論文 コンクリート打設直後に地震動を受けた後の鉄筋とコンクリートの 付着特性に関する基礎的研究

兵間 将吾^{*1}·貞末 和史^{*2}

要旨: コンクリート打設直後に RC 構造物が地震や強風による振動を受けた場合,地震によって建物が倒壊 しなかった場合でも,鉄筋とコンクリートの一体性が失われ,建物の耐震性能が乏しくなることが推測され る。本研究では,コンクリート打設直後の RC 要素試験体に振動を与える実験を行い,その RC 要素試験体の コンクリートが硬化後に鉄筋とコンクリートの付着特性を調べる静的載荷実験を行なって,振動の変位振幅 が大きくなるような振動条件下では鉄筋とコンクリートの相対的なズレが大きくなることを明らかにし,さ らに,相対的なズレが大きい場合ほど,鉄筋とコンクリートの付着劣化の程度が大きくなることを示した。 キーワード:付着強度,凝結硬化,地震動

1. はじめに

RC 構造物の構造設計は、コンクリート打設後所要の 養生期間を得て、コンクリートが設計基準強度に達して いるものとして構造安全性が検討される。しかしながら、 RC 構造物は時として建設工事中に地震や強風による振 動を受けることがあり、コンクリート打設直後、あるい はコンクリートが設計基準強度に達する前に地震等の外 乱を受けた場合、容易にひび割れを生じたり、鉄筋とコ ンクリートの一体性が失われることが懸念され、その後 の建設工事を進めてよいものか判断に悩むことがある。

建設工事中に振動を受ける RC 構造物に関して, 土木 構造物では, 既存のコンクリート道路橋の拡幅工事にお ける自動車等の走行振動を想定して, コンクリート硬化 中に継続的な微小振動を受ける RC 部材の力学挙動につ いて検討した実験が行われており, 鉄筋を固定し, コン クリート部分のみ振動させることで鉄筋とコンクリート に相対変位を生じさせた場合は付着強度が大きく低下す ることが報告されている¹⁾。

また、内燃力発電所の増設工事を対象として、発電所 運転中に機器により生じる継続振動下でコンクリートが 打設される場合の鉄筋とコンクリートとの付着性状に関 する実験が行われ、どの程度の振動レベルで付着強度が 低下するのか検討されている²⁾。

建築構造物では、コンクリート打設工事中に火山活動 に伴う継続的な地震動を受けた RC 建物の実例があり、 建設現場での計測振動を基に鉄筋とコンクリートとの付 着強度について検討する実験が行われている。この研究 では、地震動を受けることによって生じる鉄筋とコンク リートの相対的なズレを静的に与えるという条件下で実 験を行い、地震動を受けない場合と比べて付着強度が低 下したことが報告されている³。 さらに、コンクリート打設直後に地震動を受けること によって、コンクリートの材料特性がどのように変化す るか確かめた実験も行われており、凝結を開始する前の 流動性が高い状態でコンクリートが地震動を受けると骨 材が移動し、局部的な材料分離や空隙を生じて、コンク リートの圧縮強度および弾性係数が低下する場合がある と報告されている⁴⁾。

また,コンクリート工事の締固め作業中に起こり得る 棒形振動機と鉄筋の接触がコンクリートと鉄筋の付着強 度に及ぼす影響について研究されており,棒形振動機と 鉄筋の接触を過度に行うと付着強度が低下すると報告が ある⁵⁾。

上記に挙げた研究では、いずれも振動を受けることに よって鉄筋とコンクリートの付着劣化やコンクリートの 材料特性が劣化することが報告されている。

一方で,著者らが行った実験では,コンクリートが凝 結を開始する前の流動性の高い状態で振動を受ける場合 には,コンクリート硬化後の主筋の付着劣化は極めて小 さいことが明らかにされている⁶。しかしながら,地震 や強風による振動を対象として,コンクリート打設後, どの程度の経過時間で,どの程度の振動を受けると,鉄 筋とコンクリートの付着特性はどのような影響を受ける かについては明確にされていない。

本研究では、コンクリート打設直後に鉄筋とコンクリ ートが相対的にズレ(以下、相対ズレと称す)を生じる ような振動を受ける RC 要素試験体を製作し、振動を受 けるまでの経過時間、振動条件の違いによって、どの程 度の相対ズレを生じるか明らかにし、さらに、振動に伴 って生じた鉄筋とコンクリートの相対ズレがコンクリー トの硬化が進んだ後の鉄筋の付着特性にどのような影響 を与えるかについて検討する。

