論文 ガラス繊維を用いた簡易耐震補強法による RC 部材の付着割裂強度

松野 一成*1・小宮 巌*2

要旨:著者等が提案した紫外線硬化樹脂を使用した簡易耐震補強法には,ガラス繊維の成型の際に袖壁等が障 害となる懸念があった。その影響を検証し,耐震補強法としての有用性を高めることを目的に,45体の簡易 型試験体を用いた付着試験を実施した。また実部材への適応を考慮し,部材レベルで補強法の有用性を検証す るために,付着割裂破壊先行型のはり型試験体を用いて付着試験を実施した。その結果,紫外線硬化樹脂の接 着力のみでガラス繊維補強する場合には問題点はあるが,プライマーやガラス繊維を接着するために樹脂を使 用すれば,補強法全体としての有用性は高いことが確認できた。 キーワード:簡易耐震補強法,FRP,付着割裂強度,ガラス繊維

1. はじめに

著者等は一貫して連続繊維シート(FRPシート)巻き付 けによるRC部材の付着割裂破壊抑止効果についての検討 を行っており,その成果として連続繊維シート補強によ る付着割裂強度増大分の算定式¹⁾,さらには付着割裂破壊 時のせん断力を算定することが重要との認識から, 付着 せん断耐力を算定する手法を提案した2)。その後,シート 型あるいはプレート型といった各種形態の連続繊維に対 応できるように付着割裂強度算定式の修正・検証を行っ た^{3),4),5)}。また文献【6,7】において紫外線硬化樹脂を使 用した簡易耐震補強法を提案し,耐震補強法としての有 用性を検討した。著者等が提案した簡易耐震補強法では, ガラス繊維を貼付する際に袖壁等が障害になることが予 想されるため,その対策を講じる必要がある。また,補 強効果の検証実験に用いた試験体は試験鉄筋に直接引張 力を付加する簡易型試験法であったため,部材レベルで の検証も必要である。

そこで本研究では,簡易型試験法を用いて袖壁等の影

響を検証する実験を行い,付着割裂強度の増大効果を検 証するとともに,付着割裂強度算定式の有用性を検討す ること,また,はり型試験体を用いて,実部材に近い形 態での耐震補強法を検証することを目的とした。

2. 簡易型付着試験

簡易型試験は3シリーズで構成されており,シリーズ1 は簡易耐震補強法が,試験鉄筋が2本以上の鉄筋群に対 しての補強効果の有無を検証すること目的とし,シリー ズ2は袖壁等の影響を把握することを目的とした。また, シリーズ3はせん断補強筋を有した場合の補強効果の検 証を目的とした。

2.1 試験体

試験体一覧を実験結果の概要と併せて表 - 1 に示す。 表中の補強法Aは最も簡素化した補強法で,紫外線硬化 樹脂を用いてプレートの成型と貼付を同時に行うもので, 補強法BはAとほぼ同様であるが,成型前にプライマー を塗布し接着性を高めた方法である。補強法Cは紫外線 硬化樹脂での成型と他の樹脂での貼付を別工程で行い,

*1 呉工業高等専門学校 建築学科 准教授 博士(工学)(正会員) *2 福井ファイバーテック 博士(工学)(非会員)

