論文 チタンメッシュ陽極併用の連続繊維補強材で下面増厚した RC はり の曲げ性状

岡村 雄樹*1·李 春鶴*2·辻 幸和*3·谷口 硯士*4

要旨:本研究では、チタンメッシュ陽極と炭素繊維の格子状連続繊維補強材(CFRP グリッド)を併用した CFRP グリッ ド陽極を開発し、下面増厚補強工法による RC 構造物の補強工法への適用を検討する。チタンメッシュ陽極と CFRP グリッドを供用した場合の RC はりの曲げ性状を確認するとともに、積層モデルによる断面解析プログラムを作成して、 曲げ性状の定量化を図り、実験値との比較・検討を行った結果を報告する。

キーワード: CFRP グリット,チタンメッシュ陽極,ポリマーセメントモルタル, CFRP の継手部,曲げ性状

1. はじめに

チタンメッシュを用いた電気防食工法は,RC 構造物 の鉄筋防食に実績がある。また CFRP グリッドを用いた 下面増厚補強工法は,曲げ耐力の向上に有効であること は既に報告した^{1),2),3)}。しかし,チタンメッシュ陽極と CFRP グリッドを併用して,CFRP グリッドの格子に線状 のチタンを巻きつけた CFRP グリッド陽極(陽極寿命4 0年)の実験例および実施例はない。CFRP グリッド陽 極が RC はりの曲げ性状に及ぼす影響として,防食電流 による CFRP グリッドの強度低下の有無が,検討し確認 すべき項目として挙げられる。また,この影響によって はポリマーセメントモルタル(以下,PCM と略称する。) の剥離等を起こし,補強した RC 部材の耐力低下を生じ ることも懸念される。

本研究は、防食電流の通電後の RC はりの曲げ性状に ついて明らかにするとともに、積層モデルによる断面解 析プログラムを作成し、曲げ性状の定量化を図り実験値 との比較・検討を行った結果を報告する。

2. 実験の概要

2.1 供試体の概要

RC はり供試体の概要を表-1に、コンクリートの示方 配合を表-2にそれぞれ示す。RC はり供試体は、CFRP グリッドの継手部の有無および防食電流を変化させた 2 シリーズ (SN, SJ シリーズ)とし、合計8体作製した。 CFRP グリッドに継手部を有する場合には、継手部が力 学的性状を低下させる要因となるため、継手の有無につ いても検討することとした。

さらに、各シリーズにおいて防食電流による影響を把 握するために、防食電流を通電しない供試体(A0)、電 流量を通常の電流(15mA/m²,A15)と最も厳しい条件の 電流(600mA/m²,A600)、その中間の電流(75mA/m²,A75) となるように水準を決定した供試体とし、それぞれの影 響を確認することとした。供試体 S0 は、比較対象のた めに腐食環境下に暴露されていない健全な供試体であり、 CFRP グリッドによる無補の無いものである。

シリーズ名	供試体名	補強の有無	継手部の有無	防食電流(mA/m ²)	備考		
PL	S0	なし	—	—	—		
SN	SN-A15			15	通常		
	SN-A75	あり	なし	75	40年分を5年通電相当		
	SN-A600			600	40 年分を1年通電相当		
SJ	SJ-A0			0	_		
	SJ-A15		+ 10	15	通常		
	SJ-A75		0 (0	75	40 年分を5年通電相当		
	SJ-A600			600	40 年分を1年通電相当		

表-1 RC はり供試体の概要

表-2 コンクリートの配合

設計基準強度	スランプ	水セメント比	s/a	単位量(kg/m³)						
(N/mm^2)	(cm)	(%)	(%)	セメント	水	細骨材	粗骨材	混和剤		
20	8	59	46.5	241	154	880	1014	2.89		

*1 前橋工科大学 工学部社会環境工学科准教授 工学博士 (正会員)

*2 宮崎大学 工学教育研究部准教授 博士(工学) (正会員)

*3 前橋工科大学 学長 工学博士 (正会員)

