論文 粗骨材寸法の大きいコンクリートの楔挿入割裂試験

石黒 覚*1

要旨:現場から採取したコンクリートコアおよび 40mm と 80mm ふるいでウエットスクリーニングしたダム コンクリートを対象として楔挿入割裂試験を実施した。試験結果から破壊エネルギーと引張軟化曲線を推定 し、粗骨材寸法の大きいコンクリートの破壊特性ならびに楔挿入割裂試験の適用性について検討した。粗骨 材寸法が大きいコンクリートは、普通コンクリートに比べてその破壊エネルギーは大きく増加した。また、 コア供試体や寸法の大きい角柱供試体を用いた楔挿入割裂試験により、コンクリートの荷重一開口変位の関 係を測定し、多直線近似解析を適用して引張軟化曲線を推定できることが確認できた。 キーワード:楔挿入割裂試験、コンクリートコア、ダムコンクリート、破壊エネルギー、引張軟化曲線

1. はじめに

コンクリート構造物の破壊挙動は、ひび割れの発生 や進展などに関係するため、その破壊解析では強度以 外に破壊エネルギーや引張軟化曲線などの破壊パラメ ータが適用されている。近年、コンクリートダムにお いても大規模地震に対する耐震性能照査が進められて おり、損傷過程も含めた解析的検討の必要性が増加し ている。このため、国内でも粗骨材寸法の大きいダム コンクリートの破壊試験が実施されている¹⁾。また、動 的解析に関係する破壊特性のひずみ速度の影響の研究 も行われている²⁾。特に、無筋コンクリート構造物であ るダムにおいては、損傷過程を考慮した解析を実施す るために、破壊エネルギーや引張軟化曲線などの破壊 パラメータの評価は重要である。

コンクリートの破壊試験法としては、切欠き梁の3 点曲げ試験、楔挿入割裂試験、CT 試験および直接引張 試験などが適用されている。いずれの試験法でも安定 した荷重-開口変位の計測が求められる。本研究では、 楔挿入割裂試験を適用した。楔挿入割裂試験の利点と しては、比較的小さな載荷重で破壊試験が実施できる こと、破壊に至るまでの荷重 - 開口変位の挙動を安定 して計測できること, また、供試体の寸法を比較的小 さくできることなどが挙げられる。著者は、これらの 利点に着目し、Tschegg 博士により考案された楔挿入割 裂法³に基づく破壊試験装置を作製し、これまでに各種 コンクリートの破壊試験を実施した^{4,5}。

本研究では、現場から採取したコンクリートコアおよ び試験室で40mmと80mmふるいでウエットスクリーニ ングしたダムコンクリートを対象として楔挿入割裂試験 を実施した。ダムコンクリートに関しては、一辺200mm の立方供試体を用いた楔挿入割裂試験結果をすでに報告 したの。ここでは、寸法のより大きい350×350×200mmの 角柱コンクリート供試体を用いて楔挿入割裂試験を実施 した。これらの試験結果から破壊エネルギーと引張軟化 曲線を推定し、粗骨材寸法の大きいコンクリートの破壊 特性ならびに楔挿入割裂試験の適用性について検討した。

2. 破壊エネルギーの測定

2.1 コンクリートコアの破壊試験

(1) 供試体の概要

コンクリートコアは,築造後 50 年以上が経過し,今 後改築が計画されている頭首工の堰柱,固定堰およびエ プロンから採取した。なお,固定堰については旧固定堰 (固定堰 No.1)と後年の災害復旧による改修部分(固定堰 No.2)の2ヶ所から採取した。固定堰 No.2 は,粗骨材最 大寸法 40mm,高炉セメント使用の砕石コンクリートで あった。堰柱,固定堰 No.1 およびエプロンのコンクリー ト配合は不明であるが,当時のコンクリート標準示方書 では粗骨材最大寸法が 100mm 以下であり,また,直径 100mm および 150mm のコア供試体の観察から,堰柱,固 定堰 No.1 およびエプロンでは,おおよそ,40mm 以上, 70mm 以下と推定された。骨材はすべて川砂利であった。

