超速硬セメント系注入式あと施工アンカーのクリープ特性 論文

安藤 重裕*1・山田 宏*2・中野 克彦*3・渡辺 一弘*4

要旨: 超速硬セメント系注入式あと施工アンカーについて, 異形鉄筋 D13 を用い持続引張荷重下における載 荷荷重および母材コンクリート強度がアンカー筋の抜出量に及ぼす影響を検討した。コンクリート強度 24N/mm²において,載荷荷重 75kN(載荷荷重/最大耐力比 0.80)では載荷期間 168 日でクリープ破壊を生じ, 載荷荷重 30kN(載荷荷重/最大耐力比 0.32)では、載荷期間 50 年でクリープ破壊は生じないものと推測され た。また、母材コンクリート強度が高い場合、アンカー材が同一であってもアンカー筋の抜出量は小さくなっ た。

キーワード:あと施工アンカー,超速硬セメント,接着系アンカー,クリープ,耐久性

1. はじめに

接着系あと施工アンカーの耐久性に関し、持続引張荷 に測定を行った。 重下における付着性能の低下が懸念されている。しかし、 あと施工アンカーの引張クリープ試験に関する報告例は 少なく¹⁾²⁾, あと施工アンカーのクリープによるアンカー 筋の抜出量やクリープ破壊に関する研究は十分とはいえ ない。

そこで本研究では、超速硬セメント系注入式あと施工 アンカーについて、持続引張荷重下におけるクリープ特 性を把握するため,載荷荷重および母材コンクリート強 度がアンカー筋の抜出量に与える影響について検討を行 実験要因は、超速硬セメント系注入式アンカー(PO)と い,載荷時間とクリープ破壊の関係の把握を目的とした。 先付け異形鉄筋(CA)の2種類とし,POの試験体穿孔

₀50×100mmの円柱供試体を用い、付着試験実施と同時

付着試験およびクリープ試験に用いた試験体は、コン クリート割裂防止のため鋼管(外径 216mm, 厚さ 4.5mm) で拘束した。アンカー筋は, D13の高強度鉄筋を使用し, アンカー筋の埋込み長さは、付着試験時に鉄筋降伏が発 生しないと推定される 7da (da:アンカー筋の呼び径) とした。また、テンションロッドを接続するために全ね じ M14 SNB7 (降伏点強度 725N/mm²) をフラッシュバッ ト溶接でアンカー筋と接合した。

2. 実験概要

2.1 試験材料

試験に用いた接着系アンカーは、カートリッジ内に超 速硬セメント、砂等が配合された粉体に水を注入、撹拌 して用いるタイプであり、水結合材比 0.38 で混合して使 用した。

2.2 付着強度試験

付着試験に用いた試験材料の物性値を表-1に、付着 試験およびクリープ試験に用いた試験体形状を図-1に 示す。コンクリートの圧縮試験,静弾性係数の測定は, φ100×200mm の円柱供試体を,アンカー材については

コンクリート		アンプ	アンカー筋					
圧縮強度	静弹性係数	圧縮強度	静弹性係数	径	種類	引張強度	静弹性係数	
(N/mm ²)	(kN/mm ²)	(N/mm^2)	(kN/mm ²)			(N/mm^2)	(kN/mm ²)	
24.3	28.4	62.4	25.0	D12	MV 795	701	100	
46.2	34.9	02.4	23.0	D13	MK / 85	/91	190	

表-1 付着試験およびクリープ試験に用いた試験材料の物性

*1 住友大阪セメント(株) セメント・コンクリート研究所 (正会員)

*2 住友大阪セメント(株) 建材事業部技術グループ (正会員)

*3 千葉工業大学 工学部建築都市環境学科教授 博士(工学) (正会員)

*4(独)都市再生機構 技術調查室 (正会員)

は、 φ18mm で湿式コアドリルにて行った。アンカー施 イルばねに圧縮力を与え、目標の荷重に到達後、下部の 工は、コンクリートの打設後28日で行い、試験体は室内 カ月以上経過後に付着試験を行い,その後 20℃,60%R.H. 始した。

図-2に加力・測定装置図を示す。加力は付着破壊を 起こさせるために反力板(厚さ 38mm, 孔径 30mm)を 試験体の上に設置し、反力板の上にラムチェアーおよび 球座を設置し、センターホールジャッキにより試験体に 引張力を導入した。測定は荷重,自由端(図-2のδ_F) および載荷端側 (図-2の δ_1 , δ_2)のアンカー筋の抜 出量とした。

