論文 炭素繊維シート巻き付け工法によるSRC造柱の補強効果

塚越 英夫*1·池谷 純一*2

要旨:RC造柱の炭素繊維シート補強に用いた独自の耐力と変形性能の評価方法に対して,最新のSRC耐 震診断基準を融合させた設計式を提案し,実験を行ってその適合性について検証した。実験のパラメータは 炭素繊維シート補強層数,内蔵鉄骨形状,軸力,鉄骨曲げ強度比,面外袖壁の有無とし,5体の静的加力実験 を行った。この実験の結果および既往の実験結果から,炭素繊維シートを用いた補強工法の新たな設計式は, SRC造の柱にも十分に有効であることが確認でき,耐力と変形性能の評価方法の提案が安全側となってい ることを示した。

キーワード:SRC造柱,炭素繊維シート,耐震補強,模型実験,補強効果の評価

1. はじめに

筆者らはこれまでにRC造柱の炭素繊維シート補強 について,独自の設計方法を示してきた1)。しかし, この設計方法ではSRC造柱の耐力と変形性能の評価 は,鉄骨を鉄筋置換して行うものであった。その後, 筆者らは炭素繊維シート端部の定着材料としてCFア ンカーを開発し、CFアンカーの性能を向上させるた めにメーカーと共にCFRP材料の開発を行い、土木 研究センターの審査証明を取得した²⁾。一方, 2009年 にはSRC造の耐震診断基準³⁾(以降, SRC耐震診 断基準と略す)が大改訂され、RC造の耐震診断基準 に準拠した評価方法となった。このことを契機に最新 のCFRP材料を用いて、新たにSRC造柱の炭素繊 維シート補強実験を行った。本報は、RC造柱に用い た独自の耐力と変形性能の評価方法をSRC耐震診断 基準に融合提案し、実験結果の適合性について検証し たことについて記すものである。併せて既発表の実験 結果4),5)についてもその適合性を示す。

2. 実験概要

2.1 試験体

試験体は 1/2.5 スケールモデル相当とし, 独立柱を 4 体, T形の面外袖壁付き柱を 1 体とした。試験体の一 覧を表-1に, 配筋状況を図-1に示す。柱断面寸法 は 300×300mm とし, CTA-6-1 試験体の袖壁はT字形 に面外方向両側に付け,長さ 200mm,幅75mm とした。 内蔵鉄骨は 4.5×50mm の平鋼を 4-40×40×3mm の山 形鋼で挟み込んですみ肉溶接してウエブとフランジと したものと, 充腹形の H 形鋼 (H-198×99×4.7×7mm) とした。また,格子形ウエブのピッチは 240mm とし た。 表-1に示すように実験のパラメータは炭素繊維

表一1 試験体一覧

		-			
試験 体名	補強 層数	鉄骨 タイプ	軸力	鉄骨曲 強度比	備考
CCA-3-0	0	格子形	0.3bD σ _B	0.38	無補強
CCA-3-1	1	格子形	0.3bD σ _B	0.38	標準試験体
CCA-6-1	1	格子形	0.6bD σ _B	0.38	高軸力
CCD-6-1	1	H形鋼	0.6bD σ _B	0.51	充腹形
CTA-6-1	1	格子形	0.6bD σ _B	0.38	直交壁付

図-1 試験体の配筋状況と補強方法

シートの補強層数,内蔵鉄骨形状,軸力,鉄骨曲げ強 度比,面外袖壁の有無とした。CTA-6-1 試験体の炭素 繊維シート補強は,図-1に示すように袖壁に φ8 の 孔を100mm ピッチに開け,それぞれの袖壁に CF アン カーを用いて柱部分を閉鎖型に補強した。この CF ア ンカーの炭素繊維量は炭素繊維シートの1.25倍とした。 コンクリートの材料試験結果を表-2に示すが,呼

*1 清水建設(株)技術研究所 生産技術センター 上席研究員 工博 (正会員)

*2 清水建設(株)技術研究所 研究開発支援センター 主査 工博 (正会員)