= 1			計歸			側面	鉛古	せん	連続繊維	プレート	コンク					付着強度	$E(N/mm^2)$		
ý	試験	試験	区間	付着	断面	かぶ	かぶ	断補			リート	最大	最大引張		宝騇値		()	計質値	
Í	体名	鉄筋	断面		長さ、形状	"I)	່ງງ່າງ	111日前	補強比	補強法	実強度	51張刀	グロ(mm)	付美	大家區			山井喧	
ズ			(mm)	(IIIII)		(mm)	(mm)	(%)	(%)	THI JATA	(N/mm^2)	(KIN)	(mm)	消費	平均值	増分	τfm	τwf	τbu
	No.1							(/*)				66.71	0.350	2.78					
	No.2								0	-		51.42	0.231	2.14	2.44	-		-	2.255
	No.3											57.47	0.288	2.39					
	No.4		120									74.03	0.300	3.08					
	No.5	.5 2-D19 2	×						1.25	Α		77.85	0.335	3.24	3.08	0.64	2.255		
	No.6		200									70.05	0.258	2.92				1 124	3 3 7 9
	No.7											68.93	0.145	2.87				1.124	5.517
	No.8								1.25	В		84.06	0.246	3.50	3.40	0.96			
1	No.9			200	46 平2	40	57	0			29.46	91.70	0.501	3.82					
	No.10			200	×=/12	40	57	0			27.40	89.31	0.300	2.48					
	No.11								0	-		76.89	0.164	2.14	2.24	-		-	2.032
	No.12											75.30	0.304	2.09					
	No.13		160									60.34	0.264	1.68					
	No.14	3-D19	×						0.94	Α		82.63	0.283	2.30	2.44	0.21	2.032		
	No.15		200									93.13	0.328	2.59	59 29 1.1	1.124	3.156		
	No.16											82.47	0.239	2.29		0.00			
	No.17								0.94	В		91.70	0.257	2.55	2.46	0.22			
	No.18											91.38	0.259	2.54					
	No.19				κ Γ.π./				0			45.69	0.147	1.90	2.15				2.255
	No.20				2世113				0	-		55.88	0.084	2.33		-		-	2.255
	No.21					-						53.33	0.223	2.22					
	NO.22								1.25	C		81.67	0.511	3.40	2 10	1.02			
	No.23	23								1.23	C		/6.58	0.933	3.19	3.18	1.03		
	No.24		120		L形							76.72	0.257	2.95					
2	No.25	2-019	120	200		40	57	0	1.25	D	29.46	67.02	0.29	2.70	3.09	0.94	2.255		
2	No.20	2-019	250	200		40	57	0	1.25	D	29.40	78.40	0.217	2.19	5.09	0.94	2.255		
	No.27		250									64.16	0.638	2.67				1.124	3.379
	No.20								1.25	C		78.80	0.630	2.07	3.00	0.85			
	No 30								1.25	C		73.39	0.822	3.06	5.00	0.05			
	No 31				T形							80.56	0.256	3.36					
	No 32								1.25	D		77.53	0.345	3 23	3.23	1.08			
	No 33											74.82	0.705	3.12					
	No.34											48.08	1.758	2.00					
	No.35							-				52.54	0.313	2.19	2.25	-	2.091		2.091
	No.36								0			61.45	4.702	2.56					
	No.37								0	-		46.33	0.243	1.93				-	
	No.38		120					0.12				48.72	0.321	2.03	2.17	-	2.272		2.272
2	No.39	2 D10	120	200	ket tra	40	57				25.24	61.29	0.256	2.55					
3	No.40	2-019	200	200	2月175	40	57				25.54	71.16	1.185	2.97					
	No.41		200					-				66.39	0.869	2.77	2.85	0.60	2.091		3.133
	No.42								1.25	C		67.98	0.724	2.83				1.042	
	No.43								1.23	C		68.46 0.517 2	2.85			1.042			
	No.44							0.12				68.62	1.319	2.86	2.93	0.76	2.272	3.314	3.314
	No.45											73.71	0.586	3.07					

長-1 試験体一覧および実験結果の概要

補強法 DはCと同様の方法で,L・T型部にも接着する。 図-1,2にシリーズ1の試験体図を,図-3にシリー ズ2の試験体図を,図-4にシリーズ3の試験体図を示 す。すべての実験の試験鉄筋には載荷の際の利便性を考 慮し, D19のネジ式異形鉄筋を用いた。以下に共通項目 を述べる。付着長さ 200mm, 側面かぶり 40mm, 鉛直かぶ リ57mm(かぶり厚は試験鉄筋中央からコンクリート縁ま での距離で定義した。以後これに準じている),載荷に際 しての曲げ引張破壊を防ぐため, D10の普通強度異形鉄 筋を配した。載荷による反力が試験区間に影響を与えな いよう,試験体にはスリットにより付着領域(試験区間) と非付着領域(非試験区間)に分け,非付着領域には鋼 管を配し,コンクリートと鉄筋間の付着を完全に断ち 切った。すべての試験体の断面と試験筋の配置決定は, 以下に示す藤井·森田式⁸⁾に従いサイドスプリット型の付 着割裂破壊が先行するよう留意した。連続繊維プレート 補強による付着強度増分は著者等の提案式
りで算出した。