*1 鹿児島大学大学院 理工学研究科 博士前期課程建築学専攻 (正会員)*2 広島工業大学 工学部建築工学科准教授 博士(工学) (正会員)

2. 実験概要

2.1 試験体

試験体形状を図-1 に示す。試験体は断面 150mm× 150mm,長さ 208mm のコンクリートブロックに D19 の 異形鉄筋を埋め込んだ形状とし,鉄筋の引き抜き試験を 行うものとした。ただし,荷重端および自由端の 29mm

(1.5*db*, *db*は鉄筋径)の区間は付着を絶縁しており,付 着長さは 150mm (8*db*) となっている。コンクリートの 打設を3回に分けて行っているため,それぞれの打設時 において,コンクリート打設直後に振動を受ける試験体 と受けない試験体を製作した。

試験体計画を表-1 に示す。実験変数は、コンクリート打設直後の振動の有無、コンクリート打設直後に振動 を受けるまでの経過時間および振動条件(振動数,最大 加速度)とし、同一条件下の試験体は各々2 体とした。 コンクリート打設直後に振動を受けるまでの経過時間は、 コンクリート疑結始発前、コンクリート凝結中、コンク リート凝結終結後の3 種類とした。振動は全て正弦波と し、振動数fを2.5Hz、5Hzの2種類、最大加速度Accは 2.0~9.8m/s²とした。質量の大きさは、同一振動数の条件 下では、最大加速度に質量を乗じた値(鉄筋の引き抜き 力)が一定となるように計画した(表-1における打設1、 2回目)。ただし、打設3回目に関しては2.3項において 述べる理由で、最大加速度の設定値を変えている。試験 体に使用したコンクリートおよび鉄筋の材料試験結果を 表-2、表-3にそれぞれ示す。

計略体	加振	振動数	最大加速度	質量	t⊤≣n
动败冲	時期	f(Hz)	$Acc (m/s^2)$	<i>m</i> (kg)	们权
1N0000	なし	-	—	-	
1P0205			2.0	310	
1P0505	凝結始発前		4.9	124	
1P1005			9.8	62	
1M0205			2.0	310	1回日
1M0505	凝結中	5.0	4.9	124	тын
1M1005			9.8	62	
1A0205			2.0	310	
1A0505	凝結終結後		4.9	124	
1A1005			9.8	62	
2N0000	なし	_		_	
2P0202			2.0	310	
2P0502	凝結始発前		4.9	124	
1P1002			9.8	62	
2M0202			2.0	310	2回日
2M0502	凝結中	2.5	4.9	124	소뜨 ㅂ
2M1002			9.8	62	
2A0202			2.0	310	
2A0502	疑結終結後		4.9	124	
2A1002			9.8	62	
3N0000	なし	_	_	_	
3P0405			3.3	310	
3P0605	凝結始発前		5.9	124	
3P1005			9.8	62	
3M0405			3.3	310	3回日
3M0605	凝結中	5.0	5.9	124	JEII
<u>3M1005</u>			9.8	62	
3A0405			3.3	310	
3A0605	疑結終結後		5.9	124	
3A1005			9.8	62	

表-1 試験体計画

表-2 コンクリートの材料強度(鉄筋引き抜き試験時)

打設	压縮 (N/mm ²)	ヤング係数 (N/mm ²)	割裂 (N/mm ²)
1回目	13.9	23522	1.39
2回目	23.3	25643	2.09
3回目	24.2	23370	2.51

表-3 鋼材の材料強度

降伏強度	引張強度	伸び
(N/mm^2)	(N/mm^2)	(%)
375	563	16.3

2.2 コンクリートの凝結・硬化の進行状況

凝結・硬化の進行状況は、コンクリート打設後、**写真** -1に示されるプロクター貫入試験を行って確認した。

プロクター貫入試験による貫入抵抗値と経過時間の 関係を図-2 に示す。凝結の進行状況はコンクリート打 設時の気温等による影響を受けるが、貫入抵抗値が 3.5N/mm²に達する時を凝結始発,28 N/mm²に達する時 を凝結終結とし、本実験ではコンクリート打設後、振動 を受けるまでの経過時間を表-4に示す時間とした。

写真-1 プロクター貫入試験

表-4 凝結始発・終結および振動時経過時間

打設		1回目	2回目	3回目
プロクター	始発	8時間30分	7時間40分	7時間30分
貫入試験	終結	13時間00分	11時間20分	10時間20分
	始発前	5時間40分	6時間11分	5時間29分
扳動吁 怒渦時間	凝結中	9時間25分	9時間11分	8時間29分
心心的	終結後	吉後 13時間20分 11時間31	11時間31分	10時間29分

