論文 混和材を高含有したコンクリートの耐久性に関する検討

片野 啓三郎^{*1}·竹田 宣典^{*2}·小林 利充^{*2}·中村 英佑^{*3}

要旨:高炉スラグ微粉末やフライアッシュ,シリカフュームを混和材として高含有したコンクリートについて,室内試験および暴露試験を行い,強度および耐久性について検討した。その結果,混和材を高含有したコンクリートは,水結合材比を小さくすることで長期的には 60 N/mm²以上の圧縮強度が得られること,一般のコンクリートと比較して乾燥収縮を抑制できることが明らかになった。また,中性化の進行は一般のコンクリートより速いものの,水結合材比を小さくすることである程度抑制できること,塩化物イオンの侵入や 凍結融解に対する抵抗性は一般のコンクリートと同等以上となることが明らかになった。 キーワード:低炭素,環境配慮,圧縮強度,乾燥収縮,中性化,塩化物イオン,凍結融解

1. はじめに

地球温暖化に伴うCO2排出量の削減が社会的に求めら れるなか,一般のコンクリートに比べて CO₂排出量を低 減した低炭素型のコンクリートに関する研究が進められ ている。著者らが開発している低炭素型のコンクリート は,結合材に占めるセメントの割合を 30%以下に抑え, 高炉スラグ微粉末やフライアッシュ等の産業副産物に置 き換えることで,製造由来のCO2排出量を大幅に低減し たコンクリートである¹⁾。一般に, セメントに高炉スラ グ微粉末やフライアッシュを混合して製造したコンクリ ートは,塩化物イオンの遮蔽効果が著しく,一方で中性 化に対する抵抗性が比較的小さいことが知られている ^{2)~4)}。しかし,これらを高い割合で混合した(高炉セメン ト C 種の範疇を超えた)場合の性能についてはまだ明ら かにされていないことが多く,実環境でのデータも少な い。そこで,混和材を高含有したコンクリートを用いて 室内試験および暴露試験を行い,強度および耐久性につ いて検討した。

2. 試験概要

2.1 材料および配合

試験に使用したコンクリートの材料を表-1に示す。コ ンクリートの示方配合,CO2排出量およびフレッシュ試 験結果を表-2に示す。混和材を高含有したコンクリート (以下,低炭素型のコンクリートと称する)は,結合材 中の普通ポルトランドセメントの混合割合を25%また は15%とし,混和材として高炉スラグ微粉末,フライア ッシュまたはジルコニア起源のシリカフューム(外割添 加)を混合した。比較として,普通ポルトランドセメン トのみを使用したコンクリート(以下,普通コンクリー トと称する)についても試験を行った。各配合のコンク リート 1m³ あたりの CO₂ 排出量はコンクリート構造物の 環境性能照査指針(試案)⁵⁾を参考にして算出し,シリ カフュームの CO₂ 排出量はフライアッシュと同じ 17.9kg/t,水の CO₂ 排出量は0と仮定した。水結合材比は 35.0,42.0 および 50.0%とした。混和剤として,配合に 応じて高性能 AE 減水剤,AE 減水剤(高機能型)および AE 減水剤(標準型)を添加し,AE 剤によって空気量を 調整した。同じ水結合材比で同等のコンシステンシーを 有するために,低炭素型のコンクリートの単位水量を普 通コンクリートに対して 5~15 kg/m³低減した。水結合 材比 35.0%の配合はスランプフローの目標値を 50 cm と し,水結合材比 42.0 および 50.0%の配合はスランプの目 標値を 12 cm とした。また,すべての配合で空気量の目 標値を 4.5±1.5%とした。

2.2 試験方法

実施した試験項目および試験方法を表-3 に示す。室内 試験は 標準養生における圧縮強度試験,長さ変化試験,

表-1 使用材料

衣-1 使用材料						
項目	摘要					
セメント(C)	普通ポルトランドセメント,密度 3.16 g/cm ³					
高炉スラグ微粉末 (BFS)	 高炉スラグ微粉末(4000 ブレーン), 密度 2.89 g/cm³ [注] 石膏を内添したタイプ (無水石膏, SO₃換算で 2.0 %) 					
フライアッシュ(FA)	フライアッシュ 種 , 密度 2.30 g/cm ³					
シリカフューム(SF)	ジルコニア起源,密度2.22 g/cm ³					
7水(W)	上水道水,密度1.00 g/cm ³					
細骨材(S)	掛川產 陸砂,表乾密度2.56g/cm3					
粗骨材(G1)	笠間産 砕石 5 号,表乾密度 2.67 g/cm ³					
粗骨材(G2)	笠間産 砕石 6 号,表乾密度 2.67 g/cm ³					

