	極要因■ 夏: B×D=30 夏: t=1/3D 夏: t=1/3D 夏: t=1/3D 夏: t=1/3D 夏: t=1/3D 夏: t=1/3D 夏: t=1/6Fc+E H=1/6Fc+E H=1/6Fc+E	00mm×300mm ⇒=100mm 0mm 50mm \$D295A) p _g =1.69 4-D10(SD295A) ⇒=24N/mm ² ⇒D360kN 分(曲げ破壊)	%	、 PVA-FRC p _{eh} (%) × 100を意味 j有無	味する。	 ■計算値記号の説明■ wQmu: 平面保持を仮定した断面解析 (e関数法)による曲げ終局強度 wQsu: 修正A法式(文献2)より) cQmu: 法部の曲げ終局強度略算式(文献1)より) cQsu: A法式(非靭性式)(文献5)より) 。 <!--</td-->								
	袖壁	<u>すきRC柱(曲げ破</u>) 表 -	_{壊)} -2 鉄筋の		達外端に角 月 上	形拘束筋補強 C)C:袖雪	<u>き外端に円形</u> ま	<u>拘束筋補</u> そ一3	<u>職</u> コン	クリートの	力学	的特性	
釰	袖壁((筋の	<u>すきRC柱(曲げ破</u>) 表 っ 使用箇所	^{壊〕} -2 鉄筋の ■ ^{降伏点}	□C:袖雪) 力学的特性 引張強さ	壁外端に角形 主 降伏歪度	 F 拘束筋補強 C trugged)C:袖雪	低小端に円形 ての の	<u>拘束筋補</u> そ一3 縮強度	<u> 強</u> コン 割裂	✓クリートの 引張強度 圧縮強	力学	的特性 ヤング係数	E。ポアソン比
	袖壁(筋の 種類	<u>せきRC柱(曲げ破</u>) 表 - 使用箇所	<u>壊)</u> -2 鉄筋の ^{降伏点} σ _v [N/mm ²]	□C:袖墾) 力学的特性 引張強さ σ _{max} [N/mm ²]	^達 外端に角] ま 降伏歪度 ε _ν [μ]	杉拘束筋補強 C イング係数 E _s [N/mm ²])C:袖垦	生 生 生 生 生 生 生 し し し し し し し し し し し し し	<u>拘束筋補</u> そ 一3 縮強度 1/mm ²]	<u> 強</u> コン 割裂 「N	✓ クリートの 引張強度 圧縮強 ✓mm ²] の歪原	力学	的特性 ヤング係数 ×10 ⁴ [N/mn	E。ポアソン比 ピリンレ
舒 ; D13(袖壁(筋の 種類 SD295A)	<u>せきRC柱(曲げ破</u> 表っ 使用箇所 <u>主筋</u>	壊) -2 鉄筋の ^{降伏点} σ _y [N/mm ²] 338	□C:袖墾)力学的特性 引張強さ σ _{max} [N/mm ²] 499	壁外端に角形 壁 降伏歪度 ε _y [μ] 1800	 ど拘束筋補強 C ヤング係数 E_s [N/mm²] 1.86×10⁵ 	DC : 袖雪 No.1	生外端に円形 また。	拘束筋補 モー3 縮強度 I/mm ²] 31.5	<u> 強</u> コン 割裂 [N	×クリートの 引張強度 圧縮強 /mm ²] の歪月 2.70 22	力学 ^{渡時} 〔[µ]	的特性 ヤング係数 × 10 ⁴ [N/mn 2.35	E。ポアソン比 ²] レ 0.177
舒 ; D13(D10(袖壁(筋の 種類 SD295A) SD295A)	<u> </u>	<u>壊)</u> -2 鉄筋の ^{降伏点} σ _ν [N/mm ²] 338 368	□C:袖懸 力学的特性 引張強さ σ _{max} [N/mm ²] 499 513	壁外端に角子 (生) 降伏歪度 ε _ν [μ] 1800 1980	 やング係数 trype (mm²) 1.86×10⁵ 1.86×10⁵ 	DC : 袖雪 No.1 No.2 No.3	登外端に円形 また。	拘束筋補 そ 一 3 縮強度 1/mm ²] 31.5 29.6 30.4	i強 コン 割裂 [N	・クリートの 引張強度 /mm ²]の歪 2.70 22 2.45 203 2.55 198	力学 度時 〔µ〕 0 0	的特性 ヤング係数 × 10 ⁴ [N/mn 2.35 2.40 2.35	E。ポアソン比 ¹] ル 0.177 0.141 0.156