但し,bi=bsi=b/(N·db)-1,pst:横補強筋比,b:部材幅 (mm),N:主筋本数,db:主筋径(mm), B:コンクリート

$$\tau_{fm} = \tau_{co} + \tau_{st}$$

$$\tau_{co} = (0.117 \cdot bi + 0.163) \cdot \sqrt{\sigma_B} \tag{2}$$

(1)

$$\tau_{st} = \left(9.51 \frac{p_{st} \cdot b}{N \cdot d_b}\right) \cdot \sqrt{\sigma_B}$$
(3)

$$\pi_{wf} = 3 \cdot \alpha \cdot \left(\frac{E_{wf}}{E_0} + 0.5\right) \cdot \sqrt{p_{wf}} \cdot \sqrt{\sigma_B}$$
(4)

強度(N/mm²),pwf:連続繊維補強比,Ewf:連続繊維の弾性 率(N/mm²),E0=2.30×10⁵N/mm², :繊維の連続性を考慮 した低減係数。繊維が連続していれば1.0。

シリーズ1は試験鉄筋を2本あるいは3本使用し,そ れぞれの断面を120×200mm,160×200mmとした。実験 変数はガラス繊維(以下GFRP)プレートの有無,貼付方 法の差異を組み合わせた3種類とした。

シリーズ2は試験鉄筋は2本のみで,断面は120×250mm とした。試験鉄筋位置の試験区間断面は実験1と同等で あるが,断面の形状をL・T型に変化させた。図-3b) 中の網掛け部の有無で断面形状を変化させた。さらに GFRPプレートの有無に加え,貼付方法の変化も組み合わ せを実験変数とした。

衣 - 2	コンク・	ノート詞	言衣(シリ	$-\chi_{1,2}$	はり型)
W/C	セメント	7K	細骨材	粗骨材	AE 減水剤

(%)	(kg/m ³)	(kg/m ³)	(kg/m ³)	(kg	/m ³)	(kg/m ³)	
65.0		293	190	961	8	11	2.93	
表 - 3	Π	レクリ	ート材料	料定数(シリ	ノーフ	ヾ1,2, はり型)		
		圧紙	強度	弾性係数	۶ ג	割裂強度		
		(N/	mm ²)	(N/mm ²))	(N/mm ²)		
1		31	.80	2.41 × 10	4		2.55	
2		32	2.13	2.35×10^4			2.74	
3		24.45		2.55×10^4		2.71		
Ave. 29.46 2.43×10^4 2.0			2.67					
表	表 - 4 コンクリート調合表(シリーズ3)							

W/C	セメント	水	細骨材	粗骨材	AE 減水剤				
(%)	(kg/m ³)								
73.0	263	192	902	893	1.84				
+									

18	5 4279	1 1/3 1/1 AE &X (/	·) / ()
	圧縮強度	弾性係数	割裂強度
	(N/mm^2)	(N/mm ²)	(N/mm^2)
1	24.29	2.22×10^4	2.30
2	25.43	2.23×10^4	2.40
3	26.35	2.22×10^4	2.34
Ave.	25.34	2.22×10^4	2.35

シリーズ3は試験鉄筋を2本とし,せん断補強筋の有 無を実験変数とし,補強法はCを採用した。それぞれ同 等の試験体を3体作製し,平均値をその試験体の付着強 度とすることとした。図-4に載荷装置の概略を示す。 2.2 使用材料の性質

シリーズ1,2のコンクリート強度は24N/mm²を目標とした。表 - 2にコンクリートの調合を,表 - 3にコンクリートの力学的性質を示す。またシリーズ3はコンクリート強度は18N/mm²を目標とした。表 - 4にコンクリートの調合を,表 - 5にコンクリートの力学的性質を示す。すべてのシリーズで骨材の最大粒径は20mmとした。

