論文 接着系あと施工アンカーの予測引張破壊荷重に関する実験的研究

大和 征良*1·山本 泰稔*2·近藤 龍哉*3

要旨:異形鉄筋 D19 をアンカー筋とする接着系注入方式あと施工アンカーの単体と群体の引張破壊実験 を行った。既往の文献 1)より破壊モードごとに分類し、日本建築防災協会の耐震改修設計指針接着系あと 施工アンカーの設計引張強度(引張耐力)算定式を基本に、予測引張破壊荷重について算定式を提案し、破 壊モードを含めた実験値との比較検討を行った。コンクリート実強度、鋼材破断実強度及び実験付着強度 を用いてコンクリートコーン状破壊で決まる算定式に調整係数 α₁ を乗じることで、予測引張破壊荷重値 と実験値及び各々の破壊モードを概ね評価することができることを実証した。 キーワード:接着系あと施工アンカー、単体、群体、予測引張破壊荷重、終局引張耐力、設計引張耐力

1. はじめに

近年1981年以前の耐震基準で建築されたRC造の集合 住宅等における耐震補強の需要も増えており、袖壁増設 補強で居住しながら補強設計を行う事例も徐々に増加 している²⁾³⁾⁴⁾。その際,袖壁端部や柱脚接合部に用いる 接着系あと施工アンカーは, 主として引張力の作用が重 要となる⁵⁾。日本建築防災協会の耐震改修設計指針では, 接着系あと施工アンカーの設計引張強度(設計引張耐力) の算定式が定められている¹⁵⁾。大地震動時、アンカーの 破壊時の引張荷重や最大引張荷重及び破壊モードを概 ね予測することも重要と考えられるが、接着系あと施工 アンカーの単体・群体の予想引張破壊荷重について言及 された報告は数少ない 677899100。そこで、本論文では、単 体・群体の接着系あと施工アンカーで、居住しながら耐 震補強を行うために必要な低振動・低騒音・低粉塵工法 で必須となる注入方式の引張破壊実験の結果を用いて, 実験値と設計引張強度の比較を行うと共に、予測引張破 壊荷重の算定式を提案し,実験値との比較検討を行う。

2. 単体引張破壊実験の概要と結果

2.1 実験概要¹¹⁾

実験は、単体の接着系あと施工アンカーの引張破壊性 能検証実験¹¹⁾であり、(社)日本建築あと施工アンカー協 会のあと施工アンカー標準試験方法(案)・同解説に準拠 して公的試験機関で行った。実験に用いたコンクリート ブロック供試体の形状は、縦2000mm×横3000mm×厚さ 400mmの形状の無筋コンクリートであり、あと施工アン カーの打設においては、へりあき寸法やアンカーピッチ が強度や変形性能に影響しないように配慮し、打設位置 を決定した。下穴の穿孔においては、居住しながら補強 を行うことを想定して低振動・低騒音・低粉塵の手持ち 式ダイヤモンドコアドリル¹²⁾¹³⁾を用いた。使用した接着 系あと施工アンカーは、高性能エポキシ樹脂系の注入方 式である。アンカー筋は径が一種類降伏点で2種類の D19 (SD295A と SD345)の異形鉄筋を用いて、先端は 寸切りにしたものとした。パラメータは、アンカー筋埋 込み深さ、アンカー筋規格、コンクリート強度であり、 建築防災協会の耐震改修設計式¹⁵⁾で示されている3つの 破壊モードを想定して設定した。**表-1**に異形鉄筋の材 料試験結果を示す。図-1に引張実験加力装置を示す。 加力はいずれも単調載荷とし、変位はアンカー筋のコン クリート表面からの抜け出し量を参考までに測定した。 ただし、抜出し量には、埋込み以外にアンカー筋の露出 部分の伸び量も含まれている。

^{*1} 日本ヒルティ 技術本部 修士(工学)(正会員)
*2 芝浦工業大学 名誉教授 工学博士 (正会員)
*3 工学院大学 建築学部 准教授 博士(工学)(正会員)

	降伏強度	破断強度	伸び率
	(N/mm^2)	(N/mm^2)	(%)
D19 (SD295A)	366	534	26
D19 (SD345)	406	603	22