部 到 D13(D10(D10(袖壁(筋の 種類 SD295A) SD295A)	<u> </u>	 支援防の 条防の 降伏点 σ_v [N/mm²] 338 368 302^{×1} 	□C:袖 う 力学的特性 引張強さ σ _{max} [N/mm ²] 499 513 521	達外端に角引 上 降伏歪度 を _v [µ] 1800 1980 1990 ^{※1}	 ど拘束筋補強 C ヤング係数 E_s [N/mm²] 1.86×10⁵ 1.86×10⁵ 1.87×10⁵ 	DC : 袖雪 No.1 No.2 No.3 No.4	掛端に円形 材齢 圧 日1 11 20	<u>拘束筋補</u> 縮強度 I/mm ²] 31.5 29.6 30.4 35.1	脑 コン 割裂 [N	・クリートの 引張強度 圧縮強 /mm ²] の変更 2.70 221 2.45 200 2.55 198 2.91 210	力学 ^{度時 [[µ]} 0 0 0	的特性 ヤング係数 ×10 ⁴ [N/mn 2.35 2.40 2.35 2.58	E _c ポアソン比 ²] ル 0.177 0.141 0.156 0.173
部	袖壁(筋の 重類 SD295A) SD295A) SD295A)	1000 RC4 (曲げ破 表 一 使用箇所 全原用箇所 壁縦筋端部 壁縦筋一般部, 壁縦筋, 帯筋, 壁縦筋, = 50	 表前の 金、[N/mm²] 338 368 302^{×1} 402^{×1} 	□C:袖野 う力学的特性 引張強さ σ _{max} [N/mm ²] 499 513 521 505	達外端に角子 降伏歪度 <u> を_y[µ] 1800 1980 1990^{※1}</u>	ど拘束筋補強 C ヤング係数 E _s [N/mm ²] 1.86×10 ⁵ 1.86×10 ⁵ 1.87×10 ⁵ 1.02×10 ⁵	DC:袖雪 No.1 No.2 No.3 No.4 No.5 [*]	掛端に円形 ま 材齢 圧 [日] [N 11 9 11 20 16 16 1 1	<u>拘束筋補</u> 麦3 縮強度 <u>1/mm²]</u> 31.5 29.6 30.4 35.1 35.3 佐(試驗	強 コン 割裂 [N	・クリートの 引張強度 圧縮強 /mm ²] の歪 「 2.70 221 2.45 200 2.55 196 2.91 210 2.76 255	力学 度時 0 0 0 0 0	的特性 ヤング係数 ×10 ⁴ [N/mn 2.35 2.40 2.35 2.58 2.20	E _c ポアソン比 ² ル 0.177 0.141 0.156 0.173 0.162
	袖壁((新の) (種類) (SD295A) (SD295A) (SD295A) (SD295A) (SD295A) (SD295A) (SD295A) (SD295A) (SD295A) (SD295A)	<u>tきRC柱(曲げ破</u> 表 - 使用箇所 主筋 壁縦筋端部 <u>帯筋</u> 壁縦筋,帯筋 壁縦筋,帯筋 拘束筋 払による値	 ま) 子 鉄筋の 降伏点 σ_v [N/mm²] 338 368 302^{※1} 423^{※1} 	□C:袖野 う力学的特性 引張強さ σ _{max} [N/mm ²] 499 513 521 535	達外端に角子 降伏歪度 を _v [µ] 1800 1980 1990 ^{※1} 2400 ^{※1}	 ジ拘束筋補強 C ヤング係数 E_s [N/mm²] 1.86×10⁵ 1.86×10⁵ 1.87×10⁵ 1.82×10⁵ 	DC:袖昼 No.1 No.2 No.3 No.4 No.5 [*] 養生: コンク	住外端に円形 材齢 圧 [日] [ト] 11 9 11 20 16 現場気中養美 リートの種类	<u>拘束筋補</u> 転 縮強度 1/mm ²] 31.5 29.6 30.4 35.1 35.3 生(試験2 副:普通27	→ 計算 ・ 計算 	ウリートの 引張強度 圧縮強 /mm ²] の金胆 2.70 221 2.45 200 2.55 191 2.76 255 -養生)	カ学 度時 [[µ] 0 0 0 0 0 0	的特性 ヤング係数 ×10 ⁴ [N/mn 2.35 2.40 2.35 2.58 2.20 強コンクリー	E _c ポアソン比 ²) ν 0.177 0.141 0.156 0.173 0.162 ト (V _f =0.50%)