2.3 加振方法

試験体に与える振動は、図-3 に示す振動台を用い、 表-1に示した振動条件下の正弦波を60秒間与えるもの とした。試験体は一本の鉄筋に対してコンクリートブロ ックを2つ直列に並べた状態に設置して、ネジ加工した 鉄筋の両端を鉄筋固定治具を介して振動台に固定した。 型枠は厚さ 6mm の底板と [-150×75×6.5×10 の溝形 鋼を組み立てた鋼製型枠を用いており、型枠底板と振動 台の間に厚さ3mmのテフロンシートを2枚重ねて挟み, 型枠は振動台に固定されていない状態となっている。各 試験体両端にはスリットを設けるため,型枠に内径24.2↓ の鋼管を溶接して取り付けている。また、型枠の上部に は質量を乗せている。ただし、コンクリート打設 1,2 回目の加振終了後,テフロンシートの動摩擦係数µを計 測したところµ=0.194 であることが確認されたため、コ ンクリート打設3回目の加振では、鋼製型枠下面の摩擦 抵抗力を考慮した上で、同一振動数の条件下の鉄筋の引 き抜き力が一定となるように最大加速度を再設定した。

計測項目は、振動台の加速度 tAcc, 試験体の加速度 sAcc, 鉄筋とコンクリートの相対ズレ変位 & とした。 & の計測 は、 図-4 に示すように変位計を取り付け、変位計の先 端を型枠にあてて計測した。

図-4 鉄筋とコンクリートの相対ズレ変位の計測

2.4 鉄筋の引き抜き試験方法

コンクリート硬化後の引き抜き試験の方法を**写真-2** に示す。コンクリートに埋め込まれた鉄筋をセンターホ ール型油圧ジャッキを用いて単調に引き抜いた。荷重は センターホール型ロードセルを用いて計測し、鉄筋の自 由端側の抜け出し量を変位計を用いて計測した。

写真-2 引き抜き試験

3. 実験結果

3.1 計測振動

加振結果の一例を図-5,加振結果一覧を表-5に示す。 表-5の_iA_{cc}は振動台最大加速度の計測値,_sA_{cc}は試験体

	振動台	試験体	振動台	相対ズレ
試験体	最大加速度	最大加速度	最大変位	変位
	$tA cc (m/s^2)$	$sA cc (m/s^2)$	$t\delta u ({ m mm})$	$\delta p (\text{mm})$
1P0205	2.09	2.29	1.99	0.03
1P0505	4.98	4.84	4.97	4.19
1P1005	10.1	8.04	9.94	8.24
1M0205	2.18	2.29	1.99	0.03
1M0505	6.07	5.21	4.97	0.02
1M1005	12.6	27.1	9.94	23.9
1A0205	2.18	2.29	1.99	0.03
1A0505	5.02	5.53	4.97	0.05
1A1005	12.4	34.8	9.94	14.9
2P0202	2.09	2.06	7.35	0.03
2P0502	5.31	7.36	19.9	32.2
2P1002	10.1	12.4	39.8	23.6
2M0202	2.13	2.19	7.35	0.03
2M0502	4.83	12.6	19.9	33.2
2M1002	10.6	30.8	39.8	26.2
2A0202	2.09	2.19	7.35	0.03
2A0502	4.93	5.3	19.9	0.08
2A1002	11.3	37.4	39.8	13.0
3P0405	4.08	2.92	3.53	5.97
3P0605	6.59	6.26	5.93	5.26
3P1005	10.2	8.50	9.94	32.2
3M0405	3.74	6.17	3.53	1.61
3M0605	6.21	15.3	5.93	4.31
3M1005	11.1	28.3	9.94	19.6
3A0405	4.17	9.73	3.53	1.05
3A0605	6.45	13.6	5.93	0.41
3A1005	11.6	40.6	9.94	15.4

表-5 加振結果一覧

最大加速度の計測値, ιδ. は計測値 ιAcc を用いて計算した 振動台の最大変位である。

1P0205 と 1P0505 のふの時刻歴を比較すると, 1P0205 のふ は±0.03mm で大きな相対ズレ変位を生じていない のに対して, 1P0505 のふは最大で-4.19mm と大きな相対 ズレ変位を生じている。試験体加速度に質量を乗じた力 が働くことで生じる付着力が付着耐力を越えると鉄筋と コンクリートが相対ズレを生じるものと思われる。また, 1P0205 のように大きな相対ズレ変位を生じない場合の 加速度は振動台と試験体でほぼ同じ値を示していること が確認された。一方, 1P0505 のように大きな相対ズレ変 位を生じている場合の加速度は振動台と試験体で異なる 値を示していることが確認された。

