論文 定着部腐食を有する RC はりの力学性能と補修方法に関する研究

酒井 舞*1・松本 浩嗣*2・森 誠*3・二羽 淳一郎*4

要旨:本研究では、定着部を含み腐食した RC はりの断面修復工法による補修効果を検討するため、鉄筋の 定着形状、腐食量、補修の有無、補修材の種類を実験パラメータとして、鉄筋定着部の引抜き試験および RC はりの載荷試験を行った。実験の結果、ビニロン繊維とシリカフュームを併用した補修材により、定着性能 を健全時と同程度まで回復できた。特に、曲上げ形の定着部を有する RC はりにおいては、腐食により定着 強度が著しく低下し、定着破壊を呈したが、補修により曲げ引張破壊に移行した。また、RC はりの各断面に おける圧縮合力の作用位置の高さ変化から、腐食や補修によるアーチ機構の形成段階を捉えることができた。 キーワード:補修、断面修復工法、鉄筋腐食、定着部、RC はり、付着性能、アーチ機構

1. はじめに

近年,高度経済成長期に建設された鉄筋コンクリート (RC)構造物の多くがその設計耐用年数を迎えようとし ており,鉄筋腐食,アルカリ骨材反応,凍害等の劣化問 題が顕在化してきている。このような劣化した構造物に 対しては,使用性能・美観の保持,再劣化の防止といっ た観点から補修が行われているが,補修した RC 構造物 の構造性能に関する研究は十分になされていないのが現 状である。

一方, RC 構造物が十分な構造性能を発揮するために は、定着の確保が重要であることが、既往の研究によっ て示されている¹⁾。実構造物に目を向けると, RC はり部 材における劣化はスパン内に限らず、定着部にも同様に 起こり得る。しかし、定着部に損傷を有する部材の耐荷 性能に関する研究は十分ではない。また、その補修方法 を開発することも急務となっている。

そこで本研究では、定着部腐食を有する RC はりの力 学性能を把握すること、またその補修方法を開発するこ とを目的に、鉄筋の定着形状、腐食量、補修の有無、補 修材の種類をパラメータとして,腐食を有する鉄筋定着 部の引抜き試験ならびに RC はりの載荷試験を行った。

2. 試験概要

2.1 供試体概要

本研究で行った実験は、2 つのシリーズで構成されて いる。シリーズ1は鉄筋定着部の引抜き試験、シリーズ 2はRCはりの載荷試験である。図-1に、鉄筋定着部の 引抜き試験の概要図を示す。定着部の引抜き試験におい ては、実構造物におけるRCはり定着部を模擬するため、 はり型の載荷試験治具を用いた。載荷点と支点の間に働 く曲げモーメントにより、試験区間の鉄筋に引抜き力が 作用する。図-2に定着部供試体の詳細を、表-1に定 着部供試体の諸元を示す。定着形状は直線形および曲上 げ形とした。また、どちらの定着形状に対しても供試体 端から 50mmのアンボンド区間を設けており、定着長は それぞれ 350mm、447mmとなっている。供試体の側面、 下面のかぶり厚はそれぞれ 34mm、42mm である。表-2 に、供試体作製に用いたコンクリートの配合を示す。セ

メントには早強ポルトランドセメントを用いた。また、 **表-3**に鉄筋の力学特性を示す。

図-3にRCはり供試体概要を,表-4にRCはり供試体の諸元を示す。なお、せん断補強筋はスパン内、定着 部どちらにも配置されていない。定着形状は直線形およ び曲上げ形であり、定着長はそれぞれ 350mm、507mm とした。曲上げ形の定着長は定着部供試体とは異なる。 また、RC はり供試体の側面、下面のかぶり厚は定着部 供試体と同一とし、それぞれ 34mm、42mm とした。

RC はり供試体は健全な状態で、せん断余裕度(せん 断耐力/曲げ破壊時のせん断力)が 0.60、斜め引張余裕度

(計算上のせん断圧縮耐力/計算上の斜め引張耐力)が 0.66 であり、斜め引張破壊を呈するように設計した。な お、斜め引張耐力 V_c の算定には式(1)²⁾、せん断圧縮耐力 V_{cc} の算定には式(2)³⁾を用い、両者のうち大きい方をせん 断耐力とした。

$$V_{c} = 0.2 \cdot f_{c}^{\prime \frac{1}{3}} (\frac{10^{3}}{d})^{\frac{1}{4}} p_{t}^{\frac{1}{3}} (0.75 + 1.4 \frac{d}{a}) \cdot b_{w} d (1)$$
$$V_{cc} = \frac{0.244 f_{c}^{\prime \frac{1}{3}} b_{w} d(1 + 3.33 r/d) (1 + p_{t}^{\frac{1}{2}})}{1 + (a/d)^{2}}$$
(2)

