論文 アルカリシリカ反応によるコンクリート内部ひび割れの評価

上原 伸郎^{*1}·幸左 賢二^{*2}·草野 昌夫^{*3}·久保 佑太^{*4}

要旨:ASR 供試体の長期暴露を行い、コンクリートの外観および内部ひび割れを詳細に目視観察するとと もに、棒形スキャナを用いた内部観察手法の精度、適用性について評価した。ASR 供試体の内部では、骨 材粒子の形状に沿う短いひび割れが特徴的に認められた。ASR 促進添加剤として NaCl と NaOH を用いた2 体の比較から、外観ひび割れ性状および内部ひび割れの発生形態は、ほぼ同様と判断されたが、内部ひび割 れの発生本数が異なる結果となった。小径コアと棒形スキャナによる ASR 内部観察では、削孔位置の違い に注意を要するとともに、ひび割れ端部の判定に起因する誤差が留意点として挙げられた。 キーワード: ASR, NaCl, NaOH, 内部ひび割れ, 棒形スキャナ

1. はじめに

アルカリシリカ反応(以下, ASR)は、コンクリート 構造物の内部に深刻なダメージを与えることは少ないと されてきた。しかし近年,構造物内部においても幅2.0mm におよぶ顕著なひび割れが確認された事例 ¹⁾や、せん断 補強筋曲げ加工部などで鉄筋が破断した事例²⁾など,配 筋内部で生じた著しい劣化現象が報告されている。ASR 構造物の劣化程度に関する一次判断は、コンクリート表 面に発生したひび割れなどの目視観察が基本となる。し かしながら、表面におけるひび割れの生成要因はASR 反 応自体によるものではなく、内部から膨張力が作用する ことによる曲げひび割れであるとの知見³⁾が示されてい ることなどを勘案すると、表面性状と内部性状は必ずし も連続的につながったものではないと言える。

したがって本稿では, 配筋条件下で長期暴露試験に供 した ASR 供試体を検討対象とし, 配筋内に位置する内部 コンクリートのひび割れ性状を詳細に観察するとともに, 外観におけるひび割れ性状との比較などから, ASR によ って内部コンクリートに生じるひび割れの特徴分析を行 った。なお、検討対象とした2体のASR供試体には、促 進添加剤として塩化ナトリウム (NaCl) と水酸化ナトリ ウム (NaOH) の 2 種類をそれぞれ添加し、両者の比較 も行った。さらに,内部コンクリートの観察手法として, 棒形スキャナを用いた小径コア内壁の展開画像による観 察を行い,当該手法による ASR 内部ひび割れの観察精度 と適用性について考察を加えた。

2. 実験概要

2.1 供試体形状および配合

図-1に供試体形状を示す。供試体は、ASR による損 傷及び曲げ加工部での鉄筋破断が生じた建設後 20 年以

*1 住友大阪セメント株式会社 セメント・コンクリート研究所(正会員) *2 九州工業大学 工学部建設社会工学科 教授 Ph.D. (正会員) *3 住友大阪セメント株式会社 セメント・コンクリート研究所 工修(正会員) *4 九州工業大学 工学部建設社会工学科

上経過した橋脚梁を例に、1/8 スケールのものとした。 軸方向鉄筋は、実橋の引張主鉄筋比と等しくなるように 1側面当たりD19鉄筋を4本配置することとし、さらに、 帯鉄筋の曲げ加工部に作用する膨張力を等価とするため, 各辺の軸方向鉄筋比が同一となる正方形断面の供試体と した。帯鉄筋としては3本(D10×1, D16×2)を図に示 す通りに配置した。なお、かぶり厚は20mmである。

コンクリート配合を表 - 1に示す。セメントには普通 ポルトランドセメントを使用し,反応性骨材には,細骨 材に長崎県産砕砂, 粗骨材には北海道産砕石をそれぞれ 使用した。なお、反応性骨材の岩種はいずれも安山岩で ある。

また,ASRの促進を目的として、コンクリート中にお ける等価アルカリ量が 8kg/m³となるようにアルカリ添 加剤を添加した。

					<u> </u>			
Γ	水	セメント	細帽 反応性	}材 非反応	粗情 反応性	骨材 非反応	促 進 添加剤	混和剤
Γ	175	381	431	287	509	509	11.6	1.14
	20	D1		340	610			J
	※帯	鉄筋比(0.41%		X			\$