び強度 18N/mm², スランプ 18cm, 粗骨材の最大粒径 13mm とした。鉄筋は柱主筋として D13 (SD345)を 用い,フープ筋と袖壁縦横筋は D6 (SD295A)を用い た。これらの鉄筋の引張試験結果を表-3に示す。ま た,炭素繊維シートは高強度タイプの目付量 300g/m² を用いたが,そのカタログ値を表-4に示す。加力は 図-2に示すように反曲点が試験体の材軸方向中央部 に作用するような逆対称とし,正負交番の漸増載荷と した。

表-2 コンクリートの試験結果(実験前後の平均値)

重量	圧縮強度	割裂強度	ポアソン	ヤング係数
(g)	(N/mm^2)	(N/mm^2)	比	(kN/mm^2)
3592	22.5	2.28	0.218	26.0

	21113 00 51	5244 V.5244 AP14		- III /
	降伏強度	引張強度	破断伸び	やが係数
	(N/mm^2)	(N/mm^2)	(%)	(kN/mm^2)
D13	377	534	24.5	187
D6	306 ¹⁾	490	29.2	193
FB-4.5x50 ²⁾	365	499	38.0	—
L-40x40x3 ²⁾	345	457	36.0	—
H 7522	357	488	30.9	199
Hウエブ	304	466	23.6	205

表-3 鋼材の引張試験結果(3本の平均値)

1); 0.2%オフセット値, 2); ミルシート値

11 7	灰木喊框/	1.071約4至1		
口來	目付量	設計厚さ	引張強度	やゲ係数
印笛	(g/m^2)	(mm)	(N/mm^2)	(kN/mm ²)
FTS-C1-30	300	0.167	3400	230

出表繊維シートの物理的性質(カタログ値)

2.2 実験結果

実験から得られたせん断力-部材角関係を図-3に, 最終破壊状況を写真-1に,鋼材の降伏サイクルと炭 素繊維シートのひずみを表-5に示す。

無補強の CCA-3-0 試験体は初曲げひび割れが+1 サ イクル(部材角 1/400)時に柱左上に入った。+2 サイ クル(部材角 1/200)時にはせん断ひび割れが柱上部 中央に入り,柱上部の主筋が圧縮降伏した。+4 サイ クル(部材角 1/100)ではせん断ひび割れが多数発生 し,柱上部の鉄骨フランジが圧縮降伏した。また,フ ープ筋も降伏し,最大耐力 259kN を記録した。+6 サ イクル(部材角 1/67)になると,鉄骨フランジに添っ たせん断付着系のひび割れ幅が大きくなり,付着破壊 が顕著になったが,部材角 1/22.5 のピークでも 0.3 b D σ_B の軸力を保持していた。

CCA-3-1 試験体は+4 サイクル(部材角 1/100)で柱 上部の主筋が引張り降伏し,鉄骨フランジも圧縮降伏 した。-4 サイクルでは主筋の一部が圧縮降伏し,柱 上部で炭素繊維シートがコンクリートから剥離して浮 き始めた。+6 サイクル(部材角 1/67)ではフープ筋 が降伏し,最大耐力 293kN を記録した。その後の部材 角の進展で炭素繊維シートの浮きの範囲が広がり,部 材角 1/22.5 では炭素繊維シートが上下方向に割れ始め, その近傍のひずみは 7000 μ を超えていた。しかし,最 後まで最大耐力の 80%以上を保持しており,限界部材 角に達していなかった。

CCA-6-1 試験体は+2 サイクル (部材角 1/200) で柱 上下の主筋と柱下部の鉄骨フランジが圧縮降伏した。 +4 サイクル (部材角 1/100) では柱上部で炭素繊維シ ートのひずみが約 2000 µ となり, コンクリートから剥 離して浮き始め, フープ筋も降伏した。このときに最 大耐力 314kN を記録した。その後, 最終サイクルのピ ークに向かう途中の部材角 1/26 で柱上部の炭素繊維 シートが破断し, 急激な耐力低下を生じ, 主筋の顕著 な座屈が観察された。