ここで、 f'_c はコンクリートの圧縮強度、dは有効高さ、 p_t は引張鉄筋比、aはせん断スパン長、 b_w ははりの幅、rは支承板の幅で 50mm とした。

2.2 載荷試験および計測項目

定着部の引抜き試験における計測項目は、鉄筋の軸方 向ひずみ、自由端すべりである。ひずみゲージは、アン ボンド端から約 50mm の間隔で貼付し、アンボンド区間 にも1箇所貼付した。なお、曲上げ形定着部供試体にお いては,鉄筋の曲げ内側および外側でひずみを計測した。

図-4に, RC はりの載荷試験方法を示す。計測項目は, 荷重,試験体中央および支点部の変位,鉄筋の軸方向ひ ずみ,およびコンクリートのひずみである。コンクリー トのひずみは,図-4に示すように,はり中央から134, 200.5,267,333.5,400mmの各断面において,はり上面 から10,30,50,70,90mmの位置にコンクリートゲー ジを貼付して計測した。

なお、定着部の引抜き試験は、アンボンド区間におけ る鉄筋の降伏を確認し、試験を終了した。また、どちら の載荷試験においても、載荷には油圧式 2000kN 万能試 験機を用いた。支点と供試体の間には減摩パッドを挿入 することで、支点の拘束による水平反力を除去した。

2.3 腐食促進試験方法

本研究では,鉄筋に腐食を導入するため,材齢6日目 以降から電食試験を実施した。図-5にRCはりの電食 試験の概要図を示す。電食試験では腐食を導入する軸方

表-1 定着部供試体諸元

軸方向鉄筋断面積	引張鉄筋比	幅	有効高さ	
(mm^2)	(%)	(mm)	(mm)	
397.2	1.06	150	250	-

表-2 コンクリートの示方配合

G_{max}	W/C	s/a	単位量(kg/m ³)					
(mm)	(%)	(%)	W	С	S	G	AE	
20	60	45	174	291	808	1005	0.436	
G _{max} : 粗骨材最大寸法, W/C:水セメント比, s/a:細骨材率,								

W:水, C:セメント, S:細骨材, G:粗骨材, AE:AE 減水剤

表-3 鉄筋の力学特性

供試体 シリーズ	種類	降伏強度 (N/mm ²)	弹性係数 (kN/mm ²)	
定着部	D16 SD295	341	197	
RCはり	D16 SD390	463	182	

表-4 RC はり供試体諸元

項目	記号	値
軸方向鉄筋断面積(mm²)	A_s	397.2
引張鉄筋比(%)	p_t	1.77
幅 (mm)	b_w	150
せん断スパン長(mm)	а	400
有効高さ(mm)	d	150
せん断スパン有効高さ比	a/d	2.67

図-4 RC はりの載荷試験方法

向鉄筋を陽極,ステンレス板を陰極として,電解質溶液 に3%NaCl水溶液を用いた⁴⁾。なお,電解質溶液の水位 は定着形状が直線の場合は供試体の底面付近,定着形状 が曲上げ形の場合は供試体の上面付近とし,曲上げ部分 の定着部鉄筋にも同様に腐食が導入されるようにした。 鉄筋の質量減少率は,電食試験時の積算電流量を供試体 ごとに管理することで調節した。

2.4 補修方法

本研究では、断面修復工法⁵により補修を行った。一 般的な断面修復工法の施工フローに基づき、著者らの既 往の研究⁶と同様,以下に示す手順で断面修復を行った。

(1) 腐食領域のコンクリートの除去

実構造物における断面修復工法においては、かぶりコ ンクリートのはつり後、腐食生成物を取り除くため、腐 食した鉄筋を完全に露出させる必要がある。本研究では、 実際のはりの補修を模擬するため、鉄筋と母材コンクリ ートとの間に 20mm 以上の空きを確保した。