*1 株式会社大林組 技術研究所生産技術研究部 修士(工学) (正会員)

*2 株式会社大林組 技術研究所生産技術研究部 博士(工学) (正会員)

*3 独立行政法人土木研究所 材料資源研究グループ 基礎材料チーム 修士(工学) (正会員)

	結合	合材の	昆合割台	} (%)				単位量(kg/m ³)						CO ₂	フレッシュ試験結果				
No.	種別	С	BFS	FA	SF (kg 外割)	W/B (%)	s/a (%)	w	С	BFS	FA	SF	s	G1	G2	排出量 (kg/m ³)	スラ ンプ (cm)	スランプ フロー (cm)	空気 量 (%)
1						35.0	43.2	160	114	343	0	5	705	484	484	104.5		52.0	5.1
2	C25B75SF	25	75	0	5	42.0	45.4	160	95	286	0	5	771	484	484	88.2	18.0		5.5
3						50.0	47.0	160	80	240	0	5	824	484	484	75.4	12.5		4.0
4						35.0	43.9	155	111	288	44	0	726	484	484	100.8		50.8	5.1
5	C25B65FA10	25	65	10	0	42.0	46.0	155	92	240	37	0	792	484	484	84.8	10.0		5.3
6						50.0	47.6	155	78	202	31	0	844	484	484	72.9	11.5		4.5
7	C15B65FA20	15	65	20	0	35.0	44.3	150	64	279	86	0	738	484	484	66.1		49.5	3.5
8						35.0	43.4	165	471	0	0	0	712	484	484	357.1		51.5	5.5
9	C100	100	0	0	0	42.0	45.5	165	393	0	0	0	776	484	484	299.1	11.5		5.0
10						50.0	47.1	165	330	0	0	0	827	484	484	252.2	9.5		4.0

表-2 コンクリートの示方配合

塩水浸漬試験および凍結融解試験とした。

暴露試験体の概要を図-1 に示す。暴露試験については, 圧縮強度試験用として直径100 mm×高さ200 mmの円柱 試験体,中性化深さおよび塩化物イオン濃度分布測定用 として100×100×200 mmの角柱試験体を作製した。材 齢28日まで標準養生を行った後材齢2ヶ月において暴 露を開始した。中性化深さおよび塩化物イオン濃度分布 測定用試験体は,打込み側面1面を暴露面とし,暴露面 以外をクロロプレンゴム系被覆材によって被覆した。暴 露面を横向きとし,沿岸地域では暴露面を海側として暴 露した。

暴露場は,沖縄県大宜味村の東シナ海沿岸,新潟県上 越市の日本海沿岸および茨城県つくば市の内陸とした。 暴露状況を写真-1に示す。現地で測定した気温測定結果 を図-2に示す。また,暴露期間と暴露場の気温,湿度の 平均値および月間降水量の平均値を表-4に示す。沖縄は 年間を通して気温が高く,降水量も比較的多い。沖縄の 暴露場は,汀線付近であるため飛来塩分があり,強風や 台風の時には海水が流入することもある。新潟および茨 城は比較的寒冷で,特に冬期には日平均気温が氷点下と なることもある。新潟は3ヶ所のうちで最も降水量が多

表-3 試験項目および試験方法

項	∃	試験方法	試験材齢		
圧縮強度	標準養生	JIS A 1108	7,28,91日,1,2年		
	暴露試験	JIS A 1108	暴露期間 20 ヶ月		
乾燥収縮	長さ変化 試験	JIS A 1129	材齢 7 日から開始 乾燥期間 7,14,21,28, 56,91,182 日		
中性化深さ	暴露試験	JIS A 1152	暴露期間 20 ヶ月		
塩化物イオン の侵入に 対する抵抗性	塩水浸漬 試験	JSCE-G 572	材齢 28 日から開始 浸漬期間1年		
	暴露試験	JCI SC-4	暴露期間 20 ヶ月		
凍害に対する 抵抗性	凍結融解 試験	JISA1148 (A法)	材齢 28 日から開始 300 サイクルまで		