CCD-6-1 試験体は+2 サイクル (部材角 1/200) で柱 上部の鉄骨フランジが圧縮降伏し, -2 サイクルで炭 素繊維シートがコンクリートから剥離して浮き始め, 柱上部の主筋が圧縮降伏した。+4 サイクル (部材角 1/100) では主筋の圧縮降伏と鉄骨フランジの圧縮降伏 が進展し,フープ筋も降伏した。+6 サイクル (部材 角 1/67) では最大耐力 373kN を記録した。-7 サイク ル (部材角 1/67) では鉄骨ウエブが引張降伏した。そ の後の部材角の進展で炭素繊維シートのひずみも進展 し,最終サイクル (部材角 1/22.5) でのひずみは7000 μ を超えていた。しかし,最後まで 0.6 b D σ B の軸力 を保持し,復元力特性はスリップ性状のない紡錘形状 を示していた。また,最大耐力の 80%以上を保持して おり,限界部材角に達していなかった。

CTA-6-1 試験体は+2 サイクル(部材角 1/200)で面 外袖壁上部縦筋が圧縮降伏し,-2 サイクルで柱上部 の主筋が圧縮降伏し,柱際の壁にひび割れが生じた。 +4 サイクル(部材角 1/100)では柱主筋の圧縮降伏が 進展し,柱上部の炭素繊維シートがコンクリートから 剥離して浮き始めた。このときに最大耐力 330kN を記

図-3 せん断カー部材角関係

+1/2

CCA-3-0 (無補強試験体)

CCD-6-1

CCA-3-1

CCA-3-1 (シートを剥がした状態)

CTA-6-1 (シートを剥がした状態)

CCA-6-1 (シートが破断した)

録した。+6 サイクル(部材角 1/67)では面外袖壁上 部のコンクリートが圧縮破壊し始め、フープ筋も降伏 した。+8 サイクル(部材角 1/50)になると柱上部が 膨らみ始めたが、最後まで 0.6 b D σ_Bの軸力を保持し ていた。**写真-1**には実験終了後に炭素繊維シートを 剥がした柱のコンクリートの状態を示す。柱コンクリ ートは上端部で一部圧縮破壊していたがせん断破壊系 の顕著なひび割れは観察されなかった。

3. 設計式の提案

3.1 既発表の実験結果

文献1)に示すSRC造柱の設計式は、表-6に示す

既発表の実験結果^{4),5)}を用いて適合性を検討していた。このときは鉄骨を鉄筋置換していたが、本報ではSRC造としての評価を行う。

3.2 最大耐力

各試験体の正加力の最大耐力を実験値と称し,計算 値との比較を表-7に示す。曲げ耐力の計算値は,S RC耐震診断基準に示されている一般化累化強度式を 用いて算定した。表-7の今回の提案式と比較する曲 げ耐力はこの式の値を用い,せん断耐力,せん断付着 耐力は提案式とし,3つの耐力の最小値を計算値とす る。また,SRC耐震診断基準の式を用いたせん断耐 力は参考として示した。

⇒+₩>/+ />	柱主筋		7. ~	フラ	フランジ		ウエブ		炭素繊維シート(μ)	
武舰伴名	上	下)—)	上	下	せん断	軸方向	初期歪	最大歪	
CCA-3-0	+2▽	×	+4	+4▽	×	+8	×	-	-	
CCA-3-1	+4	+6 \bigtriangledown	+6	+4▽	+6▽	+10	+8	89	7684	
CCA-6-1	+2▽	+2▽	+4	-4 \bigtriangledown	+2▽	-8	+8	100	6897	
CCD-6-1	-2▽	-4 🗸	+4	$+2\nabla$	+4▽	-7	-6	93	7089	
CTA-6-1	-2▽	+4▽	+6	-4▽	$+10\nabla$	×	×	110	7001	

表-5 鋼材の降伏サイクルと炭素繊維シートのひずみ

▽は圧縮降伏,×は未降伏(2000 µ 未満)

サイクルと部材角の関係は、1(1/400)、2,3(1/200)、4,5(1/100)、6,7(1/67)、8,9(1/50)、10(1/25)