表-1 コンクリート配合 単位量(kg/m³)

D16

D10

図-1 供試体形状

340

(単位:mm)

図-2 コア削孔位置

なお,筆者らは,ASR 劣化程度をパラメータとした一 連の実験を行っており,今回は,アルカリ促進剤にNaCl を用いた供試体(以後,case6 供試体),およびNaOH を用いた供試体(以後,case8 供試体)について報告する。

2.2 コア削孔位置

図-2にコア削孔位置を示す。図には暴露供試体の設置方位を併記している。本研究では、供試体内部のひび割れを目視によって観察するために、比較的大型の φ 190mm×L525mmのコアを供試体断面の中心部分から採取した。また、case8 供試体については、棒形スキャナによって内部観察を行うための φ 25mm コアを図に示す供試体南面から9本(L=145mm)削孔した。なお、棒形スキャナ用のコア孔は、画像撮影後に軸方向に切断し、コア側面の目視観察も行った。

2.3 ひび割れ計測方法

ひび割れの目視観察では、供試体外観および内部とも に、クラックスケールによりひび割れ幅を計測した。観 察対象とするひび割れ幅は、クラックスケールの最小目 盛である 0.05mm 以上とした。ひび割れ長さは、観察後 にデジタル画像として記録したものからアプリケーショ ンソフトを用いてその延長を求めた。ひび割れ密度の算 出は、ひび割れ長さの累積を観察対象面の面積で除すこ とにより求めた。なお、供試体内部のスキャン画像を用 いたひび割れの判断では、PC 画面上で画像を注意深く観 察した上、形状や色差からひび割れの判別を行っており、 その精度については、本稿4章において後述する。

3. ひび割れ性状

3.1 外観ひび割れの経年変化

ASR 促進剤に NaCl を用いた case6 供試体と同じく NaOH を用いた case8 供試体の外観におけるひび割れ密 度の経年変化を図-3に示す。なお、同図では、阪神高 速道路公団が実施した構造物の健全度調査⁴⁾を参考に、 供試体の劣化進展度を表す指標として、幅0.2mm 以上の ひび割れを対象にひび割れ密度を算出した。case6 および case8 の経年変化を比べると、おおよそ2年後までの間で NaCl を用いた case6 供試体の方が NaOH を用いた case8 に比べてひび割れ密度の進展が速い。約2年後の両者の

case8 では 2.68m/m² (2 年) となった。一方, 2 年経過以降では, ひび割れ密度の進展傾向が逆転し,約4 年後の

値を比較すると, case6 では 5.98m/m², case8 では 6.72m/m² となり, また, 2 年から 4 年後までの 2 年間におけるひ び割れ密度の進展量は, case6 で約 1.86m/m², case8 で約 4.04m/m²となった。

3.2 外観と内部ひび割れの比較

外観ひび割れと内部ひび割れの性状比較を図-4に 示す。図では一例として、暴露期間の最終段階における (1)case6 東面外観と(2) φ 190mm コア側面から東面の深部 に相当する 1/4 面を示している。また、ひび割れ表記は、 0.05 以上 0.2mm 未満、0.2 以上 0.4mm 未満、および 0.4mm 以上の 3 水準で表記した。

外観ひび割れの特徴としては、図中(1)から明らかであ るように、軸方向鉄筋に沿った比較的幅の広いひび割れ が卓越するとともに、これらを連結するように微細なひ び割れが発生している。なお、この形態は case6 と case8 の双方の外観全面において、ほぼ同様に認められる傾向 であった。

一方,図中(2)から内部ひび割れの傾向を見ると,一部 のものは,図中(3)(b)に示すような,モルタル部分で生じ ているものの,内部ひび割れの大部分は,図中(3)(a)に示 すような骨材部分のひび割れとして発生していた。以上 のことから,ASRによってコンクリート内部に発生した ひび割れの特徴は,骨材の粒子形状に沿う短いひび割れ が主要であると判断された。

3.3 促進添加剤が異なる供試体の内部ひび割れ比較

促進添加剤が異なる供試体 case6 (NaCl) と case8 (NaOH)の内部のひび割れ損傷図を図-5に示す。ひ び割れ損傷図は,双方の暴露期間最終段階における φ 190mm コア東側面を一例として示すものであり,幅 0.05mm以上を対象とした case6 東面におけるひび割れ密 度は 10.81m/m², case8 では同じく 6.86m/m² となっている。 また,図-6では,内部ひび割れの発生形態を数値的に 比較するため,図-4(3)に示したような骨材部分とモル タル部分にひび割れを分類し,その発生本数,長さ,幅, 角度の比較を示した。なお,図-6(2)には,φ190mm コ ア全側面で観察されたすべてのひび割れを対象に幅ごと で分類したひび割れ密度の算出結果を併記している。