供試体は,破壊試験用に直径 150mm を各 1 個,強度 測定などの力学試験用に直径 100mm を各 2 個採取した。

(2) 試験方法

破壊試験用のコンクリートコアは、先ず、直径150mm、 高さ約200mmを標準として成形した。次に、この供試 体の側面の厚さ20mmの部分をコンクリートカッターで 切断して平坦にし、その後、側面中央に幅40mm、深さ 20mmの溝を切削した(写真-1、図-1参照)。楔挿入 割裂試験ではこの溝の部分にローラベアリング付きの荷 重伝達版を挿入し、鉛直方向から楔をローラベアリング に沿って挿入した(図-2参照)。楔挿入による大きな水 平方向荷重により、供試体を割裂破壊させる。なお、供 試体にはコンクリートカッターを用いて切欠きを設け、 この部分からひび割れが発生するようにした。

試験では1分間に1mmの速度で楔を挿入させ、この とき、試験機から楔に載荷される鉛直方向荷重 *F*m をロ ードセルにより測定した。また、開口変位測定治具を供 試体に取り付け、クリップ型変位計を用いて前後2ヶ所 の開口変位(CMOD)を測定した。水平方向荷重 F_h は、 楔の角度 α (傾斜した両面のなす角度)と鉛直方向荷重 F_m の値を用いて、 $F_h=F_m/(2\tan(\alpha/2))$ の関係式から算定した。

コンクリートの破壊エネルギーG_fは,単位面積のひび 割れを形成するのに必要なエネルギーとして定義され, 試験から得られた荷重(Fh)ー開口変位(CMOD)の結果か ら,次式により算定した。

$$G_f = W_a / A_{lig} \tag{1}$$

ここで、 G_f は破壊エネルギー (N/m)、 W_a は荷重 - 開 口変位の曲線下の面積 (N·m)、 A_{lig} はリガメント (破 壊域)の面積 (m²)を表す。なお、 A_{lig} は切欠き先端と 支点を含む垂直な面に破壊域を投影した面積である。

(3) 試験結果

荷重(F_h) - 開口変位(CMOD)の試験結果を図-3に示 す。また、表-1には、破壊エネルギーの試験結果を含 む、コンクリートコアの圧縮および引張強度、静弾性係 数などの力学特性の試験結果を示す。

普通コンクリートおよびダムコンクリートと比較す るため,試験より得られた破壊エネルギーG_fと圧縮強度 f_cの関係を図-4に示す。図中には以下の式(2)および式 (3)の関係も表している。式(2)は土木学会コンクリート 委員会から提案された普通コンクリートの関係式⁷,式 (3)は粗骨材最大寸法を 20~150mm としたダムコンク リートの破壊試験から求められた関係式¹⁾である。

$$G_f = 10 d_{\max}^{1/3} \cdot f_c^{1/3} \tag{2}$$

$$G_f = (0.79d_{\max} + 80)(0.1f_c)^{0.7}$$
(3)

ここで、 G_f は破壊エネルギー (N/m)、 d_{max} は粗骨材最 大寸法 (mm)、 f_c は圧縮強度 (N/mm²)を表す。

写真-1 成形したコア供試体の外観

図-1 コア供試体の形状寸法

図-2 コンクリートコアの楔挿入割裂試験

表-1 コンクリートコアの力学特性

種類	圧縮 強度	引張 強度	静弾性 係数	破壊エネ ルギー
	f_c (N/mm ²)	f_t (N/mm ²)	E_c (N/mm ²)	(N/m)
堰柱	11.3	1.49	22,700	86.6
固定堰 No.1	12.3	2.28	24,300	175
固定堰 No.2	21.0	2.17	27,100	176
エプロン	23.6	1.33	25,700	95.8

これらの関係式から、一般的にコンクリートの破壊エ ネルギーは、粗骨材最大寸法 *d*_{max} および圧縮強度 *f*_c が大 きいほど増加し、また、図中の曲線が示すように、式(3) のダムコンクリートの破壊エネルギーは、式(2)の普通コ ンクリートに比べて著しく大きいことがわかる。