図-6, 図-7に $Acc-\delta$ 関係および $\delta a-\delta$ 関係を示す。 各振動条件下について、 $Acc-\delta$ 関係を見ると、最大加 速度が大きい振動を受けると δ が大きくなっていること がわかる。また、振動数の違いによる影響を確認すると、 凝結始発前では低振動数の場合の方が δ が大きくなる傾 向があるが、これは、低振動数では大きな変位振幅を受 けることが影響しており、 $\delta a-\delta$ 関係を見ると δa が大き い場合に δ も大きくなっていることがわかる。大加速 度・低振動数の振動を受けて変位振幅が大きくなる振動 条件下である場合に δ が大きくなることが確認された。

また,凝結始発前と凝結終結後の $Acc-\delta$ 関係, $s\delta_{ac}-\delta_{b}$ 関係を比較すると、コンクリート硬化の影響により、同一の振動条件下でも凝結終結後の δ_{b} は小さくなる傾向が確認された。

3.2 付着信頼強度

本実験で用いた試験体について,鉄筋コンクリート造 建物の靭性保証型耐震設計指針⁷⁾に示される付着信頼強 度 τ_b の算定を行う。なお,圧縮強度 σ_a は**表**-2に示した コンクリートの材料試験結果を用いる。

 $\tau_b = \alpha_t (0.086b_i + 0.11 \sqrt{\sigma_B}) + k_{st}$ (1)

$$\alpha_{t} = \begin{cases} 0.75 + \sigma_{B}/400 & (梁の上端主筋) \\ 1 & (上記以外の主筋) \end{cases}$$
(2)

$$h = \min(h_{\text{ris}}, h_{\text{ris}})$$
(3)

$$b_i = \min(b_{si}, b_{ci})$$

$$b_i = (b - N_1 d_k) / (N_1 d_k)$$
(4)

$$b = \{\sqrt{2} (d + d) - d/d\}$$
(5)

$$\sum_{k=1}^{N} \frac{(56+47N_w/N_1) (B_{si}+1) p_w}{(b_{ci} \ge b_{si} \mathcal{O} \ge \mathfrak{E})}$$

$$(b_{ci} < b_{si} \mathcal{O} \geq \mathfrak{E})$$

ここに、b は部材の幅(mm)、 N_1 は主筋の本数(本)、 d_{cs} は側面かぶり厚さ(mm)、 d_{ct} は底面かぶり厚さ(mm)、 N_w は 1 組の横補強筋の足の数(本)、 p_w は横補強筋比、 A_w は横補強筋 1 本の断面積(mm²)、 d_b は主筋径(mm)、S は 横補強筋間隔(mm)である。なお、本実験で用いた試験 体について、 τ_b を算定すると、圧縮強度 σ_x =13.9、23.3、 24.2N/mm² のそれぞれの場合について、 τ_b =2.62、3.39、 3.45N/mm²という計算結果が得られた。

3.3 破壊状況

鉄筋の引き抜き試験による最終破壊状況の一例を**写真** -3 に示す。本実験では、鉄筋が抜け出すことによって 最大耐力に達する破壊モードとコンクリートが割裂破壊 する破壊モードの2種類の破壊状態が確認された。

(a)鉄筋抜け出し(b) コンクリート割裂写真-3 最終破壊状況

3.4 最大耐力

図-8 に最大付着応力度の実験値 *tmax* と加振時の相対 ズレ変位 *δ*, の関係を示す。 **図-8** に示した *t*_b は 3.2 項で 求めた付着信頼強度である。

いずれの振動条件下においても δ が大きくなる場合 ほど τ_{max} が小さくなる傾向が確認できるが、 δ が 5.0mm 程度であっても、 τ_{max} は τ_b を上回っていることが確認さ れた。

表-6に実験結果一覧を示す。₀*Tmax*は振動を与えていない試験体の最大付着応力度の実験値である。破壊状態について、○印は2体ともコンクリート割裂破壊、●印は2体とも鉄筋抜け出し破壊、△は1体がコンクリート割裂破壊を生じ1体が鉄筋抜け出し破壊を生じた場合である。

 $A_{cc}=9.8$ m/s²で加振を行った試験体に関しては、2A1002 以外すべての試験体において τ_{max} は τ_b を下回っており、 2.5Hz で加振を行った 2P0502 と 2M0502 に関しても τ_{max} は τ_b を下回っていることが確認された。。なお、鉄筋抜 け出し破壊は比較的最大付着応力度が小さい場合に生じ ており、コンクリート割裂破壊は比較的最大付着応力度 が大きい場合に生じていることがわかる。