2.3 クリープ試験

図-3にクリープ試験測定装置図を示す。試験体は, 装置上部に設置し、加力はコイルばねにより行った。加 力の導入は、装置下部に設置した油圧ジャッキによりコ

図-3 クリープ試験装置

ボルトを固定し、ジャッキを除荷することにより試験体 で養生を行い、コンクリート強度増進が小さくなった 2 に引張力を与えた。試験は 20℃, 60%R.H.の恒温室内で 行い,最大耐力の 1/3 までの荷重と変位の関係を測定し の恒温室で24時間以上静置した後にクリープ試験を開た後に、目標荷重へ載荷した。なお、載荷開始した後に は,荷重調整は実施しなかった。

> 表-2にクリープ試験条件を示す。載荷荷重による影 響を確認するため、載荷荷重が最大荷重の0.3~0.8にな るように載荷した。試験は各1本で行い、荷重、自由端 $(\mathbf{2} - \mathbf{3} \sigma \delta_{\mathbf{F}})$ および載荷端側 $(\mathbf{2} - \mathbf{3} \sigma \delta_{\mathbf{I}}, \delta_{\mathbf{2}}, \delta_{\mathbf{I}})$ δ₃, δ₄, の4点)のアンカー筋の抜出量を測定した。

> 荷重比(載荷荷重/最大耐力比) 0.65 以下の試験体につ いては、載荷後3カ月で除荷し、0.65より大きい荷重比 については、クリープ破壊するまで、載荷した。

> また、母材コンクリート強度による影響を確認するた め、CA については 30kN、PO については 75kN 載荷し、 載荷後3ヵ月で除荷を行った。

2. 4 クリープ試験後付着試験

荷重比 0.65 以下の試験体については、クリープ試験載 荷終了後に、クリープ試験前付着強度試験と同様に付着 強度およびアンカー筋の抜出量を測定した。

З. 試験結果

3. 1 付着強度試験結果

表-3に付着試験結果を示す。付着強度(τ_{bl})は, 最大荷重をアンカー筋の公称直径(da₁)と埋込長さ(lb) で除した値とした。

PO の圧縮強度は 62N/mm²とコンクリート強度に比べ て高く, POの最大耐力は, CAの2倍程度と大きくなっ た。CAの最大耐力時の自由端変位は 0.7~1.0mm, POの 最大耐力時の自由端変位は、0.3~0.5mm であり、コンク リート強度 σ_B=24.3N/mm²における PO の付着強度は, 25.7N/mm²であった。 σ_B=46N/mm²における付着強度は 32.6 N/mm²であり,鉄筋降伏した後に付着破壊が生じた。

試験体名	定着方法	コンクリート圧縮強度 (N/mm ²)	載荷荷重 (kN)	荷重比	鉄筋	定着長さ
CA-24-0.33		24	15	0.33		7da (91mm)
CA-24-0.63	先付け	24	30	0.63	D13	
CA-24-0.69		24	33	0.69		
CA-46-0.61		46	30	0.61		
PO-24-0.32		24	30	0.32		
PO-24-0.63	ました丁	24	60	0.63		
PO-24-0.80	めこ旭上	24	75	0.80		
PO-46-0.64		46	75	0.64		

表-2 クリープ試験条件

3.2 クリープ試験結果

図-4にクリープ試験における載荷時間と変位の結果 を示し,表-4に載荷時間91日における自由端変位およ び荷重比を示す。荷重比の載荷荷重値はクリープ試験開 始と終了時の荷重の平均値とし,最大耐力についても付 着試験の最大耐力の平均値とした。また,載荷端の変位 はコンクリート表面から変位計測定位置までの鉄筋長さ 分の弾性変形を差し引いたものを示した。

コンクリート強度 $\sigma_B=24$ N/mm²において, CA, PO と もに載荷荷重が大きいほど載荷初期の変位は大きく,載 荷時間に伴い,変位の増加量も大きくなる傾向が認めら れた。

また, CA-24-0.69 では載荷時間 172 日で, PO-24-0.80 では 168 日でクリープ破壊を生じた。クリープ破壊時の自

試験体名	コンクリート 圧縮強度 (N/mm ²)	径		+田 i ス									
		アンカー 筋*1	穿孔	長さ	最大耐力		付着強度*2		抜出量 ^{*3}				
		(mm)	(mm)	(mm)	(kN)		(N/mm^2)		(mm)				
		da1	da2	lb	Pmax		Tb1		δF		δL		
			uaz			Average		Average		Average		Average	
CA 24 /		12.7	-	91	43.5	46.2	12.0	12.7	0.83		1.12	1.14	
CA-24 / 先付けアンカー	24.3	12.7	-	91	46.5		12.8		0.84	0.81	1.18		
		12.7	-	91	48.5		13.3		0.76		1.11		
	46.2	12.7	-	91	47.5	50.3	13.1	13.8	0.92	0.90	1.16	1.16	
CA-40 / 生付けアパー		12.7	-	91	52.8		14.5		1.00		1.25		
元刊のアンルー		12.7	-	91	50.6		13.9		0.78		1.07		
PO-24 /		12.7	18.4	91	102.2		28.2		0.48		1.47		
あと施工アンカ	24.3	12.7	18.5	91	89.0	93.5	24.5	25.7	0.27	0.35	0.87	1.14	
_		12.7	18.6	91	89.2		24.6		0.30		1.08		
PO-46 /		12.7	18.7	91	126.1		34.7		0.45		7.40		
あと施工アンカ	46.2	12.7	18.5	91	115.4	118.3	31.8	32.6	0.44	0.41	0.41 3.57 4.7 3.34	4.77	
-		12.7	18.4	91	113.5		31.3		0.35				