表-6 文献 4)と文献 5)のデーター覧

	No.14)	No.24)	C21-OF0 ⁵⁾	C22-OF2 ⁵⁾	C23-OF4 ⁵⁾	C24-HF4 ⁵⁾
柱幅(mm)	350	350	350	350	350	350
柱せい(mm)	350	350	350	350	350	350
部材長さ(mm)	1400	1400	900	900	900	900
コンクリート強度(N/mm²)	22.6	23.9	19.8	19.8	19.8	19.8
主筋	4- φ 12+4- φ 9	4- φ 12+4- φ 9	12-D16	12-D16	12-D16	12-D16
主筋強度(N/mm ²)	366	366	453	453	453	453
フープ筋	2-φ4@110	2-φ4@110	2-D6@100	2-D6@100	2-D6@100	2-D6@100
フープ筋強度(N/mm ²)	461	461	329	329	329	329
炭素繊維シート厚さ(mm)	なし	0.167	なし	0.111	0.111	0.111
層数	なし	2	なし	2	4	4
鉄骨(1 体を除き,格子形)	十字形	十字形	一方向	一方向	一方向	充腹形
フランジ全断面積(mm²)	1920	1920	1920	1920	1920	1920
引張フランジ全断面積(mm²)	480	480	960	960	960	960
フランジ強度(N/mm²)	326	326	361	361	361	361
帯板断面積(mm²)	150	150	225	225	225	4.5mm
帯板ピッチ(mm)	250	250	80	80	80	連続
帯板強度(N/mm ²)	348	348	314	314	314	314
軸力(kN)	1098	1098	1000	1000	1000	1068

衣一/ 天歌和木と計昇値の比較							
試験		実験値	実験値 今回の提案式		SRC 耐震調	SRC 耐震診断基準	
体番	試験体名	(推定破壊	せん断	付着	曲げ	せん断	
号		モード)	耐力	耐力	耐力	耐力	
1	CCA-3-0	259(付着)	(203)	(192)	295	179	
2	CCA-3-1	293(付着)	350	257	295	233	
3	CCA-6-1	314(曲げ)	350	257	244/306*	243	
4	CCD-6-1	373(曲げ)	481	378	317/381*	378	
5	CTA-6-1	330(曲げ)	350	257	245/306*	243	
6	No.1	301(セン断)	(201)	(277)	242	210	
7	No.2	324(曲げ)	535	522	251	324	
8	C21-OF0	325(付着)	(282)	(276)	694	288	
9	C22-OF2	399(付着)	489	396	694	363	
10	C23-OF4	430(付着)	577	408	694	386	
11	C24-HF4	618(付着)	773	605	723	589	

宝段は用し計算体の比較

*;つりあい軸力時の曲げ耐力,()は無補強のため参考値 実験値は正加力の最大値、付着耐力はせん断付着耐力

3.3 せん断耐力

せん断耐力の計算値は日本建築学会の「SRC規準」 ⁶⁾に示された独立柱の簡略化終局せん断耐力式に準拠 した式(1)とする。この式は文献7)に示されたトラス機 構とアーチ機構の和によってRC部分の耐力を算定し

(図-4参照),これに鉄骨部分の耐力を単純累化する ものである。式(1)のRC部分第1項のトラスのコンク リートの圧縮束の角度は45度で固定とし、炭素繊維シ ートの補強効果を加味する。第2項のアーチの持分は 柱断面において、鉄骨の側面の分割されたコンクリー ト断面で評価する(図-4のハッチ部分)。鉄骨部分の 耐力は曲げ耐力とウエブの負担せん断力の小 さい値とし、文献3)に示された鉄骨の接合形 式による低減係数k。を乗じた。今回の11体 の試験体のうち, No.1 試験体が計算上せん断 で耐力が決まった。

$$\begin{array}{c} \begin{array}{c} \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ t \right\} \right\} \\ \left\{ t \right\} \\ \left\{ \begin{array}{c} \left\{ t \right\} \\ \left\{ s \right\} \\ \left\{ \begin{array}{c} \left\{ t \right\} \\ \left\{ s \right$$

3.4 せん断付着耐力

せん断付着耐力の算定は文献6)に示された独立柱の せん断付着耐力式に準拠した式(2)を用いる。図-5に 示すように付着割裂面は引張側のフランジ端に発生し, 式(2)の $_{r}Q_{\mu 2}$ はこの部分を横切るフープ筋+炭素繊維 シートの強度と分割されたコンクリート断面の強度の 和で抵抗すると考える。フープ筋と炭素繊維シートに よる等価せん断補強筋比はひび割れ幅を考慮して