表-1 試験体および計算値一覧

表-1に試験体および計算値一覧,表-2,表-3に鉄筋およびコンクリートの力学的特性,図-1に配筋図, 図-2に壁横筋・拘束筋の配筋要領を示す。共通要因は, 柱断面 B×D=300mm×300mm,袖壁厚さt=100mm,片側の袖壁の張出長さL_w=300mmである。袖壁は柱の両側に 柱芯位置に配置されている。柱内法高さ h_0 =750mm,袖 壁を含めた全せい 900mm, せん断スパン比 (a/D=900/300=3.0)である。柱主筋は12-D13 (SD295A,

pg=1.69%), 袖壁の端部縦筋は4-D10(SD295A)である。コ ンクリートの設計基準強度は Fc=24N/mm², 軸力は N=1/6Fc・B・D=360kN である。袖壁付き RC 柱全体および 袖壁を無視して柱単体として見立てた場合の破壊モード は両者ともに曲げ破壊先行型となるように設計した。

No.1, No.2 は基準となる RC 試験体で,従来型の袖壁付き RC 柱を想定した。No.1 は p_w=0.42%, p_{sh}=0.63%, No.2 は p_w=0.95%, p_{sh}=1.27% とし,横補強筋量による構造性能の影響を確認する。No.1 の配筋は, 3F 建ての下層階中柱を想定して許容応力度設計法により設計された袖壁付き RC 柱を 1/2 に縮小したものである。No.3, No.4 は,袖壁端部をそれぞれ角形および円形拘束筋により拘束したもので,No.2 との比較により,袖壁端部の拘束による構造性能への影響を確認する。拘束域は 2010 年版 RC 規準¹⁰の仕様規定に準拠し,長期軸力と短期時に生じる変動軸力を負担できる仕様とした。No.3 の拘束筋の帯筋比

(かぶりを含む拘束域の断面 b×D=100×122mm として計 算)は加力方向が 1.27%,面外方向が 1.04%である。No.4 の拘束筋の帯筋比 (かぶりを含む拘束域の断面 b×D=100×118mm として計算)は加力方向が 1.27%,面 外方向が 1.07%であり,規定値の 0.2%を満足するものと した。また,No.3,No.4の拘束域の全主筋比はそれぞれ 2.34%,2.42%であり,規定値の 0.8%を満足するものとし た。拘束筋の配筋間隔は,柱の帯筋に関する解説文「主 筋の早期座屈を防止するために主筋径の 8 倍より小さく するよう推奨」より,@50mm (D10の8 倍=80mm以下) とした。No.5 は No.3 と同一配筋で,コンクリートの代 替として PVA-FRC を使用したものである。No.3 との比 較により PVA-FRC の損傷抑制効果と袖壁端部の拘束効