図-6(1)に示す通り,ひび割れ発生本数は case6 の 333 本に対して case8 では 182 本となっており,約 1.8 倍の差 が生じた。また、図-6(2)に示すように、 ϕ 190mm コア 全側面におけるひび割れ密度は case6 で 10.41m/m², case8 で 7.26m/m² であるが、幅 0.2mm 以上を対象として算出 すると case6 では 7.28m/m² (4.95+2.33m/m²), case8 では 3.39m/m² (2.13+1.26m/m²) と約 2 倍の差が生じる結果と なった。以上のように数値的な比較では、外観における ひび割れ密度の算出値 (図-3参照) で見られた両者の 傾向 (case6<case8) と内部ひび割れの傾向は逆転するも

	(2) 内部ひび割れの形態比較
-6	促進添加剤種類と内部ひび割れの傾向

のであった。

义

一方で、ASR 反応によって生じた内部ひび割れの個々 の形状に関して、その傾向を長さ、幅、角度の平均値で 比較すると、ひび割れ長さにおいて若干 case8 の方が case6 よりも大きな数値となっているものの、図-6に図 示したひび割れ損傷図を見ると、両者の内部ひび割れは、 概ね骨材の粒子形状に沿った短いひび割れとして観察さ れるものであった。このことから、ひび割れ発生数量に 関して、両者に明確な違いが生じたものの、ひび割れ個々 の発生形態における特徴としては,ほぼ同様の傾向であ ったと考えられた。

本研究では、NaClとNaOHを促進添加剤として使用し、 屋外暴露試験によってひび割れ性状の比較を行った。そ の結果、外観および内部の双方において、前述のような ひび割れ発生傾向の相違が認められた。一般的に、アル カリ促進剤の影響は、NaOHがOH「イオンを直接供給す るため比較的早期に反応が進み、劣化程度も大きいとさ れている⁵⁾。しかしながら、今回得られた傾向は、必ず しもこれと合致するものではなかった。ここで、推測の 域を脱するものではないが、既往の研究例と今回の実験 条件との相違点を考えると、差異の要因としては次の通 り推察される。まず、本実験の促進剤添加量は8kg/m³(対 セメント比2.1%)であり比較的に量が多いこと、浸漬溶 液ではなくコンクリートに添加していること、長期暴露 によりゆっくりと反応が進行していること、さらには、 骨材種類が異なることも要因の一つとして考えられる。

4. 棒形スキャナによる内部観察

棒形スキャナは付着切れ,剥離,中性化深さの判断な どに適用されている^の。しかし,3.2 で述べたように, ASR によって生じる内部ひび割れは,主に骨材周りにお いてその粒径に沿う短いひび割れが多く,さらに,ひび 割れ幅の計測については,前章までで記述したように, 最少幅として 0.05~0.1mm 程度までが観察対象になると 考えられる。

したがって本章では、棒形スキャナを用いた小径コア 内壁の撮影画像を用いて、ASR 内部コンクリートのひび 割れ形態を観察し、同一コアの目視観察結果と比較する ことでひび割れ観察精度の検討を行った。

4.1 棒形スキャナ計測方法

図-7に棒形スキャナを用いた内部ひび割れの撮影 方法を示す。具体的には、観察用の小径コア(φ25mm) を削孔し、洗浄および十分な乾燥ののち、図中(a)示すよ うに棒形スキャナを挿入する。次いで、図中(b)のように センサを回転させることでコア内壁の展開画像を得るこ とができる。なお、センサの測定深さは 210mm である。

4.2 展開画像による計測精度の検証

棒形スキャナの計測精度の検証には、図-2に示した 340×340×145mm 部分の断面中央付近において削孔し た9本のコア孔を用いた。それぞれのコア内壁を棒形ス キャナで撮影した後、図-8に示すように、コア孔を軸 方向に切断し、目視観察結果と展開画像の計測結果を比 較することによって棒形スキャナの精度検証を行った。