表-1 アンカー筋材料試験結果

2.2 実験結果

表-2 に引張実験に使用したアンカーの概要と最大引 張荷重(P_{max})(kN),終局時変位量及び破壊モードを示す。 母材コンクリート強度は、実験時に行ったコンクリート の圧縮試験の実強度を記載している(コンクリートの圧 縮試験を行った際の材令は約2週間であった)。母材コ ンクリート圧縮強度は 16.5(MPa), 35.5(MPa)の2とおり, アンカー筋埋込み深さは 190mm(10da), 133mm(7da)の 2 とおり(有効埋込み深さも 190mm(10da), 133mm (7da))で ある。また、変位についてはあくまで参考値として、最 大引張荷重(Pmax)の 20%耐力低下時の変位までは有効で あるとする慣用の方法¹⁴⁾を採用して計測したが、アンカ 一筋破断モードの試験体は、全て最大引張荷重に達した 直後にアンカー筋が破断したため,最大引張荷重時の変 位をそのまま記載することにした。表-2より,同じ破壊 モード3体の最大引張荷重と変位を見るに、アンカー筋 破壊モードの試験体(試験体番号①②③)と比較し、コ ンクリート破壊モード(④⑤⑥), 付着破壊モード(⑦⑧⑨) の試験体は各々3体の結果のばらつきが大きいと言える。

3. 群体引張破壊実験の概要と結果

3.1 実験概要

実験は、居住しながらの施工が可能な耐震補強工法の 一つである増厚袖壁工法 ⁵⁾を念頭に,既存基礎梁と増厚 袖壁とを一体化するための水平接合部をイメージした 実物大の群アンカーの引張実験である。実際の試験体寸 法や状況写真並びに加力装置と加力装置への試験体の 設置状況等, 図-2~図-10 に示す。試験体数は1体であ る。 群アンカーのアンカー筋は D19(SD345)で4本, コン クリートへの埋込み深さ(有効埋込み深さ)は 228mm(12d_a),加力装置は図-7のような建研式逆対称加 力装置を用いてパンタグラフによって平行が保持され る鉛直アクチュエーターにより4本の群アンカーに均等 に鉛直荷重を加えた。水平荷重は常にゼロとした。鉛直 荷重の載荷履歴は、±78.4kN(アンカー筋降伏強度の± 20%荷重時)、±156.8kN(±40%)、±235.2kN(±60%)の 加力を1回行ったあと,最終破壊まで引張荷重(鉛直荷重) を加え続けた。鉛直荷重をアンカー筋に作用させる詳細 接合部を図-8~図-10に示す。また、図-2~図-5に基礎 梁既存コンクリートの寸法を示す。アンカーの筋のアン カーピッチは 200mm, へりあき寸法は 120mm, 180mm である(図-5)。アンカー下穴の穿孔においては、ハンマ ードリルを用いた。使用した接着系あと施工アンカーは, 高性能エポキシ樹脂系の注入方式である。試験体の母材 コンクリート圧縮強度は 25.0(MPa)であった(コンクリー ト設計基準強度:15(MPa))。

試験体 番号	破壊モード	母材 コンクリート 圧縮強度	アンカー筋 規格	アンカー筋 先端形状	埋込み 深さ (1 _e)(1)	最大引張 荷重 (P _{max})	変位 (終局(アンカー 筋破断)時)(P _u) (P _{max} ×0.8)
		(N/mm^2)			(mm)	(kN)	(mm)
1						150.5	22.4
2	アンカー筋 破断	16.5	D19 (SD295A)	寸切り	$190(10d_a)$	152.9	21.4
3			(02 - 0011)			153.1	21.5
4						128.7	6.1
5	コンクリート 破壊	16.5	D19 (SD345)	寸切り	$133(7d_{a})$	117.5	4.3
6						123.2	5.0
7					199 (74)	152.4	19.0
8	付着破壊	35.5	D19 (SD295A)	寸切り	133(/d _a)	144.3	15.0
9					190 (10d _a)	138.4	16.3

表-2 単体引張実験結果一覧

3.2 実験結果

表-3 に実験の最大引張荷重及び破壊モードを示す。 終局強度時の破壊状況を図-11~図-14 に示す。鉛直荷重 ±78.4kN(アンカー筋降伏強度の±20%荷重時),± 156.8kN(±40%),±235.2kN(±60%)の載荷サイクル中, 試験体に目立ったひび割れは生じなかった。引張荷重 259.6kN において,アンカーピッチに沿ったコンクリー ト表面及びアンカー筋周囲のコンクリート表面にひび 割れが生じた。最大鉛直荷重448.8kN において,突然群 アンカーによるコンクリートコーン状破壊が脆性的に 起こり,その後は急激に耐力が低下した。図-2のように, コンクリート中に埋込まれたD19のアンカー筋に歪ゲー ジを設置したが,終局強度時(最終破壊時)において全て のアンカー筋は未だ降伏していなかった。