果の寄与について確認する。PVA 繊維の仕様は繊維長 30mm, 直径 660μm, 体積混入率は V_f=0.5%とした。 2.2 加力方法

図-3 に加力装置図を示す。加力は、モーメント分布 が三角形分布となるように片持ち型式とし、正負交番漸 増繰り返し載荷とした。軸力は 360kN の一定軸力を保つ ように制御した。加力履歴は、 ± 3 サイクルまでは荷重制 御とし、その後は部材角 R (= δ/h_0 ここに、 $\delta:h_0=750$ mm 位置での相対変位 $h_0: 柱脚から柱頭までの距離で$ 750mm)で制御した。荷重制御の領域では RC 規準¹⁾に 示されている壁部材の長期許容せん断力、短期許容せん 断力の 2/3 倍、短期許容せん断力の各耐力で 1 サイクル づつ正負繰り返し、変位制御の領域では R=1/200 (rad.)、 1/100(rad.)、 1/67(rad.)、 1/50(rad.)を各 2 サイクル、 R=1/25(rad.)を各 1 サイクル行うことを原則とした。ただ し、No.4、No.5 については、 R=+1/15(rad.)まで加力を行 い、大変形時の耐力保持能力を確認した。

3. 実験結果

3.1 破壊性状

写真-1に各試験体の最終破壊状況を,写真-2にNo.1 の袖壁端部縦筋の座屈と破断状況を,写真-3にNo.2の 短期許容せん断力時のひび割れ状況を示す。破壊経過は, 最初に引張側袖壁の脚部に曲げひび割れが発生,次いで 袖壁端部中央の高さ付近より曲げせん断ひび割れが発生 した。その後は,柱中央および袖壁と柱の境界部にせん 断ひび割れが発生した。最大耐力は袖壁圧縮側端部のコ ンクリートが圧壊することにより迎えた。最終破壊状況 は,全試験体ともに袖壁端部コンクリートが圧壊し,袖 壁端部縦筋の破断または座屈(写真-2 参照)を伴う曲げ 圧縮破壊の傾向を示した。長期許容せん断力(Q_{AL})¹時の ひび割れ状況は,全ての試験体で無損傷であった。

短期許容せん断力(Q_A)¹時のひび割れ状況は,袖壁脚 部に曲げひび割れや袖壁部に曲げせん断ひび割れが生じ たが,除荷後の残留ひび割れ幅は全て 0.05mm 以下であ り,損傷は軽微であった(写真-3 参照)。また,横補強 筋量を増やした No.2~No.5 は, No.1 に比べて,ひび割 れ本数が多くなる傾向が認められた。これは帯筋比,壁 横筋比の増加に比例して短期許容せん断力が高くなるた めと推察される。その他,拘束筋の有無や形状の違い, PVA繊維の有無による短期許容せん断力時のひび割れ状 況についての差異は認められない。

次に、各変動要因が破壊性状に及ぼす影響を以下に示 す。PVA 繊維の有無による影響では、繊維を混入した試 験体のひび割れ幅は、繊維を無混入とした試験体に比べ て、最大耐力手前の範囲ではひび割れ幅は小さくなり、 損傷を抑制する効果が認められた。また、大変形時では 袖壁圧縮端部のコンクリートの剥落、壁縦筋の座屈や破 断を遅延・抑制する効果が認められた。また、繊維補強 された No.5 と拘束筋で補強した No.3, No.4 の袖壁圧縮 端部のコンクリートの圧壊状況について同一変形で比較 すると、No.5 の圧壊の状況は軽減されていた。とくに、 袖壁圧縮端部のコンクリートが圧縮力により破砕し、ひ び割れが生じても、繊維の架橋効果により、コンクリー トが崩落せずに応力伝達する特徴が見られ、短繊維を混 入することの有効性が確認された。