目視観察とスキャナ画像を用いた観察結果について、 ひび割れ幅の比較を図-9,ひび割れ長さの比較を図-10に示し、両図には誤差が生じた要因説明として、

観察されたひび割れの代表例を模式図にして併記した。 (1) **ひび割れ幅の差**

ひび割れ幅は、図-9(1)中に示すように、1 つのひび 割れに対して3点でひび割れと直交する方向に幅を計測 し、その平均値を用いている。

図-9(1)より、ひび割れ幅の誤差について目視観察に

よる数値を基準として、ひび割れ幅ごとにその差を見る と、平均計測差は0.04~0.06mm 程度となり、最大計測差 は 0.13~0.16 となった。また、概ね±0.1mm 程度の範囲 にほとんどのひび割れ計測結果が含まれることから、ひ び割れ幅に対する棒形スキャナの計測誤差は、±0.1mm 程度であると判断される。ここで、図-9(2)には、ひび 割れ幅の計測におけて生じた誤差の要因について示して いる。主に骨材内部に発生したひび割れを判断する際に は、スキャン画像上で骨材自体と骨材内部のひび割れの 濃淡差が小さくなることが多く,この場合には,ひび割 れと骨材の境界部分が不鮮明になることから、ひび割れ 幅の判断に誤差が生じたものと考えられる。なお、今回 使用した棒形スキャナの解像度は 600dpi (ピクセル長約 0.042mm) であり、また、模擬ひび割れを観察し精度の 検証を行った際に生じた誤差は、0.10mm~0.13mm 程度で あったとされている ⁷⁾。この点からも今回の結果は、概 ね妥当な範囲であると考えられる。

(2) ひび割れ長さの差

図-10(1)より,ひび割れ長さの誤差については,平 均計測差で1.8mm,最大計測差は9.7mmであった。また, 5本のひび割れを除いて±5mm程度の範囲に収まってお り,このことから,棒形スキャナを用いた画像観察にお いて,ひび割れ長さは比較的精度よく計測することが可 能と判断される。

ここで、図-10(1)より、比較的大きな誤差が生じて いるものは、目視観察結果よりも画像観察結果において、 ひび割れ長さが短く計測されたもの(図中X=Yの下側) である。この要因については、図-10(2)の模式図に示 すように、ひび割れの端部でひび割れ幅が徐々に小さく なるような場合には、前項で示したひび割れ幅に生じる 誤差の要因と同様に、骨材とひび割れの境界部分が不鮮 明となる場合があり、その結果、目視で確認できたひび 割れ端部が、棒形スキャナの画像ではひび割れとして認 識できないことが主な原因として考えられた。

4.3 コア径が観察結果に与える影響

コア径の相違により観察面の曲率が変わることで, 観 察結果に差が生じることも考えられる。曲率が変化した 場合には, ひび割れ延長が切断面によって分断される可 能性が高まることから, ひび割れ長さの計測結果が最も 影響を受けると想定される。したがって本項では, 内部 ひび割れの計測長さに着目し, φ190mm コア側面とφ 25mm コア切断開口面との目視観察結果の比較を行った。

ひび割れ長さ計測結果を 5mm ごとに分類したひび割 れ本数の分布を図−11に示す。なお、φ190mm コア側 面の観察対象面積は 313374mm²、φ25mm コア切断開口 面の観察対象面積は 102494mm² である。

計測された総ひび割れ本数は、 φ190mm コア側面で

図-10 棒形スキャナの計測誤差(ひび割れ長さ)

図-12 ϕ25mmコアの観察位置によるひび割れ本数の差

182 本であり、 φ25mm コア切断開口面では 160 本であった。ひび割れ長さごとの本数に着目すると、両者とも20mm 以下のものが全体の約 85%を占め、長さ 5mm~10mm のひび割れが最も多く観察されるなど、ほぼ同様

の傾向として確認された。このことから,ひび割れの約 85%が長さ 20mm 未満であった今回の実験においては, ¢25mm と¢190mm のコア側面の曲率の差が,ひび割れ 長さの計測結果に与える影響は小さかったと考えられる。 一方で,両者の観察対象面積は前述の通り異なってお り, ¢25mm コア切断開口面におけるひび割れ本数を¢ 190mm コア側面の面積で換算すると,換算ひび割れ本数 は 489 本(160 本÷102494mm²×313374mm²)となる。 換算本数にこのような差が生じた理由としては,観察箇 所が同一ではないことが要因の一つとして考えられる。 ここで,¢25mm の観察位置の違いによるひび割れ本数 の差を図-12に示す。図中に示す西面,上面,および 東面の表記は,図-2で示した供試体観察対象部位の方 位を示している。