頭首工から採取したコンクリートコアの破壊エネル ギーは、固定堰 No.1 および No.2 で大きく、堰柱および エプロン部では固定堰部の約半分であった。固定堰 No.1 の圧縮強度は No.2 に比べて低いにもかかわらず、破壊エ ネルギーは No.2 のそれと同程度であった。この一因とし て、固定堰 No.1 の粗骨材最大寸法が No.2 より大きいこ とが挙げられる。一方、粗骨材最大寸法が同程度と思わ れる堰柱およびエプロン部の G_f値は、固定堰部の約半分 となったが、これはピーク荷重以降の荷重低下が大きく

(図-3参照),また,供試体破壊面の凹凸も比較的小さ かったことから,これらの供試体では十分な骨材の噛み 合い効果が発揮できなかったものと推定される。

2.2 ダムコンクリートの破壊試験

(1) 供試体の概要

ダムコンクリートの使用材料として、セメントには中 庸熱フライアッシュセメント、細骨材として砕砂(表 乾密度 2.64g/cm³,吸水率 2.24%,粗粒率 2.55),粗骨 材として砕石(混合粗骨材 120~5mm:表乾密度 2.64g/cm³,吸水率 1.14%,粗粒率 8.24)を用いた。ま た,混和剤として AE 減水剤遅延形および空気量調整剤, 練混ぜ水として水道水を使用した。

ダムコンクリートの配合を表-2に示す。ここでは, 外部,内部および構造用コンクリートを試験対象とした。 楔挿入割裂試験の供試体には,寸法350×350×200mmの 角柱供試体を用い(図-5参照),外部(G)および内部(N) については40mmおよび80mm ふるいで,構造(K)は 40mm ふるいでウエットスクリーニングして作製した。 供試体数は4個とし,試験材齢まで標準養生を行った。

表-3は、圧縮および引張強度、静弾性係数などの力 学特性の試験結果を示す。これらは40mm ふるいでウエ ットスクリーニングしたコンクリートを用いて円柱供 試体(φ15cm×30cm)を作製し、試験材齢まで標準養 生を行い、JIS に規定された方法で試験して求めた。

図-4 コンクリートコアの破壊エネルギーと圧縮強 度の関係

図-5 角柱供試体の形状寸法

図-6 ダムコンクリートの楔挿入割裂試験

	如馬井の			一一一一一	刎風			単位量	(kg/m ³)		
配合区分	租宜材の 最大寸法 (mm)	スランプ (cm)	水セメ ント比 (%)	空気重 の範囲 (%)	神宜 材率 (%)	水 W	セメ ント <i>C</i>	細骨材 <i>S</i>	粗骨材 <i>G</i>	AE 減水剤	空気量 調整剤 (C×%)
外部	120	3 ± 1	48.1	3 ± 1	24	101	210	504	1606	0.525	0.045
内部	120	3 ± 1	68.7	3 ± 1	26	103	150	560	1601	0.375	0.010
構造	80	6 ± 1	46.9	3.5 ± 1	30	122	260	597	1398	0.650	0.013

表-2 ダムコンクリートの配合

(2) 試験方法

楔挿入割裂試験の概要を図-6に示す。試験では1 分間に1mmの速度で楔を挿入させ、このとき、試験機 から楔に載荷される鉛直方向荷重 Fm をロードセルによ り測定した。また、開口変位測定治具を供試体に取り付 け、クリップ型変位計を用いて前後2ヶ所の開口変位 (CMOD)を測定した。

(3) 試験結果

/II ⇒ Þ

ダムコンクリートの破壊試験は,材齢91日以降において実施した。荷重(Fh)-開口変位(CMOD)の計測結果の例を図-7に示す。試験では,荷重が零となる開口変位を計測できなかったため,開口変位が3~4mm以上の曲線部分は,下降域の計測データから外挿して推定した。

最大荷重と破壊エネルギーG_fの結果を表-4に示す。 表中の記号の頭文字は外部(G),内部(N)および構造(K) のコンクリートを表し,例えば,G40およびG80は, 40mmおよび80mmふるいでウエットスクリーニングし た外部コンクリートを表す。今回の試験では,ひび割れ が供試体側面に進展して破壊した供試体が3個あり,こ れらは対象から除外した。切欠き深さを大きくするなど して,確実に切欠き先端から支点に向かってひび割れ破 壊(写真-2参照)させる方法の検討も必要である。