付着応力度と鉄筋の抜け出し量関係の一例を図-9 に 示す。

1P0505, 1P1005, 2P0502, 2P1002 は鉄筋抜け出し破壊 で耐力は小さいが, 2P1002 以外の初期抜け出し剛性はほ ぼ同じになった。また,鉄筋の抜け出し破壊は最大耐力 に達した後,緩やかに耐力低下したが, 1P0205, 2P0202 のようにコンクリートの割裂破壊を生じた試験体は最大 耐力に達した後,急に耐力低下することが確認された。

試験体	$ au_{max}$ (N/mm ²)	Tmax / 0 Tmax	T_{max}/T_{b}	破壊 状態
1N0000	6.83	1.00	2.60	0
1P0205	7.06	1.20	2.68	0
1P0505	5.01	0.38	1.90	\bigtriangleup
1P1005	2.12	0.06	0.81	
1M0205	7.06	1.03	2.68	0
1M0505	5.01	0.44	1.90	\bigcirc
1M1005	1.41	0.06	0.54	
1A0205	6.33	0.94	2.41	\triangle
1A0505	6.11	1.07	2.32	\bigcirc
1A1005	1.60	0.66	0.61	
2N0000	7.30	1.00	2.13	0
2P0202	8.78	1.03	2.56	0
2P0502	2.79	0.73	0.81	\bullet
2P1002	0.47	0.31	0.14	
2M0202	7.50	1.03	2.19	0
2M0502	3.22	0.73	0.94	\bullet
2M1002	0.41	0.21	0.12	
2A0202	6.86	0.93	2.00	0
2A0502	7.81	0.90	2.28	\bigcirc
2A1002	4.85	0.23	1.41	
3N0000	7.90	1.00	2.30	0
3P0405	7.80	0.99	2.27	\bigcirc
3P0605	7.84	0.99	2.29	\bigcirc
3P1005	2.18	0.28	0.64	
3M0405	8.25	1.04	2.40	0
3M0605	5.87	0.74	1.71	\bullet
3M1005	2.38	0.30	0.69	
3A0405	9.71	1.23	2.83	0
3A0605	8.38	1.06	2.44	0
3A1005	0.51	0.06	0.15	

表-6 実験結果一覧

4. まとめ

コンクリート打設直後の加振実験およびコンクリー ト硬化後の鉄筋引き抜き試験を行い,以下の結論を得た。

- 最大加速度が大きく低振動数で、変位振幅の大きい振 動条件下では、振動を受けることによる鉄筋とコン クリートの相対的なズレが大きくなる。
- 同一振動条件下でも凝結終結後に振動を受ける場合 は鉄筋とコンクリートの相対的なズレは小さくなる。
- 3)振動を受けることによる鉄筋とコンクリートの相対 的なズレが大きい場合ほど、コンクリート硬化後の 最大付着応力度は小さくなる。

参考文献

- 山下宣博,平野実,塚山隆一,神垣則明:養生中に継 続振動をうけるコンクリートの諸性質について、セ メント・コンクリート, No.287, pp.30-38, 1971.1
- 江藤芳武,平野利光,深池正樹,出光隆:凝結硬化時 に継続振動を受ける鉄筋コンクリートの付着強度に 関する研究,土木学会論文集,No.544, pp.223-234, 1996.8
- 3)川瀬克己,今村栄一,勝木政善,本康久,室山秀夫: 打込後に断続的地震動を受けたコンクリートの付着 強度 その2 室内実験,日本建築学会大会学術講演梗 概集,pp.459-460,1978.9
- 4) 梶山毅,住学,平弘毅:打込み直後に地震動を受けた コンクリートの強度性状に関する実験,日本建築学 会大会学術講演梗概集,pp.571-572,2005.9
- 5) 坂本英之,中田善久,大塚秀三,毛見虎雄:締固めに おける棒形振動機と鉄筋の接触がコンクリートと鉄 筋の付着強度に及ぼす影響,コンクリート工学年次 論文報告集, Vol.33, No.1, pp.383-388, 2011.7
- 6) 貞末和史, 佐藤立美: コンクリート凝結・硬化中に振動を受けた後の鉄筋とコンクリートの付着特性に関する一実験, コンクリート工学年次論文報告集, Vol.33, No.2, pp.667-672, 2011.7
- 7) 日本建築学会:鉄筋コンクリート造建物の靱性保証型 耐震設計指針・同解説, 1999.8