試験鉄筋として,D19の異形鉄筋(ネジ式鉄筋)を,補 強用にD10の普通強度異形鉄筋を用いた。せん断補強筋 として 3の普通強度の丸鋼を表-6に使用鉄筋の機械 的性質を示す。

連続繊維にはGFRPを使用した。表 - 7 に機械的性質を 示す。GFRP プレートの弾性係数以外の数値はカタログ値 を記載した。GFRP は一方向に配し,試験鉄筋に直交する よう貼付した。

表 - 6	鉄筋の機械的性質
-------	----------

種類	引張強さ (N/mm ²)	降伏強度 (N/mm ²)	弹性係数 (N/mm ²)
D19(主筋)	570	370	1.76 × 10 ⁵
3(せん断補強筋)	450	320	1.75×10^5
D10(補強筋)	430	305	1.79×10^{5}

表-7 ガラス繊維の機械的性質

	ガラス繊維プレート	ガラス繊維シート
繊維目付量(g/m ²)	1,732	1,732
設計厚さ (mm)	1.50	0.68
引張強度 (N/mm ²)	442	1,888
引張弾性率 (N/mm ²)	0.27×10^5	0.96×10^4

2.3 実験結果

2.3.1 実験結果の概要

表 - 1 に実験結果の概要を示す。表中の付着強度は, 試験区間の平均付着強度で表した。またプレート補強に よる付着強度の増分の実験値は,無補強試験体との差で 表した。すべての試験体が想定通りのサイドスプリット 型付着割裂破壊を呈した。シリーズ1の付着強度をみる と,補強法A,Bとも同じく大きな増大率があった。しか し,試験鉄筋の本数が3本に変わると,両者とも増加率 は減少しており,補強法Bでも若干の強度増大が確認で きる程度であった。

シリーズ2では,L,T型の断面形状に合わせてGFRPを プレート状に加工,貼付することができ,断面形状の差 異に係わらず高い増大率が確認できた。このことから提 案した補強法に,部材に接する袖壁等の影響はないと判 断できる。L,T型部にプレートを貼付することによる大 幅な強度増大はみられなかったため,プレートの貼付は 袖壁等にまで施す必要はないと考えられる。

シリーズ3ではせん断補強筋を配したことによる付着 強度の格段の上昇はみられなかったが,その場合におい てもGFRPによる付着割裂強度の増大は確認できた。この ことからせん断補強筋を配した実部材においても,付着 に対しての補強効果は十分に期待できる。

2.3.2 破壊形状

写真 - 1 ~ 6 に最終破壊形態の代表例を示す。いずれ も無補強の試験体は,極めて脆性的な破壊であった。こ れに対しGFRPで補強されたものは,その有無により破壊

形態に大きな差異が生じた。シリーズ1では補強法によ る差異ではなく,主筋本数により大きな差異が生じた。 主筋が2本の試験体では,脆性的な破壊を呈することな く主筋が抜け出し最終破壊に至ったが,主筋が3本にな ると極めて脆性的な破壊を呈し,特にプライマーを塗布 していない補強法Aでは顕著であった。GFRPプレートで 拘束する範囲が拡大した場合,紫外線硬化樹脂の接着力 では,かぶり部コンクリートを拘束できない可能性があ ると判断できる。シリーズ2では補強法による破壊形態 の差異は見受けられず,主筋が抜け出す形態で最終破壊 に至る試験体が大半を占めた。シリーズ3ではせん断補 強筋の有無により破壊形態の差異が生じた。GFRPの有無 に係わらずせん断補強筋がある程度かぶり部コンクリー トを拘束し,極めて脆性的な破壊を抑止できた。

2.3.3 付着応力度 - 主筋のすべり量関係

図 - 6 ~ 1 1 に付着応力度と主筋のすべり量関係を示 す。縦軸の付着応力度は実験で得られた引張力を試験鉄 筋の表面積で除した試験区間の平均応力度で,横軸の主 筋すべり量は試験体のスリット位置で計測した試験鉄筋 のすべり量を表している。また履歴曲線上の×印は,極 めて脆性的な破壊を呈した箇所であり,それ以降の曲線 は意味を持たないため記していない。