試験体番号	10
破壊モード	コンクリート破壊
母材コンクリート 設計基準強度 (N/mm ²)	15.0
母材コンクリート 実圧縮強度 (N/mm ²)	25.0
群アンカー筋規格	D19(SD345)
埋込み深さ (l)	228 (12d _a)
埋込み深さ (l _e)	228 (12d _a)
最大引張荷重 (kN)	448.8

表-3. 群体引張実験結果一覧

4. 予測引張破壊荷重算定式の提案

4.1 耐震改修設計指針の設計引張強度と実験値の比較

単体の引張破壊実験(実験 2)と群アンカーの引張破壊 実験(実験3)との同条件下において,それぞれ耐震改修設 計指針の算定式(右式(1)~右式(4))を用いて設計引張強 度を算出した。算出結果と実験値を表-4に示す。算出に おいては、文献 18)のアンカー筋の破断強度(材料破断実 験値)を用いて概ね評価できるという検証から,アンカー 筋の降伏強度(σ_v)に表-1のアンカー筋の実際の材料破断 強度(σ_{ut})を用い, RC 構造物の耐震診断・補強設計を行う 際にコンクリート実強度(コンクリートコア材料圧縮実 強度)を調査し、部材の算定に用いるコンクリート強度を 設定することから¹⁹⁾, コンクリート設計基準強度(σ_B)に コンクリート材料実強度(oBt)を用い、並びに、付着強度 (て)においては、文献 16)17)に準じたコンクリートコーン 状破壊を発生させず最終破壊が付着破壊となるように 母材コンクリートを拘束して引張試験を行って測定し た付着強度実験値(τ_{ut})を用いた。

また,設計引張強度の破壊モードと実験2,実験3の

破壊モードを表-4 に示す。単体アンカー(A)(C)の条件下 において,設計引張強度算出値の破壊モードと実験によ る破壊モードの結果に差異が見られる。これは,今回の 条件下においては,耐震改修設計指針のコンクリートの コーン状破壊で決まる耐力算定式を用いた算出値(T_{a2})が 実験値と比べ過小評価となっているものと考えられる。

図-11. 最終破壊時(終局時)試験体破壊状況写真(北側)

図-12. 最終破壊時(終局時)試験体破壊状況写真(南側上部4本)

図-13. 最終破壊時(終局時)試験体破壊状況写真(南側上部側面)

図-14. 最終破壊時(終局時)試験体破壊状況写真(南側上部へりあき部)

■耐震改修設計指針の設計引張強度¹⁵⁾

$T_a{=}min$	$[T_{a1}, T_{a2}, T_{a3}]$	(1
$T_a = min$	$[T_{a1},T_{a2},T_{a3}]$	(1

$T_{a1} = \sigma_y \cdot a_0$	(2
-	

$$T_{a2} = 0.23 \cdot \sqrt{(\sigma_B)} \cdot A_c \quad (A_c = \pi \cdot l_e(l_e + d_a)) \tag{3}$$

 $T_{a3} = \tau_a \cdot \pi \cdot d_a \cdot l_e$ ($\tau_a = 10 \cdot \sqrt{(\sigma_B/21)}$) (4) (T_{a1} :アンカー筋の鋼材で決まる耐力, T_{a2} : コンクリートのコーン状破壊で決まる耐力, T_{a3} : 付着力で決まる耐力, σ_y : 鉄筋の 規格降伏点強度(N/mm²), a_o :アンカー筋の公称断面積(mm²), σ_B : コンクリート圧縮強度(N/mm²), A_c :コンクリートコーン状破壊 面のアンカー1 本あたりの有効水平投影面積(mm²), l_e : アンカ 一筋の有効埋込み深さ(mm), d_a :アンカー筋の呼び径(mm), τ_a : 付着強度(N/mm²), σ_B 適用範囲:15~36(N/mm²))

4.2 予測引張破壊荷重算定式(調整係数:α₁)

$$T_{apu} = \min \quad (T_{a1pu}, T_{a2pu}, T_{a3pu})$$
(5)

$$T_{a1pu} = \sigma_{ut} \cdot a_0 \tag{6}$$

$$\mathbf{T}_{a2pu} = \alpha_1 \cdot 0.23 \cdot \sqrt{(\sigma_{Bt})} \cdot \mathbf{A}_c \tag{7}$$

$$(\mathbf{A}_{c} = \boldsymbol{\pi} \cdot \mathbf{l}_{e}(\mathbf{l}_{e} + \mathbf{d}_{a})) \quad (\boldsymbol{\alpha}_{1} = 1.5)$$
(8)