(2) 腐食生成物の除去

露出した鉄筋を10%クエン酸水素二アンモニウムに常 温で2日間浸漬することで、腐食生成物を除去した。

(3) プライマー処理

母材と補修材の界面の接着性を確保するため、補修材 による埋戻しの24時間前に,はつり面にプライマーを塗 布した。

(4) 埋戻し

電食試験終了後,埋戻しを行った。埋戻し材には,高 強度モルタル(配合名:H),および普通モルタルのセメン ト量の10%をシリカフュームに置換し,ビニロン繊維を 1.5%混入したもの(SF)の2種類を用いた。なお,曲上 げ形定着部供試体および RC はり供試体の補修には全て 配合 SF を用いている。表-5 に本研究で使用した埋戻し 材の配合を,表-6 にビニロン繊維の物性値を示す。な お,埋戻しは,供試体を上下逆に設置し,型枠を組み, 補修材を流し込むことにより行った。

2.5 実験ケース

表-7に、実験ケースを示す。定着部の引抜き試験(シ リーズ 1)の実験パラメータは、定着形状、腐食量、補 修の有無、補修材の種類であり、RCはりの載荷試験(シ リーズ 2)の実験パラメータは、定着形状、腐食量、補 修の有無である。

3. 電食試験結果

3.1 供試体の腐食ひび割れ状況

図-6a)に、一例として、曲上げ形定着部を有する RC はり供試体 HC8 の腐食ひび割れ性状を示す。全ての定着

表-5 埋戻し材の配合

配合	W/B		Ĕ	単位量(kg/m ³)			
名	(%)	W	С	SF	S	PVA	SP
Н	20	225	1011	112	1006	—	33.7
SF	40	274	616	68	1147	19.5	10.3
W/B: 水結合材比, SF: シリカフューム,							

PVA: ビニロン繊維, *SP*: 高性能減水剤

表-6 ビニロン繊維の物性値

直径	密度	引張強度	弾性係数	繊維長
(mm)	(g/cm^3)	(N/mm^2)	(kN/mm ²)	(mm)
0.66	1.3	860	23	30

図-6 ひび割れ図

部供試体,直線形および曲上げ形定着部を有する RC は りにおいて,軸方向鉄筋に沿ったひび割れが観察された。

3.2 鉄筋腐食状況

鉄筋の腐食を定量的に評価するため,式(3)に示す質量 減少率*C*(%)を用いた⁴⁾。

$$C = \frac{\Delta w}{w} \times 100 \tag{3}$$

ここで、 Δw は健全な鉄筋と腐食した鉄筋の単位長さ あたりの質量差 (g/mm)、w は健全な鉄筋の単位長さあ たりの質量 (g/mm) である。

各供試体における鉄筋の質量減少率を算出するため, 載荷試験終了後,供試体を解体して鉄筋を取り出した。 表面に付着した腐食生成物の除去は,著者らの既往の研 究^のと同様,以下に示す手順で行った。

腐食供試体については、鉄筋を取り出した後、一次処 理として、取り出した鉄筋の表面をブラシで清掃し、そ の後、二次処理として JCI-SC1「コンクリート中の鋼材 の腐食評価方法」に則って⁷⁾、60℃のクエン酸水素二ア ンモニウムに2日間浸漬した。

補修供試体については、2.4(2)の処理により腐食生成 物は既に除去されているため、供試体から鉄筋を取り出 した後は、鉄筋表面に付着したモルタルを除去する以外 の処理は行っていない。

これらの処理を行った後,鉄筋を 50mm 間隔で分割し, 各鉄筋片の長さと質量を測定した。このようにして得ら れた単位長さあたりの質量を,健全な鉄筋と比較するこ とで質量減少率を算出した。表-7 に,各供試体の試験 区間全体における質量減少率の平均値を示す。