シリーズ1では試験鉄筋が2本の場合,プレート補強 による強度面での補強効果が顕著に現れていることが付 着応力度と主筋のすべり量関係からもみてとれる。また 強度面のみならず,付着強度時の変形性能もあわせて向 上していることもわかる。しかし試験鉄筋が3本で補強 法Aを用いた試験体は,プレート補強の効果を十分に得 ることができなかったと考えられる。

シリーズ2では補強したすべての試験体で強度面のみ

でなく、付着強度時の変形性能もあわせて向上している ことがわかる。補強法等による差異は前述したことと同 様に見受けられず、基本的には付着強度に達した以降も ある程度の付着応力度を保持したまま、主筋が抜け出す 形態で最終破壊に至った様相が確認できる。

シリーズ3においてもGFRPで補強することで脆性破壊 を抑止できていることが履歴曲線からも確認できるが, GFRP無補強時にはせん断補強筋により脆性破壊を抑止で きていることが確認できる。

2.3.4 ガラス繊維による付着強度増分

図 - 12,13に付着強度増分の実験値と計算値の比 較を示す。GFRPによる付着強度の増分についての実験値 は,プレート補強を施した試験体での付着強度と無補強 の試験体の付着強度の差で表した。

実験値が計算値を下回っているものの,試験鉄筋が3

本の場合以外は,GFRPによる付着強度増分の様相を捉えており,算定式の信頼性は高いと判断できる。

- 3.はり型付着試験
- 3.1 試験体

はり型付着試験に使用した試験体を図 - 14に示す。 試験体全長1300mm,試験区間を320mm,載荷点間を260mm とした2点載荷を採用した。主筋は4-D16(y=357N/mm²) とし,付着割裂破壊を誘発する配筋とした。試験区間の せん断補強筋は2-D6@140(wy=305N/mm²,pwf=0.3%)とし た。また付着割裂破壊を誘発するため直線定着とした。 加えて支点付近の反力による影響を除外するため,支点 位置から試験体中央部に50mmの箇所から試験端部までス リーブ管を配し,コンクリートと主筋の付着を絶つ非付 着区間とした。試験体一覧を表 - 8 に示す。試験体総数 は4体とし,無補強のもの1体(No.1),前述した補強法 Cを1体(No.2(pwf=1.0%)),補強法Bを1体(No.3) (pwf=1.0%)), GFRP をコ型に成型せず, GFRP 自体をエポ キシ樹脂で試験体に直接貼付するもの1体(No.4 (pwf=0.5%))とした。補強方法および補強箇所を図 - 1 5 に示す。No.4 は GFRP を試験体に巻付ける方法で,試 験体隅角部をD=20mmを目安に面取りし,試験体腹部で重 ね合わせて貼付した。

3.2 使用材料の性質

主筋にはD16,せん断補強用にD6普通強度異形鉄筋を 使用した。表 - 9に使用鉄筋の主な機械的性質を示す。 その他の材料は前章で記述したものを使用した。

3.3 実験結果

3.3.1 実験結果の概要

表 - 10に実験結果の概要を示す。表中の付着割裂強 度は前述の(1)~(4)式で算出した。また表中の付着割裂 破壊時のせん断力は,以下の手順で算出した。

$$T = \tau_{bu} \cdot \sum_{i} \psi \cdot lb \tag{5}$$

$$M = I \cdot J \tag{6}$$

$$Q = \frac{1}{a} \tag{7}$$

但し, bu:付着割裂強度(N/mm²), :鉄筋の周長 (mm), lb:付着長さ(mm), a:せん断スパン(mm), j:主 筋間距離(mm)。なお本実験の付着長さ lb は,曲げひび われ等の影響を考慮せず,鋼管から載荷点までの 320mm とした。また主筋間距離 j には 150mm を採用した。