外部および内部コンクリートでは, 粗骨材最大寸法が

⇒⊐	1	取入	平均	帔環工不	平均	
記	体	荷重	値	ルギー	値	
ク	No.	(kN)	(kN)	(N/m)	(N/m)	
	No.1	*		*		
G40	<i>"</i> 2	25.8	25.0	245	236	
040	// 3	24.3	23.0	226	250	
	<i>"</i> 4	*		*		
	No.1	26.3		376		
G80	<i>"</i> 2	29.0	27.1	419	383	
080	// 3	30.0	27.1	320	202	
	<i>"</i> 4	23.1		416		
N40	No.1	21.6		306		
	<i>"</i> 2	18.9	21.5	281	200	
	// 3	22.8	21.5	261	290	
	<i>"</i> 4	22.8		313		
N80	No.1	22.1		450		
	<i>"</i> 2	23.4	22.4	358	411	
	// 3	21.0	22.4	434	411	
	<i>"</i> 4	23.1		401		
K40	No.1	25.4		234		
	<i>"</i> 2	26.6	25.0	319	201	
	// 3	*	23.8	*	301	
	<i>"</i> 4	25.4		349		

表-4 最大荷重と破壊エネルギーの試験結果

E L.

*:ひび割れが供試体側面に進展して破壊したもの

表-3 ダムコンクリートの力学特性

	配合 区分	材齢 (日)	圧縮 強度 <i>fc</i> (N/mm ²)	引張 強度 <i>f</i> _t (N/mm ²)	静弾性 係数 <i>E_c</i> (N/mm ²)	ポアソ ン比
	外部	7	12.2	1.48	23,800	0.181
	(G)	28	30.3	2.99	28,400	0.190
		91	48.4	4.06	35,700	0.207
ſ	内部	7	5.41	0.689	17,400	0.169
	(N)	28	13.9	1.80	23,900	0.222
		91	26.9	3.09	31,400	0.211
I	構造	7	13.7	1.39	21,800	0.156
	(K)	28	31.3	3.11	28,500	0.165
		91	48.4	4.68	34,800	0.189

図-7 荷重(*Fh*)一開口変位(CMOD)の計測結果 (N40 および N80)

写真-2 角柱供試体の破壊状況

40mm から 80mm になると, 破壊エネルギーは 1.4~1.6 倍に増加した。これは, 骨材寸法が大きくなるとひび割 れ進展時の骨材の噛み合い効果が大きくなり, 破壊抵抗 性が大きくなるためと考えられる。

図-8は、ダムコンクリートの破壊エネルギー G_f と圧縮強度 f_c の関係を示す。粗骨材最大寸法 80mm の G80 と N80 では約 400N/m の大きな G_f 値を示し、圧縮強度が 異なっても大体同程度の値となった。また、N40 と K40 についても同様であり、圧縮強度よりも粗骨材最大寸法 の影響が大きいと考えられる。一方、G40 の値は N40 と K40 に比べて若干小さい値となった。G40 では供試体 4 個中 2 個が側面方向にひび割れて破壊しており、測定で きた 2 個の結果は G_f を小さく評価している可能性も考 えられる。今回、ダムコンクリートの式(3)による推定結 果は、試験値に比べて、圧縮強度が低い N40 と N80 で は小さく、圧縮強度が高い G40、G80 および K40 では 大きく見積もる傾向が認められた。

3. 引張軟化曲線の推定

3.1 多直線近似解析

図-9は、コンクリートの引張軟化曲線の評価方法 (案)⁸に基づく、荷重 - 開口変位の計測値から多直線近 似解析による引張軟化曲線の推定フローを示す。解析で は、先ず、コンクリートの静弾性係数および引張強度 を適当に仮定して FEM ひび割れ進展解析を行い、荷重 - 開口変位の計測値と解析値が最もよく一致するよう に静弾性係数 Eca および軟化開始点応力 So を推定する。