0.6%以下とする。これにせん断耐力に用いたものと同 一の鉄骨の負担耐力を単純累化して算定する。

【付着耐力】

 $Q_{sub} = {}_{r}Q_{u2} + k_{s} \cdot {}_{s}Q_{u1} \qquad (N) \qquad \cdots \qquad (2)$ ${}_{r}Q_{u2} = b \cdot {}_{r}j \cdot (p'_{w} \cdot \sigma_{wy(s)} + F_{s} \cdot b'/b)$

3.5 靭性指標

部材の変形性能を評価する靱性指標(F値)は原則 としてSRC耐震診断基準に準拠している。この一例 として、曲げ柱の場合を式(3)に示す。今回の実験や文 献 4), 5)において,せん断付着の計算値で耐力が決ま った補強試験体は、急激な耐力低下をしていないこと より、F値の算定には曲げ耐力とせん断耐力を用いる ことにした。なお、今回の実験では軸力が 0.6 b D σ_B でも耐力低下が少なかったことより、柱の有効な軸耐 力 N_{cu}(N)は炭素繊維シートに囲まれているため全断 面で評価し、柱の軸力比 n_sによるF値が下限の一定と なる境界値を式(4)とした。

【靭性指標】

 $R_{mu} \ge R_{150}$ の場合

$$F = \frac{\sqrt{2 \cdot R_{mu} / R_{150} - 1}}{0.75 \cdot (1 + 0.05R_{mu} / R_{150})} \quad \text{interms} \quad F \le 3.5 \cdots (3)$$

$$N_{cu} = b \cdot D \cdot \sigma_B + a_g \cdot \sigma_y$$

$$n_s = N_s / N_{cu} = 0.6$$

$$(4)$$

Q_{su} : せん断耐力(N), $_{r}Q_{u1}$: RC 部分の耐力(N)
k。:鉄骨の接合形式による低減係数
$ $
Q_{su2} :鉄骨ウエブの負担せん断力(N)
M_0 :軸力零のときの鉄骨の曲げ強度(N·mm)
H_0 :柱の内法高さ (mm)
b :柱の幅(mm), j_t :外側主筋間距離(mm)
$\Sigma(p_w \sigma_w)$:フープ筋と炭素繊維シートのせん断補強応
力度 (N/mm ²)
θ :アーチ機構の角度, β : 2 Σ (p _w σ _w)·(b/b')/ σ _B \leq 1.0
b':鉄骨フランジ位置でのコンクリートの有効幅
(mm)
μ:=(0.5+b'/b)≦1.0,D:柱の全せい (mm)
$\sigma_{\scriptscriptstyle B}$:コンクリートの圧縮強度 (N/mm ²)
sA _w : せん断力が作用する方向の充腹形鉄骨ウエブの
断面積 (mm^2), ${}_s\sigma_y$:鉄骨の降伏点強度 (N/mm^2)
A_d :鉄骨ラチス材の断面積 (mm ²)
arphi:鉄骨ラチス材の材軸となす角度(°)
sa_w : せん断力が作用する方向の格子形ウエブの断面
積(mm ²)
b_w :帯板の幅 (mm), s_w :格子形ウエブのピッチ (mm)
Q_{sub} :せん断付着耐力 (N) , $_{r}Q_{u2}$:RC 部分の耐力 (N)
, <i>j</i> :RC 柱部分の応力中心間距離で 7・ _r d/8,
_r d:RC柱部分の有効せい(mm)
<i>p</i> ' _w : 等価せん断補強筋比≦0.6%
$\sigma_{_{\scriptscriptstyle Wy(s)}}:$ せん断補強筋の引張強度(N/mm ²)
$F_s := \min(0.15 \cdot \sigma_B, 2.25 + 4.5 \cdot \sigma_B / 100) \exists \checkmark 2 ? ! \cup \neg ? : O$
せん断強度 (N/mm ²)
R _{mu} :曲げ終局時層間変形角
R ₁₅₀ :標準降伏時層間変形角 1/150
$_{s}a_{g}$:鉄骨の全断面積,非充腹のウエブは除く (mm ²)
N_s :柱の地震時軸力 (N)