*4 新日鉄住金マテリアルズ株式会社 コンポジット社 マネージャ

図-3 直流電源装置

CFRP グリッドの配置方法の違いとして,継手部の無 い供試体の SN シリーズは,下面に,格子間隔が 100mm×100mm (公称断面積: 39.2mm²)の幅が 500mm, 長さが 2100mm の一体型 CFRP グリッドを下縁から 15mm の位置に配置した。継手部を有する供試体の SJ シ リーズは,幅が 500mm,長さが 1050mm の 2 枚の CFRP グリッドを配置した際,スパン中央に生じる継目を覆う ように幅が 500mm,長さが 800mm の継手用 CFRP グリ ッドを,下側から重ね合わせて配置した。

供試体の形状寸法および計測位置を図-1 に、CFRP グリッドの配置状況を図-2 にそれぞれ示す。高さが 220 mm,幅が 500 mm,長さが 3000 mm とし、コンクリート の設計基準強度は 20 N/mm²,鉄筋を SD295A とした。腐 食環境を与えるため、打込み時に塩分を 6kg/m³添加し、 材齢 28 日まで湿布養生を行った。

その後,実構造物における使用を模擬するため,材 齢28日において,初期損傷として1次載荷を行った。1 次載荷は,コンクリートの引張力を無視した弾性計算に よる引張鉄筋の引張応力度が300 N/mm²に達するまで載 荷し,供試体にはひび割れを発生させた。

PCM と RC はり供試体の付着が良好になるように、供

写真-2 載荷試験状況

試体下面をブラスト工法により研掃した。ブラスト処理 にはサンドブラストを用いて,粗骨材が見えるまで削り, 凹凸を設けた状態にした。その後,供試体下面に CFRP を配置し, PCM を吹き付け,下面増厚補強を行った。 養生は,材齢 28 日まで湿布養生を行った。

防食電流のための直流電源装置の設置を図-3 に示す。 写真-1 は、2 年間防食電流を通電させた供試体の設置 状況を示したものである。

2 次載荷として,静的曲げ載荷試験(支点間距離 2600mm,等モーメント区間 500mm)を1 次載荷と同様 に行った(写真-2 参照)。

2.2 使用材料

鉄筋および CFRP グリッドの力学的特性を表-3 に示 す。引張鉄筋に D13 (公称断面積:126.7 mm²), 圧縮鉄 筋に D10 (公称断面積:71.33 mm²) をそれぞれ 5 本ずつ 配置した。せん断補強筋には D6 (公称断面積:31.67

補強材	降伏強度	引張強度	静弹性係数
の種類	(N/mm^2)	(N/mm^2)	$(x10^{5}N/mm^{2})$
D13	366	525	1.90
D10	377	517	1.87
D6	375	528	1.89
CFRP	_	1794	1.81

表-3 鉄筋および CFRP の力学的特性

mm²)を使用し、せん断スパン内は 75 mm 間隔に、等曲 げモーメント区間内は 100mm 間隔にそれぞれ配置し た。

2.3 載荷および測定方法

載荷は、支点間隔が2600 mmの2点単純支持とし、載荷点間隔を500mmの2点載荷とした。たわみの測定に変位計を設置し、曲げひび割れ幅の測定には長さが100 mmの π 型ゲージを、コンクリートのひずみの測定には長さが60 mmのワイヤストレインゲージをそれぞれ貼付して、計測を行った。配置位置を**図ー1**に示す。

3. 積層モデルによる RC はりの断面解析

CFRP を下面に配置した RC はりの曲げ性状を定量的 に検討するため,図-4に示す積層モデルの概念を用い, コンクリートと鉄筋および CFRP の付着を完全付着,コ ンクリート躯体と PCM も完全付着とそれぞれ仮定して, はりの断面解析を行った。その場合,はり供試体の圧縮 縁から引張縁までのひずみを直線分布とする平面保持が 成り立つものとした。

コンクリートおよび鉄筋の圧縮域,引張域の構成則は ともに,土木学会コンクリート標準示方書に記載されて いる最も一般的な構成則を用いた。また,本研究で使用し た連続繊維補強材の CFRP は構成則がまだ確立されてい ないため,図-5に示す応力-ひずみ直線を用いた。すな わち,CFRP の引張強度まで線形関係を保ち,その後破 断を生じると仮定して解析を行った。