		実験パラメータ		材料の力学特性		載荷試験結果		
シリーズ	供試休名	定差	質量	圧縮強度(N/mm ²)		破壞	最大引抜き力	
• • •		形状	減少率 (%)	の種類	コンクリート	モルタル	モード	または最大荷重
			(%)				hat belander the	(KIN)
	A-SN		0		35.5		鉄筋降伏	67.7
	A-SC7		6.8		33.4		鉄筋降伏	67.7
	A-SC9	古線	8.8		32.1		付着割裂	32.2
定着部	A-SC10	山水	10.2		32.1		付着割裂	34.0
供試体	A-SC6H		5.8	Н	13.4	107.1	鉄筋降伏	67.7
(シリーズ1)	A-SC14SF		13.9	SF	36.2	39.0	鉄筋降伏	67.7
	A-HN	曲上げ	0		31.8		付着割裂	56.6
	A-HC14		14.0		37.3		付着割裂	45.1
	A-HC14SF		*	SF	33.0	48.6	鉄筋降伏	67.7
	SN		0		32.4		斜め引張	75.3
RCはり	SC5	直線	5.3		37.2		せん断圧縮	81.9
供試体	SC6SF		6.0	SF	35.4	33.1	曲げ引張	123.3
(シリーズ2)	HC8	ましょぎ	8.0	_	41.1	_	定着	110.2
	HC8SF	一上の	7.6	SF	44.4	45.7	定着	107.0

表-7 実験ケース、材料の力学特性および載荷試験結果

*: A-HC14SF の質量減少率は不明であったが, A-HC14 と同じ積算電流量を与えているため, 同程度の腐食量であると考えられる。

4. 鉄筋定着部の引抜き試験結果(シリーズ1)

4.1 最大引抜き力

表-7 に、コンクリートおよび補修モルタルの力学特 性、および載荷試験結果を示す。なお、以降の議論では、 アンボンド区間に貼付したひずみゲージの測定値から鉄 筋の引抜き力を算出している。すなわち、ひずみが降伏 ひずみよりも小さい場合にはひずみに弾性係数および断 面積を乗じた値、ひずみが降伏ひずみよりも大きい場合 には降伏強度に断面積を乗じた値を引抜き力とした。

直線形腐食供試体 A-SC7 は鉄筋降伏により終局した が, A-SC9, A-SC10の供試体は付着割裂破壊を呈し, 最 大引抜き荷重は健全供試体 A-SN の半分程度まで低下し た。すなわち, 質量減少率 8%前後で, 定着強度が急激 に低下することが分かる。一方, 直線形補修供試体 A-SC14SF は鉄筋降伏により終局した。14%程度の腐食を 導入したことで, 定着強度は健全時の半分以下に低下し たと考えられるが, 補修により定着強度が健全時と同じ 程度まで回復したことがわかる。

曲上げ形健全供試体 A-HN においては,図-6b)に示す ような付着割裂破壊を呈した。直線形よりも定着長が長 いにもかかわらず,曲上げ形の方が定着強度が小さくな った。また,曲上げ形腐食供試体 A-HC14 は,腐食の導 入により,最大引抜き荷重がさらに低下した。しかし, 同程度の腐食量を有すると考えられる A-HC14SF は鉄筋 降伏により終局に至っており,断面修復により定着強度 が健全時を上回るレベルまで回復したことがわかる。

4.2 ひずみ分布

図-7に、曲上げ形定着部供試体 A-HN, A-HC14SF におけるひずみ分布の推移を示す。なお、ここでは、引抜

き荷重 16kN 毎の曲げ内側,曲げ内側および外側の平均のひずみ分布の推移を示している。

曲上げ形健全供試体 A-HN においては、曲げ加工開始 点近傍で、曲げ内側のひずみが急激に増大していること がわかる。曲げ加工部が元の形状の直線形に戻ろうとし た結果、曲げ内側に大きな引張ひずみが生じたと考えら れる⁸⁾。

4.3 付着応力分布

付着応力 τ (N/mm²) を,式(4),式(5)で算出した。

$$r(x) = \frac{d\mathcal{E}(x)}{dx} \cdot \frac{ED}{4}$$
(4)

$$\varepsilon(x) = a(350 - x)^b \tag{5}$$

ここで、xはアンボンド端からの距離(mm)、 $\varepsilon(x)$ は 計測したひずみの近似式、aおよびbは最小二乗法で決 まる定数、Eは健全時の軸方向鉄筋の弾性係数(N/mm²)、 Dは 3.2 節で得られた各区間の質量減少率をもとに算出 した腐食後の鉄筋径(mm)である。図-8に、各供試体 の 16kN 毎の付着応力分布の推移を示す。