4. 提案式の適合性

表-7に示す計算値において曲げ耐力は,補強効果 を無視した文献3)の式を,せん断耐力とせん断付着耐 力は,3.3節,3.4節に示した式を用いている。これに 対して実験での最大値と推定破壊モードを用いて分類 し,せん断で耐力が決まったと考えられる試験体と曲 げで耐力が決まったと考えられる試験体について適合 性を調べたものが図-6である。この図によると,せ ん断で耐力が決まった試験体は1体だけであるが,曲 げで耐力が決まった試験体も含めて安全側の評価とな っていた。同様にせん断付着で耐力が決まったと考え られる試験体について適合性を調べたものが図-7で ある。6体の試験体が該当し、C22-OF2試験体の実験 値が僅かに計算値を上回っていたが、ほぼ妥当な評価 となっていた。靭性指標については、実験値と計算値 を表-8に、その適合性を図-8に示す。ここでは、 軸力が釣合軸力より大きい場合は、曲げ耐力算定に釣 合軸力を用い、その値でF値を求めている。全ての試 験体の実験値は計算値を上回り、安全な評価となって いた。

図-6 せん断耐力と曲げ耐力の実験値と計算値の比較

図-7 せん断付着耐力の実験値と計算値の比較 表-8 靭性指標の実験値と計算値

試験		実験値		計算値	(F値)
体番	試験体名	限界部	F値	今回の	SRC 耐震
号		材角	цШ	提案式	診断基準
1	CCA-3-0	1.56%	2.29	(1.27)	1.27
2	CCA-3-1	4.44%	>3.50	2.70	1.27
3	CCA-6-1	2.48%	2.85	1.66	1.27
4	CCD-6-1	4.44%	>3.50	2.99	1.27
5	CTA-6-1	3.82%	3.35	1.66	1.27
6	No.1	1.69%	2.39	(1.27)	1.27
7	No.2	3.92%	3.38	3.29	2.66
8	C21-OF0	1.50%	2.24	(1.27)	1.27
9	C22-OF2	3.00%	3.08	1.27	1.27
10	C23-OF4	4.00%	3.40	1.27	1.27
11	C24-HF4	5.00%	>3.50	1.90	1.27

() は無補強のため参考値

図-8 靭性指標の実験値と計算値の比較

5. まとめ

SRC造独立柱4体,面外袖壁付き柱1体について 炭素繊維シートによる補強実験を行った結果,以下の 知見を得た。

- 炭素繊維シート補強した独立柱は 0.6 b D σ_B の高 軸力でもSRC耐震診断基準に定められた値以上 の変形性能と軸力保持能力を有している。
- 面外に袖壁が付いた柱は独立柱より耐力と変形性 能が向上していた。
- 充腹形H形鋼を内蔵した袖壁付き柱は,構造性能が 良かった。
- 4) 提案した耐力式と靭性指標式は今回の実験および
 既往のデータも含めて安全側に評価することができた。

参考文献

- SR-CF 工法による鉄筋コンクリート柱の設計施 工指針(大臣認定資料),1998.7
- 炭素繊維シート端部の定着材料「CFアンカー」, 建設技術審査証明報告書,(財)土木研究センター, 2006.11
- 3) (財)日本建築防災協会:2009年改訂版既存鉄骨 鉄筋コンクリート造建築物の耐震診断基準・同解 説,2010.11
- 中澤春生,称原良一:格子形SRC柱の耐震補強 に関する実験報告書(耐震性能評価方法と補強効 果の検討),清水建設技術研究所資料,1998.10
- 5) 宮内靖昌,東端泰夫,毛井崇博,椿英顯:鋼板およびCFRPを用いて補強されたSRC柱の耐力と変形性能,コンクリート工学年次論文報告集, Vol.19, No.2, 1997.6
- 6) (社)日本建築学会:鉄骨鉄筋コンクリート構造
 計算規準・同解説,2003.5
- 7) (社)日本建築学会:鉄筋コンクリート構造建物の靱性保証型耐震設計指針・同解説,2006.4