袖壁端部拘束筋の有無による影響では、拘束筋のある No.3, No.4 は拘束域のコアコンクリートを大変形時まで 保持する傾向が認められた。また、PVA 繊維補強と同様 に壁縦筋の座屈や破断を遅延・抑制する効果が認められた。 3.2 変形性状

図-4に各試験体の水平力(P)と相対変位(δ)との関係を 示す。各試験体の部材降伏(同図中の緑◆で,定義は図 -8参照。)および最大耐力(▼)の近傍では,袖壁端部 の圧壊(同図中の□)および主筋の引張降伏 (R=1/100(rad.)の若干,手前)が生じており,それらが 部材降伏耐力および最大耐力に大きく関与していること が伺える。図-5に各要因別に整理した水平力(P)と相対

変位(δ)包絡線との比較を示す。(a)の No.1 と No.2 の横補

500

No.1 RC-42/63-N

な差異は認められず,横補強筋量が袖壁圧縮端部のコン クリートの拘束に寄与していないことが伺える。

(b)の袖壁端部の拘束筋の有無による影響では、拘束筋 が無い No.2 に比べて、角形拘束筋を配した No.3 の変形 性能は向上しており、袖壁端部を拘束することの有効性 が確認された。また、拘束筋の形状による影響では、袖

壁圧縮端部を円形拘束筋により拘束した No.4 は,角形拘 束筋により拘束した No.3 に比べて最大耐力後の耐力低 下は小さく,靱性能が大きく向上していることがわかる。 以上より,変形性能を向上させるためには袖壁圧縮端部 を拘束筋で拘束し,その形状を円形することが極めて有 効であることが理解できる。

次に,(c)の繊維の有無による影響では,拘束筋を角形 拘束筋とした No.3, No.5 試験体により繊維の有無による 影響を確認する。繊維補強により大きく靭性が向上して おり,繊維が袖壁圧縮端部の拘束に大きく寄与している ことがわかる。また,その効果はおおむね円形拘束筋に 類似する効果をもつことが理解できる。

変形性能の評価

4.1 降伏変形の評価

図-6 に降伏変形の評価方法を示す。本モデルは、曲 げ降伏変形までの変形挙動をモデル化したものである。 ここで言う「曲げ降伏変形」とは、袖壁付き RC 柱の耐 力がほぼ頭打ちに近くなり、剛性が急激に低下し始める 変形のことを意味する。降伏変形の評価は、曲げ降伏変 形までの挙動を曲げ変形、せん断変形、抜出し変形の3 成分に分解し、各変形モデルを合成することにより構築 するものである。なお、図-6 中の各特異点は理論的解 釈により導出される。以下、各変形モデルについて詳細 に説明する。

同図中(a)の曲げ変形モデルは、二つの折れ線によりモ デル化する。第一折れ点(図中●)は曲げひび割れ発生 を、第二折れ点(図中▲)は部材の曲げ降伏を意味する。 第一折れ点の曲げひび割れ強度計算値($_{w}Q_{mc}$)は、コン クリートの曲げ引張強度を $0.56\sqrt{\sigma_{B}}$ とし、軸力の影響を 加味した式(1)により評価する。

$$wQ_{mc}=_wM_{mc}/a$$
 (1)
ここに、 $_wM_{mc}$:曲げひび割れモーメント
a:せん断スパン(=900mm)
ただし、 $_wM_{mc} = 0.56\sqrt{\sigma_B} \cdot Z + N \cdot Z/\Sigma A$
ここに、 σ_B :コンクリートの圧縮強度 Z:断面係数
N:軸力 ΣA :袖壁付き RC 柱の全断面積
曲げ剛性 ($_wK_m$) は、下式(2)により評価する。
 $_wK_m=6Ec \cdot I_0/(3 a \cdot h_0^2 - h_0^3)$ (2)
ここに、 E_c :コンクリートのヤング係数 (表-3の値)
 I_0 :中立軸回りの断面二次モーメント
 h_0 :柱内法高さ(=750mm)