 $T_{a3pu} = \tau_{ut} \cdot \pi \cdot d_a \cdot l_e \tag{9}$

(σ_{ut}:アンカー筋材料破断強度(N/mm²), σ_{Bi}: コンクリート材料 実強度(N/mm²), τ_{ut}:実験付着強度(N/mm²)¹⁶⁾¹⁷, α₁:調整係数) 予測引張破壊荷重算定式として,式(5)~式(9)を提案す る。これは,建築防災協会の耐震改修設計式の算定式を 基本とし,アンカー筋の降伏強度(σ_y)にアンカー筋材料 破断強度(σ_u)を,コンクリート設計基準強度(σ_B)にコン クリート材料実強度(σ_B)を,並びに付着強度(τ_a)に文献 16)17)の付着強度実験に準じて行った付着強度実験値 (τ_u)を用いて,かつ,コンクリートのコーン状破壊で決 まる引張破壊荷重算定式として α_1 (調整係数)を乗じたの

表-4. 耐震改修設計指針算定式・予測引機破壊荷重算定式・実験値との比較

	単体アンカー (A)	単体アンカー (B)	単体アンカー (C)	群体アンカー
	表-2.①②③	表-2.456	表-2.⑦⑧	表-3.⑪
le (mm)	190 (10d _a)	133 (7d _a)	133 (7d _a)	228 (12d _a)
コンクリート母材 材料実強度 _{のBt} (N/mm ²)	16.5	16.5	35.5	25.0
アンカー筋引張破断 実強度 _{σut} (N/mm ²)	534 (SD295A)	603 (SD345)	534 (SD295A)	603 (SD345)
実験付着強度 τ _{ut} ¹⁶⁾¹⁷⁾ (N/mm ²)	16	16	16	19
T _{al} (鋼材破断強度使用) (kN)	153	173	153	691
T _{a2} (コンクリート破壊) (コンクリート実強度使用) (kN)	116	59	87	276
T _{a3} (付着破壊)(τ _{ut} 使用)(kN)	181	127	127	1,034
T _a (耐震改修設計指針算定値) (kN)	116	59	87	276
破壊モード (耐震改修設計指針算定式)	コンクリート破壊	コンクリート破壊	コンクリート破壊	コンクリート破壊
P _{max} (kN) 最大引張荷重実験値	152.1	123.1	148.3	448.8
P _u (kN) 終局引張荷重実験値 (P _{max} ×0.8)	121.7	98.5	118.6	359
破壊モード (実験結果)	鋼材破壞	コンクリート破壊	付着破壊	コンクリート破壊
T_{a2pu} (コンクリート破壊) (予測引張破壊荷重算定値) $T_{a2pu} = T_{a2} \times \alpha_1$ (kN) $\alpha_1 = 1.5$	175	89	130	414
T _{apu} = min [T _{a1pu} , T _{a2pu} , T _{a3pu}] (予測引張破壊荷重算定値)	153	89	127	414
破壊モード (予測引張破壊荷重算定式)	鋼材破壞	コンクリート破壊	付着破壊	コンクリート破壊

みである。この調整係数は文献 1)20)21)より材料特性の ばらつき等の不確実性を考慮した部分安全係数等を参 考に定め、本稿第2章単体引張実験(実験2)コンクリート コーン状破壊の最大引張荷重のばらつきを考慮し、α₁= 1.5 と仮定している。以上より、実験値と式(5)~式(9)の 予測引張破壊荷重算定式にて算出することで、表-4 より、 条件(A)(B)(C)の単体アンカー及び群アンカーの条件下 において、条件(B)は多少の差異があるものの、予測引張 破壊荷重算出値と最大引張荷重(終局引張荷重)実験値 が概ね近い値となり破壊モードも一致することから、概 ね評価できるものと思われる。

5. まとめ

本報では、袖壁増設補強等居住しながら耐震補強を行 う際の既存部と補強部の接合として引張強度が重要と なる部位を想定し、単体・群体の接着系注入方式あと施 エアンカーの引張破壊性能検証実験を行った。大地震動 時における、アンカーの破壊時の引張荷重や最大引張荷 重を概ね予測することも重要と考え、建築防災協会の耐 震改修設計指針の算定式を基本に、予測引張破壊荷重算 定式を提案し、実験値との比較検討を行った結果、限ら れた条件による実験検証のみではあるが、提案式で概ね 評価できる可能性を示した。今後は、多数の実験やデー タ収集を行い、提案式の妥当性を検討したい。

6. 謝辞

本実験的研究を行うにあたり,新潟大学中村孝也准教授 に多大なるご助言をいただいた。また,本稿第3章群体 引張破壊実験は首都大学東京の実験施設を使用して実 施した。ここに感謝の意を表します。