(a) 円柱

図-1 暴露用試験体の概要

(a) 沖縄

(b) 新潟 写真-1 暴露状況

(c) 茨城

く,汀線付近であるため飛来塩分がある。茨城は3ヶ所 のうちで最も降水量が少なく,飛来塩分の影響はない。

約 20 ヶ月間の暴露を終えた試験体を回収し,圧縮強 度試験,中性化深さおよび塩化物イオン濃度分布の測定 を実施した。なお,塩化物イオン濃度分布の測定は,特 に暴露試験体において雨水等により表面付近の塩化物イ オンが流出し,正確な分析ができない可能性があること から,表面から深さ5mmまでの部分を取り除き,5mm 以深を10mmピッチを基本として切断して行った。

3. 試験結果

3.1 圧縮強度

標準養生に供した材齢2年までの圧縮強度試験の結果 を図-3に示す。標準養生に供した試験体の圧縮強度は, セメントを結合材の25%使用した場合,W/B=50.0%とす ると材齢91日で40N/mm²以上,セメントを結合材の 15%使用した場合でも,W/B=35.0%とすることにより材 齢91日で40N/mm²以上となった。材齢2年での圧縮強 度は,セメントを結合材の25%使用した場合, W/B=50.0%で55N/mm²,W/B=42.0%で65N/mm², W/B=35.0%で75N/mm²以上となった。セメントを結合 材の15%使用した場合,W/B=35.0%とすることにより, 材齢2年での圧縮強度は60N/mm²以上となり,低炭素 型のコンクリートにおいても高強度領域の強度を発現で きることが確認できた。また,同じ強度領域において, 低炭素型のコンクリートは普通コンクリートに比べ長期 における強度の伸びが大きいことが確認できた。

暴露期間20ヶ月の圧縮強度試験の結果を図-4に示す。 標準養生期間2年の圧縮強度と比較すると,沖縄の暴露 期間20ヶ月の圧縮強度は,低炭素型のコンクリート,普 通コンクリートに関わらず,同等かやや小さい傾向にあ り標準養生期間2年に対する減少率は最大でも-6.0% 程度であった。一方,新潟の暴露期間20ヶ月の圧縮強度 は,低炭素型のコンクリート,普通コンクリートに関わ らず,標準養生期間2年の圧縮強度と比較して大きい傾 向にあり,増減率は-3.0%~11%の範囲にあった。茨

図-2 暴露場で測定した気温データ(日平均)

表-4 暴露期間と気候条件

	沖縄	新潟	茨城
暴露期間	2012年2月~ 2013年10月	2012年2月~ 2013年10月	2012年2月~ 2013年11月
平均気温 ()*1	23.3	14.8	15.3
平均湿度(%) ^{*1}	75.5	77.3	72.9
月間降水量の 平均値 (mm) ^{*1}	194.5	230.0	122.8

*1:気象庁ホームページによる

図-3 圧縮強度試験結果(標準養生)

図-4 圧縮強度試験結果(暴露期間20ヶ月)

城の暴露期間20ヶ月の圧縮強度については 標準養生期 間2年の圧縮強度と同等で増減率は-4.0%~4.2%の 範囲にあった。したがって,低炭素型のコンクリートは 屋外暴露においても普通コンクリートと同様の強度発現 性があることが明らかになった。

なお,これら暴露場による強度の違いは,水分の供給 と逸散の条件に起因していると推察される。つまり,新 潟は降水量が多くかつ気温が低いことで,コンクリート 中の水分の逸散量が少ないために長期強度が大きくなる のに対し,沖縄では気温が高いことで水分の逸散量が多 いために長期強度が小さくなると考えられる。また,茨 城では気温は低いものの,降水による水分の供給が少な いために新潟の場合ほどは長期強度が大きくならないと 考えられる。

3.2 乾燥収縮

室内試験における長さ変化試験の結果を図-5に示す。 普通コンクリートの場合,水結合材比が小さいほど長さ 変化率が小さかった。セメントを25%または15%使用し た場合も,水結合材比が小さいほど長さ変化率が小さか った。また,同一水結合材比で比較すると,低炭素型の コンクリートは普通コンクリートと比較して長さ変化率 が小さくなる傾向にあった。特に,セメントを25%また は15%使用し,W/C=35.0%としたときの長さ変化率は乾 燥期間182日において400~450 × 10⁻⁶と極めて小さい結 果となった。これは,高炉スラグ微粉末を多量に使用し た結果,水和反応での自由水の消費量が多かったことや 細孔構造が緻密になったことで水分の逸散量が減少し, 結果として乾燥収縮ひずみが小さくなったことが原因で あると考えられる⁵⁾。低炭素型のコンクリートの乾燥期 間182日における長さ変化率は約400~580 × 10⁻⁶の範囲 にあり, 普通コンクリートの約530~700 × 10⁻⁶と比較し て小さくなることが明らかになった。