第二折れ点の曲げ降伏強度計算値(_wQ_{my})は, 文献 6) に示されている式(3)により評価する。

$$Q_{my} = _{w} M_{my} / a \tag{3}$$

ただし,

 ${}_{w}M_{my} = (g_1 + \beta_c)a_t \cdot {}_{s}\sigma_y \cdot D + \{1 + 0.5(\beta_c + \beta_t)\}\Sigma a_{tw} \cdot {}_{s}\sigma_{yw} \cdot D$

+0.5ND[1+2 β_c -N{1+(1- γ) $a_t \cdot {}_s \sigma_y$ /N}²/(α ・b・D・Fc)] 記号の意味は文献 6)を参照のこと。

次に曲げ降伏時の曲げ変形の算出方法について説明 する。図-7に部材降伏時(図-4のP- δ 曲線上の緑 の点)の柱脚部分のひずみ度分布(正載荷)を示す。こ こで言う部材降伏とは、図-8のように定義した。まず、 原点と 0.75, Pmax(ここに、。Pmax:最大耐力実験値)を結 ぶ直線と。Pmaxを通る X 軸に平行な直線を引く。次いで、 その 2 直線が交わる部分の角度を 2 等分する直線引き、

その直線が P-δ曲線と交わる点を部材降伏とするもの である。図-7 より、この降伏現象が生じる時のひずみ 度分布を詳細に見ると、袖壁圧縮端部のコンクリートが 圧縮強度時のひずみ度に達し、さらに柱の引張側主筋が 降伏ひずみ度の近傍になっている。以上のことが、剛性 低下の主要因と考えて、その時の柱脚部の曲率を下式(5) のように仮定した。また、曲率分布を三角形分布と仮定し、 上スタブを剛と仮定すると下式(4)の降伏時の曲げ変形評 価式が誘導できる。

 $\delta_{y_{f}} = \{ h_{0}^{2} / 2 - h_{0}^{3} / (6a) \} \phi_{y}$ (4)

ただし、 $\phi_y = (c \epsilon_B + s \epsilon_y)/d_t$ (5)

φ_y:部材降伏時の柱脚部の曲率
 c_B: コンクリート圧縮強度時のひずみ度

sε_v:柱引張鉄筋の降伏ひずみ度

d_t: 圧縮縁から柱引張鉄筋までの距離

次に、同図中(b)のせん断変形モデルについて説明する。 第一折れ点(図中■)は、せん断ひび割れの発生点を意 味する。せん断ひび割れ強度計算値(wQsc)は、下式(6) により算出する。

$${}_{\rm w}Q_{\rm sc} = \frac{2I_0}{L_{\rm w}(D+L_{\rm w})}\sqrt{\sigma_t^2 - \sigma_t \frac{N}{\Sigma A}}$$
(6)

N:軸力(圧縮:-, 引張:+)

 σ_{t} (=0.56 $\sqrt{\sigma_{R}}$): コンクリートの曲げ引張強度

式(6)は、せん断ひび割れの発生位置を袖壁と柱との境 界部と仮定し、そこに生じる軸応力度とせん断応力度か ら主応力度を算出し、その引張側の主応力度が $0.56\sqrt{\sigma_{B}}$ に達した時にせん断ひび割れが生じると仮定して導出し た式である。

せん断剛性 (
$$_wK_s$$
) は、下式(7)により評価する。
 $_wK_s=G\cdot A_e/(\kappa\cdot h_0)$ (7)

ここに, G: せん断弾性係数

A_e: せん断有効断面積(全せいと断面二次モ ーメントが等価となるような矩形断面 に置換した時の断面積を想定)