図-8 に示すように、シリカフュームおよびビニロン 繊維を混入したモルタルで補修した供試体 A-SC14SF は、 高強度モルタルにより補修した供試体 A-SC6H と同程度 まで付着応力が増大した。

4.4 すべり量の推移

直線形定着鉄筋のすべり量 S(x)を,式(6)で算出した。

$$S(x) = \int_{x}^{350} \varepsilon(x) dx + S_{350}$$
(6)

ここで、*S*₃₅₀は自由端でのすべり(mm)である。図-9に、アンボンド端からの距離が 50mm の位置における

図-7 ひずみ分布(シリーズ 1, 曲上げ形) 図-8 付着応力分布(シリーズ 1, 直線形補修) 図-9 すべり量の推移

すべり量 S(50)の推移を示す。

供試体 A-SC14SF においては、すべり量が鉄筋降伏時 において、健全供試体 A-SN の半分程度まで抑えられた。 高強度モルタルにより補修した供試体 A-SC6H のすべり 量が最も小さいが、実構造物においては、収縮によるひ び割れの発生が懸念される。これに対して、ビニロン繊 維およびシリカフュームを混入したモルタル (SF) によ る補修は最も実用的と考えられることから、RC はりの 補修 (シリーズ 2) には配合 SF を用いることとした。

5. RC はりの載荷試験結果(シリーズ 2) 5.1 破壊モードおよび最大荷重

表-7にRCはりのコンクリートおよび補修モルタル の力学特性と載荷試験結果,図-10に荷重-変位関係を 示す。斜め引張破壊を呈するように設計した RC はりに 腐食を導入した直線形供試体 SC5 においては,破壊モー ドがせん断圧縮型に移行し、せん断耐力が 9%程度増大 した。これは、軸方向鉄筋の腐食によりアーチ機構が形 成されたためと考えられる⁴⁾。また,直線形補修供試体 SC6SFにおいては、破壊モードが曲げ引張に移行し、ア ーチ機構が形成され、せん断圧縮耐力が少なくとも60% 以上増大したことが分かる。一方,曲上げ形定着部を有 する RC はりに腐食を導入した供試体 HC8 においては, 定着破壊を呈した。これは、軸方向鉄筋の腐食により、 せん断耐力が増大したものの,腐食により引抜き耐力が 低下した定着部に大きな引抜き力が作用したためと考え られる。しかし、曲上げ形補修供試体 HC8SF は鉄筋降 伏後に、荷重一定のまま変位が増大し、その後定着破壊 を呈した。腐食供試体 HC8 は、荷重一定のまま変位が増 大するような現象は確認されなかったことから、鉄筋降 伏前に定着破壊したと考えられる。以上より、補修によ り鉄筋の定着強度が向上し、鉄筋の降伏を生じさせるこ とができたものの、降伏後の定着性状に難があるものと 考えられる。これを解決するためには、今後、鉄筋降伏 後の定着性状に関する検討が必要である。

5.2 圧縮合力の作用位置

貼付したコンクリートゲージの測定値から圧縮合力お よびその作用位置を算出した。圧縮合力は,測定で得ら れたひずみ分布を,各測定区間で台形近似してはり上面 からひずみが0となる位置まで積分することで算出した。 なお,はり上面から90mmの位置でもひずみが0より大 きい場合には,はり上面から70,90mmの位置における ひずみの直線近似により,斜めひび割れの通過位置にお けるひずみを算出し,ひび割れの通過位置までを積分し た。また,はり上面におけるひずみは,はり上面から10, 30mmの位置におけるひずみの直線近似により算出した。

図-11 に、各断面における圧縮合力の作用位置の推移 を示す。健全供試体 SN においては、載荷初期では、各 断面における圧縮合力の作用位置はほぼ同じ高さである。 しかし、斜めひび割れ発生(70kN)後に、圧縮合力の作用 位置が、支点近傍で急激に低下している。すなわち、圧 縮力の流れが斜めひび割れ発生前後で変化していること がわかる。一方、曲上げ形腐食供試体 HC8 においては、 斜めひび割れ発生(72kN)前から圧縮合力の作用位置が支 点近傍で徐々に低下している。これは軸方向鉄筋に沿っ た腐食ひび割れの存在により、軸方向鉄筋とコンクリー トの付着力が低下し、アーチ機構が形成されたためと考 えられる。直線形腐食供試体 SC5 においては、ひずみの 計測を行っていないが、曲上げ形と同様にアーチ機構が 形成されることで、せん断耐力が増大したと考えられる。 直線形補修供試体 SC6SF においては、目視で補修材-