3.3 中性化に対する抵抗性

暴露期間 20 ヶ月における中性化深さを図-6 に示す。 普通コンクリートは,いずれの配合においても中性化が まったく進行していない。低炭素型のコンクリートは, セメントの混合割合が大きいほど,また水結合材比が小 さいほど中性化が抑制される傾向にあった。セメントを 結合材の25%使用した場合,W/B=50.0%で中性化深さは 5 mm前後であるが,W/B=35.0%とすると3 mm以下と なった。セメントを結合材の15%使用した場合でも, W/B=35.0%とすることで中性化深さは5 mm程度となっ た。なお,暴露期間20ヶ月における中性化深さが5 mm である場合, t則によって100年後の中性化深さを予 測すると40 mm以下となるため,低炭素型のコンクリー トは適切にかぶりを確保することで中性化による劣化を 防止できることが確認できた。

なお,同じ配合のコンクリートの中性化深さを暴露場 で比較すると,茨城>新潟>沖縄の順で大きいものが多 くあった。このことは,比較的乾燥した環境で中性化が 進みやすいことに起因していると推察される⁶⁾。つまり, 茨城は3ヶ所のうち最も平均湿度が小さく降水量も少な いために中性化が進行したものと考えられる。一方,沖 縄および新潟は比較的降水量が多くかつ相対湿度が高い ために中性化の進行が抑制されたと考えられる。

図-6 中性化深さ測定結果(暴露期間20ヶ月)

図-9 暴露試験による塩化物イオン濃度分布(新潟)

3.4 塩化物イオンの侵入に対する抵抗性

1年間の塩水浸漬によるコンクリート中の塩化物イオン濃度分布の測定結果を図-7に示す。低炭素型のコンクリートは,普通コンクリートと比較して塩化物イオンの 侵入が大幅に抑制される結果となった。

沖縄および新潟での暴露期間 20 ヶ月における塩化物 イオン濃度分布の測定結果を図-8 および図-9 に示す。暴 露期間 20 ヶ月において,表面から 20 mm より深い部分 への塩化物イオンの侵入はほとんど確認されなかった。 ここで,塩水浸漬および暴露試験における表面から 10

図-10 塩化物イオン濃度と圧縮強度の関係

写真-2 暴露試験後のコンクリート表面 (C15B65FA20 W/B=35.0%)

mm 位置での塩化物イオン濃度と圧縮強度試験との関係 を図-10 に示す。塩水浸漬による塩化物イオンの侵入は 普通コンクリートで著しく,低炭素型のコンクリートで は大幅に抑制されていることが分かる。しかし,暴露期 間 20ヶ月における塩化物イオンの侵入は、低炭素型のコ ンクリート,普通コンクリートで大きな差異がなく,圧 縮強度が高いほど抑制される傾向にあった。塩化物イオ ンの浸透深さが浅いために拡散係数を推定することが困 難であり,長期における浸透予測には至らないが,暴露 期間 20ヶ月における低炭素型のコンクリートの表層近 傍への塩化物イオンの侵入は,圧縮強度で整理すると普 通コンクリートの場合と大きな差がないことが明らかに なった。ただし,普通コンクリートの中性化深さが0mm であり,低炭素型のコンクリートの中性化深さが最大 5 mm 程度であることを考慮すると,低炭素型のコンクリ ートの場合は,中性化によって表面から10mm付近に塩 化物イオンが濃縮し,中性化の影響がない場合に予測さ れる濃度より高くなった可能性がある。このことより, さらに長期の暴露によって塩化物イオンの侵入状況を確 認して評価する必要があると考えられる。

なお,沖縄の場合は,新潟と比較して塩化物イオンの 侵入量が多く,表面からの深さ10mmにおいて約2~5 倍の塩化物イオンが侵入した。沖縄の暴露場は新潟と比 較して波浪による海水の飛沫の影響が大きいこと,気温 が高いため,飛沫や降水に対する乾湿繰返しの影響が大 きいことが原因であると推察される。