κ: せん断形状係数 (エネルギー法=1.2)

ただし, G=Ec/{2(1+v)}

ここに、v: コンクリートのポアソン比(表-3 の値)曲げ降伏強度計算値時のせん断変形(δ_{y_s})は、 $_wQ_{sc}$ の点(図中)とせん断終局強度計算値($_wQ_{su}$)の点(図 中〇)を結ぶ直線と曲げ降伏強度計算値($_wQ_{my}$)が交わ る点(図中 \blacktriangle)と定義すると、式(8)のように誘導できる。

 $\delta_{y_s} = (_w Q_{my^-} w Q_{sc}) / \{ (_w Q_{su} - _w Q_{sc}) / (\delta_{su_s} - \delta_{sc_s}) \} + \delta_{sc_s} (8)$ ここで,式(8)中のせん断終局強度計算値 ($_w Q_{su}$)は, 文献 2)に示された下式(9)により算定する。

$$_{w} Q_{su} = \nu_{s} \left| p_{we} \cdot \sigma_{wy}(j_{c}/j_{t}) + p_{she} \cdot \sigma_{sy}(j_{w}/j_{t}) \right| b_{e} \cdot j_{t}$$

$$+ tan \theta (1 - \beta) \alpha \cdot b_{e} \cdot l_{w} \cdot \nu_{c} \cdot \sigma_{B}/2$$

$$(9)$$

記号の詳細は、文献2)を参照のこと。

また, せん断終局強度計算値時のせん断変形 (δ_{su_s}) は, 筆者らが提案した文献 3)に示された下式(10)により 算出する。

$$\delta_{su_s} = 2_t \varepsilon_d \cdot h_0 \tag{10}$$

ここに,_{t ε d}: コンクリートシリンダーの圧縮強度時 のひずみ度(**表**-3の値)

最後に、図-6 中(c)のスタブ内(実務設計では、接合 部内もしくは梁内)からの抜出し変形モデルについて説 明する。抜出し変形は、式(1)で示した曲げひび割れの発 生点(図中●)から生じるものとした。引張側の主筋が 引張降伏した時の抜出し変形(δ_{y_p})は、RC 耐震診断基 準ⁿに示されている下式(11)により算出する。

δ_{y_p}=⊿S_{y,col}・h₀/d_n (11) ここに、d_n:引張主筋位置から中立軸位置までの距離

- △S_{y,col}:主筋降伏時の接合部からの抜出し量
- ただし、 $\Delta S_{y,col} = (0.696 u_{col} / \sigma_B^{2/3} + 0.463) \cdot \epsilon_{y,col} \cdot D_b / 2$
- ここに, u_{col}: 接合部内で存在し得る平均最大付着応力 度で引張主筋に対して算定する。

ε_{y,col}: 引張主筋の降伏ひずみ度 D_b: 梁の全
 せい(本計算では主筋の定着長さ: 柱脚部から定着板の長さ 322mm を採用した。)

上記で説明した各変形成分の実験値と計算モデルとの比較の一例(No.5)を図-9に示す。なお、実験値の 算出方法については文献4)に詳細に示しているので、そ れを参照して頂きたい。同図中の(a)、(b)、(c)より、各変 形成分のモデルは、実験値の傾向をおおむね評価できて いるが、ややせん断変形を過少に評価する傾向が認めら れた。また、各変形成分を累加した(d)の評価では、モデ ルと実験値との適合性は、おおむね良好であり、全体の 傾向をとらえることができている。また、ここに示して いない No.1 から No.4 も、No.5 と同様の傾向であり、実 験値とモデルとの適合性は良い。

4.2 限界変形の検討

限界変形の評価法は,壁谷澤ら⁸による下式(12)を用い た手法が提案されており,その式により比較・検討を行う。

 $R_u = c \times l_h \times \phi_u$

- ここに, c:変形係数(ここでは, 6)
 - lh: 圧縮側コンクリートのヒンジ領域長さ (=2tw)