曲げひび割れ幅の算出には,式(1)に示す土木学会コ ンクリート標準示方書に記載されている算定式を用いた。

$$W = 1.1k_1k_2k_3 \left\{ 4c + 0.7(c_s - \phi) \right\} \left[\frac{\sigma_{se}}{E_s} + \varepsilon_{csd}' \right]$$
(1)

ここに、 k_l :鋼材の表面形状がひび割れ幅に及ぼす影響を表す係数(異形鉄筋の場合は 1.0)、 k_2 :コンクリート品質がひび割れ幅に及ぼす係数, k_3 :引張鋼材の段数の影響を表す係数,c:かぶり(mm)、 c_s :鋼材の中心間隔(mm)、 φ :鋼材径(mm)、 σ_{se} :鋼材位置のコンクリートの応力度が 0 の状態からの鉄筋応力度の増加分(N/mm²)、 E_s :鋼材の弾性係数(N/mm²)、 ϵ'_{csd} :コンクリートの収縮およびクリープ等によるひび割れ幅の増加を考慮するための数値(今回は湿潤養生を十分に行ったため、収縮の影響は小さいものとして0とした。)である。

図-6 解析フロー

断面解析プログラムの概要については,図-6 に示す とおりである。圧縮縁のひずみを設定し直し,補強材と コンクリートの軸方向力が等しくなるように,中立軸を 繰り返し計算で求め,その時の曲げモーメントと補強材 のひずみや曲げひび割れ幅を算定する。そして,圧縮縁 のひずみを増分して設定し,同様の計算を,圧縮縁のひ ずみが終局ひずみに達するまで行うものである。

4. 曲げひび割れ発生荷重, 引張鉄筋の降伏荷重および最 大荷重

曲げひび割れの発生荷重,引張鉄筋の降伏荷重,最大 荷重および破壊形式を表-4 に示す。表において曲げひ び割れ発生荷重とは,2 次載荷試験を行った際の引張縁 のひずみの急変点から求めたものである。

シリー ズ名	供試体 名	補強の 有無	継手部 の有無	防食電流 (mA/m ²)	曲げひび割れ発生 荷重		引張鉄筋降伏荷重		最大荷重		破壊 形式 [*]
					実験値	解析值	実験値	解析值	実験値	解析值	
PL	S0	なし	_	_	7.3	8.3	81.7	80.0	93.8	83.6	В
SN-	SN-A15			15	34.3		102.8	102.3	167.5	147.5	В
SN	SN-A75	あり	あり なし	75	38.8	28.0	102.1		182.7		В
S	SN-A600			600	30.8		100.7		173.7		В
	SJ-A0		り あり	0	32.5	_	106.6		141.6		Р
SJ	SJ-A15	あり あり		15	33.2		104.5		146.1		Р
	SJ-A75			75	31.1		110.1		147.1		В
	SJ-A600			600	32.9		110.8		153.7		В

表-4 各荷重の実験値,解析値および破壊形式

*B-曲げ引張破壊, P-ピーリング破壊

図-7 最大荷重と継手部の有無および電流量との関係

(a) SJ-A0 の鉄筋

(b) SJ-A600 の鉄筋 写真-3 破壊後の鉄筋の腐食状況

継手部の有無や電流量の違いによる最大荷重の関係 を図-7に示す。CFRP グリッドで補強した供試体は,継 手部の有無にかかわらず,無補強の供試体 S0 に比べ各 荷重が 1.5 倍以上増加したことから, CFRP グリッドによ る補強工法の効果が確認できた。また,継手部を有する 供試体は,継手部の無い供試体よりも最大荷重が約 2 割 程度小さかった。これは既往の研究にも報告されている ように,継手部端部に応力が集中したため継手部に剥離 が生じ,耐力低下に至ったと考えられる³。