3.5 凍害に対する抵抗性

凍結融解試験の結果を図-11 に示す。低炭素型のコン クリートは,300 サイクルの凍結融解作用においても大 きく劣化することはなく,相対動弾性係数は90%以上⁷⁾ を満足している。配合 No.7 は他の配合に比べ相対動弾性 係数がやや低かったが,これは空気量が3.5%と比較的小 さかったからだと考えられる。したがって,低炭素型の コンクリートは,適正なエントレインドエアを導入する ことで耐凍害性を確保できることが確認できた。 3.6 表面状態

セメントを結合材の 15%使用したコンクリート試験 体(W/B=35.0%)の暴露期間 20 ヶ月経過後の代表的な 表面状況を写真-2 に示す。表面のひび割れ,肌落ち(ア プサンデン現象)凍結融解によるスケーリングまたはポ ップアウトはなく,変状は雨だれによる若干の汚れのみ であった。他のコンクリート配合,暴露場においても同 様の表面状況であった。

4. まとめ

セメントの混合割合を低減し,高炉スラグ微粉末やフ ライアッシュ,シリカフュームを高含有した低炭素型の コンクリートについて,室内試験および暴露試験を行い, 強度および耐久性について検討した。本研究で得られた 結論を以下に示す。

- 結合材に対するセメントの混合割合を 15~25%に低減した低炭素型のコンクリートは,水結合材比を 35%とすることで,実環境においても長期で 60~80 N/mm²以上の圧縮強度が得られる。
- (2) 高炉スラグ微粉末やフライアッシュを高含有することで,普通コンクリートと同等のコンシステンシーを得るための単位水量を 5~15 kg/m³ 低減できる。また,コンクリートの乾燥による収縮を低減できる。
- (3)低炭素型のコンクリートは,普通コンクリートと比較して中性化の進行が速い。なお,その程度はコンクリートの配合および暴露環境によって異なり,水

結合材比を小さくすることである程度抑制できる。

- (4) 低炭素型のコンクリートは,普通コンクリートと比較して塩水浸漬試験による塩化物イオンの侵入を大幅に抑制することができる。沿岸環境での暴露期間20ヶ月の結果では低炭素型のコンクリート,普通コンクリートに関わらず,表面から20mm以深への塩化物イオンの侵入はほとんどなかった。また,圧縮強度が高いほど表面近傍への塩化物イオンの侵入を抑制できる。
- (5)低炭素型のコンクリートの凍結融解抵抗性は,普通 コンクリートと同じように適正なエントレインドエ アを導入することで十分に確保できる。
- (6) 20 ヶ月間の暴露試験の結果,コンクリート表面には ひび割れ,肌落ちおよび凍結融解によるスケーリン グ等の変状はなかった。

今後,さらに長期の暴露を行い,低炭素型のコンクリ ートの中性化および塩化物イオンの侵入に対する抵抗 性の評価について検討を進める予定である。

謝辞

本論文は,独立行政法人土木研究所との共同研究「低炭 素型セメント結合材の利用技術に関する研究」の成果の 一部です。関係各位に深く感謝いたします。

参考文献

- 小林利充,溝渕麻子,近松竜一,一瀬賢一:低炭素 型のコンクリート「クリーンクリート[™]」の開発,大 林組技術研究所報, No.75, pp.1-8, 2011.11
- 満渕麻子,小林利充,近松竜一,一瀬賢一:環境配 慮型コンクリートの基礎的性質に関する一考察,コ ンクリート工学年次論文集,Vol.33,No.1,pp.215-220, 2011.7
- 3) 斎藤 淳,堺孝司,鈴木康範,福留和人:フライア ッシュおよび高炉スラグ微粉末を用いたローカー ボンコンクリートのひび割れ抵抗性,コンクリート 工学年次論文集,V.35,No.1,pp.1537-1542,2013.7
- 4) 土木学会:コンクリートライブラリー125 コンクリ
 ート構造物の環境性能照査指針(試案),2005.11
- 5) 中村英佑,鈴木聡,鈴木雅博,渡辺博志:混和材を 用いたコンクリートの収縮とクリープに関する実 験的研究,第 22 回プレストレストコンクリートの 発展に関するシンポジウム.2013.10
- 6) 日本コンクリート工学会:コンクリート診断技術, 2012.2
- 7) 土木学会:2012年制定コンクリート標準示方書[設 計編],2013.3