表-3 付着試験結果

*1:アンカー筋公称径 *2:tb1=π×アンカー筋径×埋込長さ

*3: δL は最大耐力時の載荷端抜出し量, GF は最大耐力時の自由端抜出し量

⇒睑休		載荷時間	古 舌 1-1			
武 歌 14		0^{*1}	91	差	刊里比	
CA-24-	荷重(kN)	15.4	15.4		0.22	
0.33	変位(mm)*2	0.063	0.190	0.13	0.55	
CA-24-	荷重(kN)	29.5	28.7		0.62	
0.63	変位(mm)*2	0.124	0.940	0.82	0.03	
CA-24-	荷重(kN)	32.7	31.4	I	0.60	
0.69	変位(mm)*2	0.139	1.016	0.88	0.09	
CA-46-	荷重(kN)	31.1	30.5		0 (1	
0.67	変位(mm)*2	0.101	0.538	0.44	0.01	
PO-24-	荷重(kN)	30.2	29.9		0.22	
0.32	変位(mm)*2	0.066	0.178	0.11	0.32	
PO-24-	荷重(kN)	59.7	58.2	I	0.63	
0.63	変位(mm)*2	0.130	0.676	0.55	0.03	
PO-24-	荷重(kN)	75.3	73.5	_	0.80	
0.80	変位(mm)*2	0.163	0.842	0.68	0.80	
PO-46-	荷重(kN)	75.9	74.7	_	0.64	
0.64	変位(mm)*2	0.079	0.590	0.51	0.04	

表-4 載荷後の自由端変位量,荷重比

*1:載荷時間0日における変位は、荷重変位曲線より算出

*2:自由端変位

由端変位は CA では 1.2mm, PO で 1.1mm であり, CA に おいては,付着試験時の最大荷重の変位の 1.5 倍, PO に おいては 3 倍程度大きな値で破壊が生じた。

載荷端変位は載荷荷重が大きくなるほど自由端変位と の差が大きくなり,75kN 載荷時には自由端と載荷端の 変位の差は,0.2mm 以上となった。

コンクリート強度 σ_B =46N/mm²では、 σ_B =24N/mm²より同一載荷荷重における変位の変化量が CA,PO ともに小さくなっていた。

長期的なクリープ変形量を推定するため, EOTA ETAG 001 Part5³⁾に従い,(1)式の定数 a, b を求めた。

(1)

 $S(t) = So + a \cdot t^b$

So :初期変形量

t :時間

a, b : 定数

図-5,6にクリープ変形量推移を示す。CA-24 にお いて、荷重比 0.63 と 0.69 では、載荷開始から 30 日程度 までの変位に大きな差は認められなかったが、30 日以降 の変位に差が認められ始めた。PO-24 においても、荷重 比 0.63 と 0.80 では載荷時間 10 日程度では差が認められ なかったが 30 日以降変位に顕著な差が認められた。

クリープ破壊時の自由端変位は CA では 1.2mm, PO で

図-5 先付けアンカーおよびあと施工アンカーの自由端変位に及ぼす荷重比の影響

図-6 先付けアンカーおよびあと施工アンカーの自由端変位に及ぼすコンクリート強度の影響

1.1mm であった事から,クリープ破壊が自由端変位で 1.1~1.2mm で発生すると仮定した場合,クリープ変形推 定線より自由端変位量が 1.1~1.2mm に到達するには, CA-24-0.63 では 3~8 年で, PO-24-0.63 では 7~12 年と なり,荷重比 0.33 では載荷 50 年経過後も CA-24 の自由 端変位は 0.5mm 程度, PO-24 では 0.6mm 程度でありクリ ープ破壊は発生しないものと推測される。

母材コンクリート強度の影響は、CA において載荷開 始から自由端変位に大きな差が認められ、コンクリート 強度が高い方が変位は小さくなった。また、PO の載荷 荷重 75kN において、PO-24 の自由端変位が 1.1mm に達 するのに 260 日と推測されるのに対し、PO-46 では 23 年 と推測され、アンカー材が同一であっても、アンカー筋 の引張変形量は、母材コンクリート強度の影響を大きく 受ける事が確認された。