連続繊維で補強された場合の付着割裂破壊時のせん断

表 - 8 試験体一覧

試験	試験 区間	鉄	筋	連	続繊維プレート	コンクリート		
体名	断面 (mm)	主筋	せん断 補強筋	補強比	補強方法	実強度 (N/mm ²)		
No.1	150 × 200			0.0	_			
No.2		150	4D 25	2-D6	1.0	コ型+エポキシ	20.46	
No.3		× 4D-25		4D-25 @140		4D-25 @140 1.0 プライマー-		29.40
No.4	200			0.5	シート+エポキシ			

表 - 9 鉄筋の機械的性質

種類	引張強さ (N/mm ²)	降伏強度 (N/mm ²)	弹性係数 (N/mm ²)	
D16(主筋)	550	357	1.76×10^5	
D6(補強筋)	430	305	1.79×10^{5}	

表 - 10 実験結果の概要

	実験時の	曲げ終局	FRP無補 強の状態 でのせん 断耐力 (kN)	付着書	副裂強度(N	/mm ²)	付着割裂	増分(N/mm ²)		
	取入 せん断力 (kN)	時の せん断力 (kN)		τfm	τwf	τbu	www.akiegoの せん断力 (kN)	実験値	計算値	
No.1	27.72				0	2.101	55.65	-	-	
No.2	47.00	116.66	04.02	2 101	1.005	1 0 0 5 2 1 0 6	02.22	19.28	26.59	
No.3	41.60	110.00	84.82 2.10	2.101	1.005	5.100	82.23	13.88	20.38	
No.4	44.15				0.634	2.735	72.44	16.43	16.79	

耐力算定式は日本建築学会の連続繊維補強コンクリート 系構造設計施工指針案⁹⁾で定義されているが,試験体の 特殊性を考慮し,上述のような手順で付着割裂破壊時の せん断力を算定した。曲げ終局時のせん断力は,曲げ終 局モーメントの略算式から算定した。またせん断耐力は 【文献9】に従って算出した。

実験時の最大せん断力をみると,GFRPでの補強効果が 顕著に現れる結果となった。補強方法で比較すると,補 強法Cの試験体No.2が本実験でのせん断力の最大値を記 録した。次いでNo.4となったが,実験計画の段階では試 験体をコの字に拘束するプレート型より,試験体の外周 を拘束するNo.4 が最もせん断力が高くなるとの想定で あったが,そのような結果にはならなかった。

実験値と計算値の比較ではすべての試験体において大 きく計算値を下回る結果となった。その最大の要因は無 補強の段階で大きく下回ったことだと考えられ,その差 異が補強時にも直接影響している。補強効果のみを比較 すると実験値と計算値はかけ離れてはいない。No.4では 実験値と計算値がほぼ一致している。これらのことから 無補強時のせん断力の算定方法が明確に定義できれば, 耐力を算定することが可能であると思われる。

3.3.2 破壊形態

写真 - 7 ~ 10に最終破壊状況の代表例を示す。試験 体No.1では主筋に沿った付着ひびわれとせん断ひびわれ の両者が確認できるが,破壊経過を観察したところ,最

大耐力を記録した時点で支配的であったひびわれは付着 ひびわれであった。この点からサイドスプリット型の付 着割裂破壊であると判断した。

GFRPで補強した試験体は、GFRPを貼付した箇所以外で 付着ひびわれが確認できた。中でも最も明確であったの はNo.2であった。せん断ひびわれも多く確認できるが、 付着ひびわれ発生後、試験体が変形し横方向に膨張する 作用をGFRPが抑えることで、主筋とコンクリートの付着 応力度が失われず、せん断ひびわれが進行したものと考 えられる。

3.3.3 せん断力 - 部材変形角関係

図 - 16にせん断力 - 部材変形角関係の履歴曲線を示 す。GFRPで補強することで補強方法個々で差異はあるが ,最大せん断力も変形性能も向上していることがみてと れる。すべての履歴曲線にせん断力が大きく低下する箇 所があり,すべての試験体でほぼ同等のせん断力であっ たため,この時点で主筋がすべったと判断できる。その 後は主筋が抜出して変形が進行したが,GFRP補強により 変形を拘束できたためその後のせん断力が上昇した。