参考文献

- 大和征良、山本泰稔、近藤龍哉:接着系あと施工アン カーの引張強度と靭性に関する実験的研究と各種設 計式の設計引張耐力比較検討、コンクリート工学年次 論文集、pp.1057-1062, Vol.33, No.2, 2011年7月
- 近藤龍哉,伴幸雄,加藤三晴,山本泰稔:既存建物袖 壁付き柱の曲げ補強に関する実験的研究,コンクリー ト工学年次論文集,pp.1345-1350, Vol.33, No.2, 2011 年8月
- 3) 中村孝也,阿部泰浩,芳村学,大和征良,広沢雅也: 中低層RC造集合住宅の袖壁増厚による耐震補強に関 する実験(その1 実験計画)(その2 実験結果の考察), 日本建築学会大会(東海)学術講演梗概集, pp.819-822, 2012年9月
- 加藤三晴:外付け補強,耐震補強工法の基本の実務, 建築技術, pp.125-129, No.727, 2010年8月,
- 5) 既存建築物の耐震診断・耐震補強設計マニュアル, (一社)建築研究振興協会他編著, pp.21-31, pp.79-87,

2012年版<下巻>

- 6) 塩畑英俊,野島昭二,林和彦:あと施工アンカーの耐力に関する実験的研究、コンクリート工学年次論文集、 pp.625-630, Vol.32, No.2, 2010年
- 7)酒井悟,塚本英司,秋山友昭,廣澤雅也他:第3種軽量コンクリートの構造特性に関する検討(その2あと施工アンカーの性能),日本建築学会大会(北陸)学術講演梗概集,pp.609-610,2010年9月
- 8) 酒井悟,中野克彦,杉山智昭,松崎育弘:接着系あと施工アンカーの構造特性に関する実験的研究-定着長さ・へりあき寸法を考慮した評価方法の検討-日本建築学会北陸支部研究報告集,pp.45-48,第49号,2006年7月
- 9) 清原俊彦, 松崎育弘, 中野克彦, 福本晃治: 接着系あ と施工アンカーの構造特性に関する研究, コンクリー ト工学年次論文集, pp.199-204, Vol.20, No.3, 1998年
- 10)後藤浩司、中野克彦、松崎育弘他:接着系あと施工 アンカーの構造性能に関する実験的研究~フィルム チューブ型樹脂アンカーについて~、日本建築学会大 会(九州)学術講演梗概集、pp.717-718,1998年9月
- 11) あと施工アンカー(ヒルティHIT-RE500)の性能試験, 試験報告書, (財)建材試験センター, pp.1-74, 2000.8
- 辻和幸,小隈幸一:あと施工アンカー工事,特集 RC 造の耐震診断・耐震補強の基本知識(監修:広沢雅也), 建築技術, pp.158, 2009.3
- 13) 高橋宗臣: あと施工アンカー工事, 特集 知っておきたい耐震補強実務のポイント(監修 広沢雅也+秋山友昭), 建築技術, pp.162-163, 2010.8
- 14) 鉄筋コンクリート造建物の靭性保証型耐震設計指 針・同解説,(社)日本建築学会,pp.119-120,2008.6
- 15) 既存鉄筋コンクリート造建築物の耐震改修設計指 針・同解説,(財)日本建築防災協会,pp.117-138, pp.266-290,2001年改定版
- 16)有木克良,渡辺一弘,秋山友昭,久保田雅春,高瀬裕也他:湿式コアドリル工法によるあと施工アンカーの性能確認実験(その1)回転式カプセル型アンカー(低騒音型)を用いた付着性能実験,日本建築学会学術講演梗概集(北陸),pp.147-148,2010年9月
- 17) 瀬戸口英恵,阿部隆英,高瀬裕也,佐藤眞一郎,高 橋宗臣,佐藤貴志:湿式コアドリル工法によるあと施 エアンカーの性能確認実験(その2)注入式アンカー を用いた付着性能実験,日本建築学会学術講演梗概集 (北陸), pp.149-150,2010年9月
- 18)伴幸雄、山本泰稔、近藤龍哉、大和征良:既存建物袖 壁付き柱の補強に関する群アンカーの実験的研究、コ ンクリート工学年次論文集、pp.1423-1428、Vol.33、 No.2、2011
- 19)廣澤雅也,秋山友昭他:特集 知っておきたい耐震補 強実務のポイント,建築技術, pp.92-99, No.727, 2010 年8月
- 20)玉越隆史:道路橋示方書の性能規定化と今後の展望, 土木学会誌, pp.28-29, Vo.98, No.3, 2013年3月
- 21)Anchor Fastening Technology Manual: Hilti Corporation, pp.34-35, (Sep)2012