 $\phi_u: 曲率 (= \epsilon_{cu} / x_n) \quad t_w: 壁厚さ$

 ε_{cu} : 圧縮縁のコンクリートの歪(ただし、袖壁端部に 拘束筋が無い No.1,2 試験体は ε_{cu} =0.003、拘束 筋がある No.3,4,5 試験体は ε_{cu} =0.006 とした。

x_n: 圧縮縁から中立軸位置までの距離

限界変形実験値 (${}_{e}\delta_{u}$) は,最大耐力の 80%に低下した 時の変形と定義し,図-10のように算出した。図-4の P-δ曲線上に限界変形実験値を赤◆で示しておく。一方, 限界変形計算値 (${}_{c}\delta_{u}$) は,式(12)の R_uに柱内法スパン h_o=750mm を乗じて算出した。図-11 に ${}_{e}\delta_{u}$ と ${}_{o}\delta_{u}$ との比 較を示す。実験値と計算値は適合性は良好であり,比較 値 (=実験値/計算値は) は 0.77~1.18,平均値は 1.01 であった。しかしながら,角形の拘束筋で補強した No.3 試験体は、危険側の評価となっており、圧縮縁のコンク リートの歪 ε_{cu}等について今後、検討する余地がある。

5.まとめ

本研究で得られた知見を以下にまとめる。

- ・袖壁付き RC 柱の靱性能を向上させるためには、袖壁 圧縮端部のコンクリートに圧縮靱性を付与させるこ とである。その方法は、袖壁圧縮端部に拘束筋を配す ること。コンクリートの代替として繊維補強コンクリ ートを用いることである。とくに、拘束筋の形状を円 形にすること。そして拘束筋と繊維補強コンクリート を組み合わせることが有効である。
- ・降伏変形の評価手法を提案し、おおむね実験値の傾向
 をとらえられることを示した。
- ・壁谷澤らによる限界変形の評価手法により,本試験体の限界変形をおおむね評価できることを示した。

参考文献

- 日本建築学会: 2010 年版 鉄筋コンクリート構造計算規 準・同解説, pp.177, 274-280, 320-321, 2010.2
- 2) 磯雅人,松崎育弘,園部泰寿,中村洋行:連続繊維シートによりせん断補強された袖壁付き RC 柱のせん断 終局耐力評価,日本建築学会構造系論文集,第542号, pp.147-154,2001.4
- 上原正敬,福山洋,向井智久,諏訪田晴彦,田尻清太郎,磯雅人:比較的薄い袖壁を有する袖壁付き RC柱の構造性能評価 その2 せん断変形性能評価,日本建築学会大会学術講演梗概集,pp.67-70,2010.9
- 4) 磯雅人: 袖壁付き RC 柱の曲げ変形性能評価, コンク リート工学年次論文集, Vol.33, No.2, pp.121-126, 2011
- 5)日本建築学会:鉄筋コンクリート造建物の終局強度型耐震 設計指針・同解説,1990.1
- 6)日本建築学会:鉄筋コンクリート終局強度設計に関す る資料,pp.57,1987.9
- 7)(財)日本建築防災協会:2001年改訂版 既存鉄筋コンクリート造建築物の耐震診断基準 同解説, pp.260-261,2001.10
- 8) 壁谷澤寿海,金裕錫,佐藤充晴,ファン ヒョンソン,細川洋 治:鉄筋コンクリート造袖壁付き柱の変形性能に関す る実験的研究 その3・曲げ理論による変形性能の評 価,日本建築学会大会学術講演梗概集,構造Ⅳ, pp.139-140,2011.8

謝辞 本研究は,平成22,23年度 国土交通省 住宅・ 建築関連先導技術開発助成事業 技術開発課題名「高性 能・高耐久袖壁付き鉄筋コンクリート柱部材の研究開発」 により行われたものである。

(12)