電流量の違いによる最大荷重には、あまり差がなかったこ

とから,防食電流を多く通電しても,CFRP グリッドの損傷は ほとんどなかったと推測できる。

破壊後に取り出した供試体 SJ-A0, SJ-A600 の鉄筋の 腐食状況を,**写真-3** に示す。防食電流の通電の有無に かかわらず,鉄筋の腐食に特に顕著な差は見られず,防 食電流の効果は確かめられなかった。これは,RC はり に及ぼす腐食環境が厳しくなかったために,鉄筋の腐食 の進行具合に特に大きな変化がなかったと考えられる。

5. ひび割れの発生状況と破壊形式

各供試体の終局時における RC はりのひび割れ状況を 図-8 に示す。曲げひび割れ間隔が,ほぼ等間隔に発生 していることから,曲げひび割れ発生は,CFRP グリッ

ドの格子交差部の位置に沿うように発生したことが認め られる。これは、CFRP グリッドの格子交差部に応力が 集中し、等間隔にひび割れが発生したものと考えられる。 防食電流量の違いによる影響はあまり大きくなく、同様 のひび割れ状態になっていることが認められる。

継手部の無い一体型 CFRP グリッドで補強した SN シ リーズでは、4 体の RC はり全てで、曲げひび割れが圧 縮側に進展し、曲げ引張破壊に至った。継手部を有する CFRP グリッドで補強した SJ シリーズでは、防食電流量 の多い供試体 SJ-A75、SJ-A600 では SN シリーズと同様 に曲げ引張破壊した。

一方,継手部を有する供試体の SJ-A0, SJ-A15 でも, CFRP グリッドの格子交差部から曲げひび割れが発生し ているが、継手部端部に曲げひび割れと斜めひび割れが 介在してコンクリートがブロック化し、そのブロック化 したコンクリート片によって下面増厚部が下方に押し下 げられ剥離が起こり、ピーリング破壊が生じた。このよ うに、CFRP グリッドに継手部が有る場合、ピーリング 破壊を起こすことがある。これは、継手部の CFRP グリ ッド端部に局部的せん断応力が集中すること、曲げひび 割れと斜めひび割れが介在し下方に押し下げられるピー リング作用によると考えられる。ピーリング破壊の様子 を写真-4 に示す。この写真より、ブロック化したコン クリート片には、増厚部の PCM だけでなくコンクリー トも含まれていることがわかる。これは、躯体底面と吹 付けモルタルの付着が十分に確保されたことによると考 えられる。

6. RC はりのたわみ

図-9は、補強された供試体と無補強の供試体 S0 の荷 重とたわみの関係を示したものである。この図より明ら かなように、補強することによりたわみが抑制され、下 面増厚の補強効果が得られている。また、継手部の無い 一体型 CFRP グリッドの供試体 SN シリーズおよび継手 部を有する供試体 SJ シリーズとともに、防食電流量の 影響をほとんど受けずに、ほぼ同等のたわみとなった。

7. 平均曲げひび割れ幅

継手部を有する供試体 SJ シリーズの平均曲げひび割 れ幅と荷重の関係を図-10に示す。平均曲げひび割れ幅 は、等曲げモーメント区間内に貼付した5個のπ型ゲー

図-11 最大曲げひび割れ幅と荷重の関係

ジの平均値とした。

防食電流を通電することによって,通電していない 供試体 SJ-A0 と比べて,平均曲げひび割れ幅が少し小さ くなった。しかし,防食電流量の違いによる平均曲げひ び割れの値には,あまり差みられなかった。また,継手 部の無い一体型 CFRP グリッドの供試体 SN シリーズで も,防食電流量が変化しても,平均曲げひび割れ幅はほ とんど変化しなかった。これらは,前述したように,RC はりに与える腐食環境が厳しくなかったと考えられる。

8. 最大曲げひび割れ幅

継手部の無い一体型 CFRP グリッドの供試体 SN シリ ーズの最大曲げひび割れ幅の実験値と荷重の関係を図-11 に示す。最大曲げひび割れ幅は,等曲げモーメント区 間内に貼付した π型ゲージで測定したうちの,最大値を 示したものとした。