母材コンクリート間の界面にひび割れの発生を確認した 52kN前後で、支点近傍において圧縮合力の作用位置が低 下している。これは、載荷に伴い発生した界面のひび割 れにより、界面においてすべりが生じ、補修材と軸方向 鉄筋が一体となって引張材となったことで、腐食時と同 様にアーチ機構が形成されたためと考えられる。

6. まとめ

本研究では、定着形状、腐食量、補修の有無、補修材 の種類を実験パラメータとして、RC はりの載荷試験お よび RC はりの定着部を模擬した供試体のはり型引抜き 載荷試験を実施した。

以下に、本研究で得られた結論を述べる。

- 埋込み長さ 350mm の直線形定着部供試体は鉄筋降 伏により終局したが、埋込み長さ 447mm の曲上げ 形定着部供試体は付着割裂破壊を呈した。
- 2) 腐食による質量減少率 7%の直線形定着部供試体は 鉄筋降伏により終局したが、質量減少率 9,10%の ものは、急激に定着強度が低下し、付着割裂破壊を 呈した。
- 3) シリカフュームおよびビニロン繊維を混入した補修 材を用いて、腐食による質量減少率14%の鉄筋定着 部を断面修復したところ、付着応力が高強度モルタ ルで補修したものと同程度まで回復し、すべり量を 健全供試体の半分程度まで抑えられた。
- 4) 腐食による質量減少率14%の曲上げ形定着部供試体 は付着割裂破壊を呈したが、補修を施した供試体は 鉄筋降伏により終局し、定着強度が回復した。
- 5) 斜め引張破壊を呈するように設計した直線形定着部 を有する RC はりに腐食による質量減少率 5%を導 入したところ、破壊モードがせん断圧縮に移行し、 せん断耐力が 9%程度増大した。また、補修を施し た供試体はせん断耐力がさらに増大し、破壊モード が曲げ引張型に移行した。
- 6) 曲上げ形定着部を有する RC はりに腐食による質量 減少率 8%を導入したところ、アーチ機構が形成さ

れ, せん断耐力が増大したものの, 定着破壊が生じ た。一方, 補修した供試体は定着強度が改善された ことにより, 鉄筋降伏後に定着破壊を呈した。

7) コンクリートの圧縮部におけるひずみの測定値から 各断面における圧縮合力の作用位置を算出した。その結果、腐食および補修によるアーチ機構の形成段 階の違いを捉えることができた。

謝辞

本研究で使用した軸方向鉄筋は東京鐵鋼株式会社より, 提供して頂きました。ここに謝意を表します。

参考文献

- 阿部仁ほか:鉄筋の定着不良を有する RC 梁のせん 断破壊性状の評価,コンクリート工学年次論文集, Vol. 27, No. 2, pp. 337-342, 2005.7.
- 二羽淳一郎:コンクリート構造の基礎,数理工学社, 2006.2
- 二羽淳一郎: FEM 解析に基づくディープビームのせん断耐荷力算定式,第2回 RC 構造のせん断問題に対する解析的研究に関するコロキウム論文集, pp. 119-126, 1983.10.
- 4) 角田真彦ほか:局所的な鉄筋腐食を有する RC はり 部材のせん断耐荷性能に関する研究,コンクリート 工学年次論文集, Vol. 30, No. 3, pp. 1705-1710, 2008.7.
- 5) 土木学会:表面保護工法 設計施工指針(案)〔工種 別マニュアル編〕,コンクリートライブラリー119, pp. 189-266,土木学会,2005.4.
- 6) 酒井舞ほか:断面修復工法により補修した腐食を有 する鉄筋定着部の力学性能,コンクリート工学年次 論文集, Vol. 33, No. 2, pp. 601-606, 2011.7.
- 7) 日本コンクリート工学会:JCI 規準集(1977-2002), pp. 91-94, 2004.
- 島弘,川竹裕哉:フック定着部における鉄筋の軸外 変形とすべり,土木学会論文集 E, Vol. 65, No. 3, pp. 364-377, 2009.8.