No.3の履歴曲線には変形角0.009rad,0.024rad付近 にせん断力が大きく低下する挙動がみられる。これは GFRPが剥離した影響による挙動で,最も支点に近いGFRP が剥離した箇所が0.009rad付近で,0.024rad付近のも のは次のGFRPが剥離した際のものである。他の補強法に おいてGFRPの剥離は,最終破壊に至るまでみられず,コ ンクリートと一体化しせん断力に抵抗していた。このこ とから紫外線硬化樹脂の接着力では、大変形時までコン クリートと繊維の密着性が担保できないと判断できる。 3.3.4 ガラス繊維による付着強度増分

図 - 17に付着強度増分の実験値と計算値の比較を示 す。付着強度の実験値は,実験で得られたせん断耐力を (7)式に代入し,(5)式の付着強度を逆算し算出した。

プレート成型したものは両者とも実験値が計算値を下 回る危険側の算定となった。これに対しシート補強のも のは,ほぼ一致する結果となった。これは試験体自体の 設計を,付着割裂破壊を誘発させるための形状としたこ とも影響していることも考えられるが,簡易型付着試験 の結果も鑑みると,コ型プレートの補強効果がシートほ どではないと考えられるため,それに対応できるよう強 度算定式自体を修正する必要性も考えられる。

4. まとめ

本研究で実施した簡易型,はり型付着試験の結果から 得られた知見を以下に示す。

1)GFRPを貼付する際,プライマーを塗布することで付 着割裂強度が上昇し,十分な補強効果が得られる。

2)L・T字部コンクリートにGFRPを貼付することは,強度・靭性能の両面に効果があるとはいいがたい結果であった。

3)紫外線硬化樹脂を用いた簡易耐震補強法は,補強方 法個々で差異はあるが,RC部材の最大せん断力も変形性 能も向上することが確認できた。

4)GFRP補強の付着強度算定式をプレート補強に対応で きるよう修正する必要がある。

謝辞

三菱樹脂株式会社にはGFRPを貼付する樹脂をご提供いただいた。ここに記し,深甚の謝意を表す。 参考文献

 松野一成・河野進・角徹三:連続繊維シートによるRC部材の 付着割裂強度増大効果-第1報付着強度式の提案-,日本建築学 会構造系論文集,第548号,pp.95-100,2001.10

 2) 松野一成・角徹三:連続繊維シートによるRC部材の付着割裂 強度増大効果 - 第2報部材実験による付着強度式の検証 - ,日本 建築学会構造系論文集,第556号,pp.117-122,2002.8
 3) 松野一成・角徹三:プレート型に成型したFRP連続繊維を用

3) 松野一成・用徹二: フレート型に成型したFKP 運転機構を用 いたRC部材の付着割裂強度,日本コンクリート工学年次論文集, 第28巻,第2号,pp.709-714,2006.7

4) 松野一成・角徹三:FRP連続繊維で補強された RC 部材の付着 割裂強度,日本コンクリート工学年次論文集,第29巻,第2号, pp.1135-1140,2007.7

5) 松野一成・角徹三: FRP 連続繊維で補強された RC 部材の付着 割裂強度,日本コンクリート工学年次論文集,第30巻,第3号, pp.1177-1182,2008.7

 6) 佐古拓海・松野一成・角徹三・小宮巌: 簡素化したガラス繊 維プレート補強による RC 部材の付着割裂強度増大効果その1.
 実験概要,日本建築学会学術講演梗概集(関東)C-2構造, pp.329-330,2011.8

7) 松野一成・佐古拓海・角徹三・小宮巌: 簡素化したガラス繊 維プレート補強による RC 部材の付着割裂強度増大効果その1. 実験概要,日本建築学会学術講演梗概集(関東)C-2構造, pp.331-332,2011.8

8)藤井栄・森田司郎:異形鉄筋の付着割裂強度に関する研究, 日本建築学会論文報告集,第319号,pp.47-55,1982.10 9)日本建築学会:連続繊維補強コンクリート系構造設計施工指 針案,2002.3