引張鉄筋が降伏するまでの荷重段階において,供試体 SN-A15に比べて供試体 SN-A75は、最大曲げひび割れ幅 が少し小さくなった。また、電流量の最も多い供試体 SN-A600の最大曲げひび割れ幅が最も大きくなった。し かしながら、防食電流量が変化しても最大曲げひび割れ 幅の変化は小さかった。

9. 実験値と解析値の比較

図-11 中には、供試体 SN シリーズおよび無補強の供 試体 SO における最大曲げひび割れ幅と荷重についての 解析値も追記している。また、防食電流を 600mA/m² 通 電したはりの解析値と実験値を図-12 に示す。なお、図 中の実験値は、CFRP グリッドに継手部が無い場合と有 る場合について示してある。

断面解析プログラムでは、断面のみで解析を行うため、 継手の有無のモデル化は困難であったので、継手部の無 い CFRP グリッド一体型の供試体の解析値と示している。 解析値はまた、4章に示したように、鉄筋の腐食量が少 なく防食電流量の違いによる差があまり見られなかった ので、供試体3体を同一条件として算出した。

図-11より明らかなように、実験値と解析結果はほぼ 一致しているが、無補強の供試体 S0 において、引張鉄 筋の降伏までの曲げひび割れ幅の値に少し差があり、解 析値よりも実験値が少し大きかった。1 次載荷によって 発生させた初期ひび割れが、2 次載荷において進展し、 ひび割れ幅が増加したことによると考えられる。

一方,防食電流を通電したはりでの結果をみてみると, 最大曲げひび割れ幅と平均曲げひび割れ幅ともに,継手 部なしのほうが継手部ありよりも少し大きくなっている。 そして,CFRP グリッドに継手部を有さない場合には, 解析値と実験値はほぼ同程度の値を示している。

10. まとめ

新しく考案したチタンメッシュ陽極を併用した CFRP グリッドで下面増厚補強した RC はり供試体を用いて, 防食電流も最大で 600mA/m²を 2 年間通電した後に載荷 実験を行った結果,以下の知見が得られた。

- 防食電流を通電しても、曲げひび割れ発生荷重やた わみには違いがほとんど認められなかった。
- 2) 電流量の違いによる最大荷重にも、あまり差がなかった ことから、防食電流を多く通電しても、CFRP グリッドの損 傷および RC はりの耐力低下に影響を及ぼさないことが 認められた。
- 引張鉄筋が降伏する前までは、継手部の有無が曲げ 補強効果に及ぼす影響はほとんどなかった。しかし、

引張鉄筋が降伏した後においては,継手部がない供 試体と比較すると,継手部のあるはりの曲げ剛性が 低下し,また継手部端部に比較的大きな剥離応力が 生じるため,継手部に剥離が生じ,最大耐力が低下 した。

- 4) 積層モデルによるはりの曲げ解析値は、最大曲げひ び割れ幅の実験値にほぼ一致した。
- 5) RC はりに与える腐食環境が厳しくなかったため,防 食電流量が最も少ない供試体と最も多い供試体とも に,鉄筋の腐食量が少なく,腐食の進行具合に変化 がなかった。

謝辞

本研究の実施には,当時群馬大学工学部建設工学科 に在籍の大石学(現在,戸田建設株式会社)氏に御援助 を頂いた。また,供試体の作製および載荷試験を行うに あたり,ドーピー建設工業株式会社森田誠司氏,住友大 阪セメント株式会社川俣孝治氏には,多大なご協力を賜 りました。厚く御礼申し上げます。

参考文献

- 小田切芳春, 辻 幸和, 岡村雄樹, 小林朗:継 手部を有する連続繊維補強材による下面増厚し た RC はりの疲労性状, コンクリート工学年次 論文集, Vol.25, No.2, pp.1915-1920, 2003.7
- 佐藤貢一,小田切芳春,辻幸和:継手部を有する連続繊維補強材による RC はりの下面増厚補 強効果,コンクリート工学年次論文集,Vol.26, No.2, pp.1735-1740, 2004.7
- 3) 辻幸和,小田切芳春,岡村雄樹,佐藤貢一:継 手部を有する連続繊維補強材を用いた RC はり の補強効果,土木学会論文集, Vol.78, pp.67-80, 2005