アンカーの引張荷重下においても Davis-Glanville の法 則に従い,載荷荷重と自由端変位が比例するものとして, 載荷時間と荷重,変位の関係図を図-7,8に示した。 CA-24の最大荷重の1/3である15kNでは,載荷50年経 過後も自由端変位量は0.6mm以下であり,1/2荷重の 23kNでは約16年で自由端変位が1.0mm,約69年で 1.2mmになるものと推測される。また,PO-24において も最大荷重の1/2である47kNでは約21年で自由端変位 は1.0mm,約50年で1.2mmになるものと推測される。

載荷開始から載荷時間 91 日までの変位量と荷重比の 関係を図-9に示した。荷重比0.33 では、変位量は0.1mm 程度と非常に小さく、荷重比が大きくなるに伴い自由端 変位量は増加し、CA-24 では、PO-24 より傾きが若干大 きくなった。また、CA-24 と CA-46 では、同等の荷重比 における自由端変位量に差が認められたが、PO-24 と PO-46 ではほとんど変位量に差は認めらなかった。これ は、PO では載荷荷重が CA に比べて2倍以上高いことが 影響した事が考えられる。

図-7 先付けアンカーの載荷時間と載荷荷重, 自由端変位の関係

図-8 あと施エアンカーの載荷時間と載荷荷重, 自由端変位の関係

図-9 荷重比と自由端変化量の関係

図-10 クリープ試験前後の荷重と自由端変位の関係

3. 4 クリープ試験後付着試験

クリープ試験後の試験体の状況を**写真-1**に示し,ク リープ付着試験前後の荷重と自由端変位の関係を**図-1 0**に示す。

荷重比 0.63 で載荷したクリープ試験後の試験体は,載荷端側で,載荷板の孔径と同径で 0.2~0.5mm 程度コン クリートに浮きが生じていたが,自由端側のアンカー筋 周りに変状は認められなかった。

クリープ試験後の付着試験の最大荷重は CA-24-0.33, PO-24-0.32 では, クリープ試験前の最大荷重と同等であ ったが, CA-24-0.63 では 37kN, PO-24-0.63 では 86kN で あり, クリープ試験前の付着強度の平均値より低下した。

また, CA-24 の荷重変位曲線の傾きはクリープ試験前 より大きくなっており,剛性に変化が認められたが, PO-24 では CA ほど顕著な傾向は認められなかった。PO は, CA に比べ剛性が高いため,クリープ試験によるア ンカー材に与えた影響が明確に表れなった可能性がある。

4. まとめ

超速硬セメント系注入式あと施工アンカーについて, アンカー筋 D13, アンカー筋の埋込み長さ 7da の条件で 持続引張荷重下における載荷荷重および母材コンクリー ト強度がアンカー筋の引抜き変位に及ぼす影響を検討し た。

- (1) 超速硬セメント系あと施工アンカーを用いた場合 載荷荷重 30kN(荷重比 0.32)では,載荷時間 50 年 でクリープ破壊は生じないものと推測される。
- (2)あと施工アンカーにおける載荷荷重 75kN(荷重比0.80)では,載荷時間 168 日でクリープ破壊が生じ,

クリープ破壊直前の自由端変位は,クリープ試験前 付着試験の最大耐力時の変位の3倍程度大きな値で あった。

- (3) 先付けアンカーでは、載荷荷重 33kN (荷重比 0.69) でクリープ破壊が生じた。
- (4) 母材コンクリート強度が高いほどアンカー筋の引 抜き変位は小さくなり、あと施工アンカーの載荷荷 重 75kN において σ_B=46N/mm²では、σ_B=24N/mm² より載荷時間 91 日で 0.09mm 程度小さくなった。
- (5)荷重比 0.33 では先付けアンカー,あと施工アンカーともに変位量が非常に小さく,載荷時間 91 日における自由端変位は 0.2mm 程度であった。
- (6)荷重比 0.33 のクリープ試験後の試験体の付着強度 は、先付けアンカー、あと施工アンカーともにクリ ープ試験前の付着強度と同等で、クリープによる付 着強度の低下は認められなかった。

参考文献

- 1) 矢野明義, 菅家重夫, 松崎育弘:機器配管用指示構 造物(埋込金物)の耐力に関する実験研究-その8 樹脂アンカーの長期持続引張荷重による限界耐力-, 日本建築学会大会学術講演梗概集, pp.1517-1518, 1981.9
- 2)中野克彦,松崎育弘,杉山智昭:あと施工アンカーの長期許容応力度に関する研究-その3引張クリープ実験、日本建築学会大会学術講演梗概集 構造IV, pp.639-640,2011.8
- 3) European Organisation for Technical Approvals ETAG001 Part five : BONDED ANCHORS, pp.25, 2008