図-12より、 φ25mm コアそれぞれの切断開口面で 観察されたひび割れ本数は、12本から24本まで約2倍 の差が生じていることが確認された。この結果から、コ ンクリート内部のひび割れは、鉄筋拘束の影響などによ り偏在している可能性もあるため、コア削孔箇所が異な る場合には、コアの側面上に現れるひび割れ本数に差が 生じることも考えられる。また、削孔径が小さい場合に は、その傾向が顕著になると推察される。以上のことか ら、小径コアによって内部ひび割れを評価する場合には、 削孔本数を十分に確保し、平均化を図るなどの注意が必 要と考えられる。

5. まとめ

本研究では、促進添加剤として NaCl, または NaOH を コンクリートの等価アルカリ量としてそれぞれ 8kg/m³ 添加した ASR 供試体 2 体を作製し、約 4 年間の暴露試験 後に外観ひび割れ性状とコンクリート内部のひび割れ性 状を詳細に観察した。さらに、ASR が生じたコンクリー トの内部観察手法として、小径コアを用いた棒形スキャ ナによる観察方法の精度、適用性について検討した。本 研究の範囲で得られた結果を以下に示す。

- 本研究の実験条件下では、約4年後の外観ひび割れ密度が NaCl を添加したもので 5.98m/m², NaOH では 6.72m/m²であった。ひび割れ密度の進展は 2 年後まで NaCl の方が速く,それ以降は NaOH の方が速い傾向となった。また、コンクリート内部のひび割れでは、NaCl のひび割れ本数が NaOH の約2倍の量となった。
- 2) ASR によるコンクリート内部のひび割れは,85%程度 以上を占める大部分が粗骨材周辺あるいは内部で発 生しており,その形態としては骨材粒子の粒形に沿

った形状であることを明らかにした。

- 3) 棒形スキャナを用いた観察手法の精度を同一コア側面の展開画像と目視観察の比較によって検証した結果,その精度は、ひび割れ幅で±0.1mm程度、ひび割れ長さで±5mm程度であった。また、ASR内部ひび割れを観察する上では、ひび割れと骨材の境界部分における濃淡差に起因して、計測結果に誤差が生じる可能性があることを示した。
- 4) 今回検討したコア径の範囲(¢25mm, ¢190mm)では、コア側面あるいは内壁面の観察によってASRコンクリート内部のひび割れ形態を同様に観察できると考えられたが、観察箇所の違いに起因するばらつきが生じる場合があり、特に、小径コアの場合には、 +分な削孔本数の確保が必要であることを示唆した。

参考文献

- Ono, K., Taguchi, M. : Long-Term Behavior of AAR Bridge Pier and the Internal Deterioration, 11th International Conference on Alkali-Aggregate Reaction pp. 1167-1174, 2000
- 例えば、湊俊彦、鳥居和之:コンクリート構造物の 鉄筋破断および配筋不良の ASR 劣化に及ぼす影響、 コンクリート工学年次論文集, Vol. 32, No. 1, pp.989-994, 2010.7
- 3) 例えば、鍵本広之、川村満紀:乾燥・湿潤繰り返し を受ける反応性骨材含有コンクリート円柱内部の ひずみ、相対湿度および表面ひび割れの進展、コン クリート工学年次論文集, Vol. 33, No. 1, pp. 977-982, 2011.7
- 4) 阪神高速道路公団:コンクリート構造物の健全度に 関する調査研究業務(その3)報告書,(財)阪神高 速道路管理技術センター,1985.9
- 5) 例えば、黒田保、井上正一、吉野公、西林新蔵:コ ンクリートの ASR 膨張に与えるアルカリ含有量と 促進養生条件の影響、コンクリート構造物の補修、 補強、アップグレード論文報告集, Vol. 9, pp. 163-171, 2009.10
- 伊藤幸広,高橋洋一,宮本則幸:コンクリート構造 物検査用棒形スキャナの開発,建設の施工企画,pp. 19-24,2007.10
- 7) 志岐和久,伊藤幸広,石橋孝治,山内直利,宮本則 幸:棒形スキャナによるコンクリート構造物の検査 精度に関する研究,土木学会西部支部研究発表会, V-009, pp. 741-742, 2013.3