次に,推定した Eca および Soを用いて,多直線近似し た引張軟化曲線を仮定して FEM ひび割れ進展解析を行 う。解析モデルにおいては切欠き先端から支点までを 仮想ひび割れとして,それらの節点を切欠き先端から 1個ずつ分離してひび割れ進展を表現する。なお,i節 点目のひび割れ進展段階においては i 番目の軟化直線 の勾配を仮定し,分離した節点には既に決定した引張 軟化曲線から定まる結合応力を作用させて解析を行う。 荷重 -開口変位の計測値と解析値が十分に一致(誤差 0.1%以下)するまでこの解析計算を繰返して,i点目ま での引張軟化曲線の形状を決定する。さらに,i=i+1 と してこの解析過程を支点近傍の n 節点まで繰返し,多 直線による引張軟化曲線を推定する。

図-10は、固定堰 No.2 のコア供試体の解析モデルを 示す。ここでは、供試体の高さ方向の厚みの変化を考慮 して解析した。

3.2 解析結果

ダムコンクリートの So と E_{ca} の推定結果を表-5に 示す。推定値は各供試体の平均値を表しており、表-3 の材齢 91日の f_t や E_c の実験値と比べて低い値となった。

図-8 ダムコンクリートの破壊エネルギーと圧縮 強度の関係

図-9 多直線近似解析による引張軟化曲線の推定

表-5 ダムコンクリートの So と E_{ca}の推定結果

記号	軟化開始点応力 <i>So</i> (N/mm ²)	静弹性係数 $E_{ca}(N/mm^2)$		
G40	3.00	32,500		
G80	3.38	32,900		
N40	2.96	26,000		
N80	2.41	30,500		
K40	3.58	29,200		

コンクリートコアおよびダムコンクリートの引張軟

図-10 コア供試体の解析モデル

図-11 コンクリートコアの引張軟化曲線

図-12 ダムコンクリートの引張軟化曲線 (N40 および N80)

化曲線の解析結果を、それぞれ、図-11および図-1 2に示す。粗骨材最大寸法が20mm程度の普通コンクリートの場合、ひび割れ幅が0.15~0.2mmで引張応力が零になるのに対して、ダムコンクリートのように粗骨材寸 法が40mm、80mmの場合では、ひび割れ幅が0.2mm以上においても引張力を受け持っている。この結果は骨材 の噛み合い効果が大きいことを示している。

4. まとめ

本研究では、現場から採取したコンクリートコアおよ び試験室で40mmと80mmふるいでウエットスクリーニ ングしたダムコンクリートを対象として楔挿入割裂試験 を実施し、粗骨材寸法の大きいコンクリートの破壊特性 と楔挿入割裂試験の適用性について以下の結果を得た。

1) コンクリートコアを成形した供試体を用いて楔挿 入割裂試験を行うことができた。

2) 粗骨材寸法が大きいコンクリートは, 普通コンクリ ートに比べて破壊エネルギーは大きく増加した。ダムコ ンクリートでは粗骨材最大寸法が 40mm から 80mm にな ると, 破壊エネルギーは 1.4~1.6 倍に増加した。

3) コンクリートコア供試体や角柱供試体の楔挿入割 裂試験結果から,多直線近似解析を適用して引張軟化曲 線を推定できた。

参考文献

- 堀井秀之他:コンクリートダム耐力評価のための 引張軟化特性の検討,電力土木, No.286, pp.113-119, 2000
- 藤掛一典他:ひずみ速度の影響を考慮したコンク リートの引張軟化特性の定式化,土木学会論文集, V-50, No.669, pp.125-134, 2001
- Tschegg E.K : New Equipments for Fracture Tests on Concrete, Materials Testing, Vol.33, pp.338-342,1991
- 4) 石黒 覚:各種骨材を用いたコンクリートの破壊エネルギーと引張軟化曲線、コンクリート工学年次論 文報告集, Vol.20, No.3, pp.139-144, 1998
- 5) 石黒 覚: 楔挿入割裂試験におけるコンクリート供試 体の形状寸法の影響, コンクリート工学年次論文集, Vol.27, No.1, pp.373-378, 2005
- 石黒 覚:ダムコンクリートの破壊力学パラメータの 解析,農業土木学会論文集, No.246, pp.63-71, 2006
- 7) 土木学会コンクリート委員会:コンクリート標準示 方書・設計編, pp.42-43, 2007
- 8) 日本コンクリート工学協会:コンクリートの引張軟 化曲線の評価方法(案),コンクリートの破壊特性の試 験方法に関する調査研究委員会報告書,pp.401-426, 2001