論文 複合加力を受ける無耐火被覆 CFT 柱の耐火性能に関する解析的 研究

木下 拓也*1・中村 尚弘*1・西村 俊彦*2・岡崎 智仁*3

要旨:材料構成則の温度依存を考慮した非線形 FEM 解析により, 無耐火被覆 CFT 柱の耐火時間の予測手法 について検討した。Eurocode2 の材料熱劣化特性を実装した FEM 解析プログラムにより, 軸力と曲げを同時 に受ける無耐火被覆 CFT 柱の耐火性能検証実験のシミュレーション解析を実施した。軸力比・水平方向の目 標変形角をパラメータとし,柱内部の応力状態の推移や,軸力支持能力を失うタイミングについて検討した。 検討の結果,実施した解析により軸力比・変形角に対応する耐火時間がある程度予測できることがわかった。 キーワード: CFT 柱, 無耐火被覆, 耐火時間, 熱応力解析, 3 次元 FEM

1. はじめに

コンクリート充填鋼管造柱(以下 CFT 柱)は,鋼管の 内部にコンクリートを充填した合成構造であり,鉄骨造 に比べ優れた耐火性能を示すことが知られている。軸力 の大きさ,コンクリート強度,部材角等の上限を制限す ることで,耐火被覆を施さなくても建築基準法に定めら れる耐火建築物の柱としての耐火性能を確保することも 可能である¹⁾。

耐火被覆を施さない CFT 柱(以下無耐火被覆 CFT 柱) の耐火性能は、熱膨張により材軸方向へ伸び出す梁の影響を考慮して、建物の長期荷重に相当する軸力を与えな がら柱頭を水平変形させ、且つ柱を加熱する複合加力載 荷加熱実験により検証されているケースが多い^{たとえば 2)-5)}。

文献 5)では,既往の検討では行われてこなかった実大 サイズ(□-600 mm 程度)の試験体による,複曲率形式 の複合加力載荷加熱実験が行われた。実験の結果,柱頭 及び柱脚に鋼管の局部座屈が見られ,その内側の部分で コンクリートの破壊が集中する現象が見られた。

その原因について,文献 5)では鋼管の局部座屈が生じ た部分において、部分的に鋼管による拘束が失われ,軸 力と曲げモーメントが作用することでコンクリートの圧 壊が進行する,という破壊シナリオが示されているが, 詳細な破壊メカニズムは明らかにされていない。また, 耐火時間と部材角及び軸力比との関係についても,実験 に基づいた関係式が示されているが,実験データは限ら れており,これらのパラメータが変化したケースに対す る検討は十分でない。

一方で、上述の各種パラメータの変動に対して、逐一 耐火試験を行うことは、時間及びコストの観点から困難 であり、そのような場合には解析的なアプローチが有効 となる。本報では、無耐火被覆 CFT 柱が軸力支持能力を 失うまでの時間と、軸力比、部材角との関係を予測する ことを目的に、材料の温度依存特性を考慮した FEM 解 析により、軸力と曲げを同時に受ける無耐火被覆 CFT 柱 の耐火性能検証実験のシミュレーション解析を実施する。 軸力比及び水平方向の目標変形角について、文献 5)で実 験が実施された範囲に加え、解析的検討を行う計9ケー スの条件を設定し、柱内部の応力状態の推移や、軸力支 持能力を失うタイミングについて検討した。

図-1 試験体概要(試験体4)

*1	(株)	竹中工務店	技術研究所	博士 (工学)	(正会員)
*2	(株)	竹中工務店	技術研究所	博士 (工学)	
*3	(株)	竹中工務店	技術研究所	工修	

試験体	鋼管		最大部材角		幅厚比	コンクリート	施工方法	軸力比	
	形状	断面	鋼種	×1	骨材	(B/t)	目標強度 (N/mm ²)	*2	*3
1	角形	600×600×19	BCP325	1/50	石灰岩	31.6	50	方法 1	0.36
2	角形	600×600×19	BCP325	1/50	石灰岩	31.6	50	方法 1	0.32
3	角形	600×600×19	BCP325	1/50	石灰岩	31.6	50	方法 1	0.27
4	角形	600×600×19	BCP325	1/100	石灰岩	31.6	50	方法 1	0.32
5	角形	600×600×19	BCP325	1/200	石灰岩	31.6	50	方法 1	0.32
6	角形	600×600×19	BCP325	1/100	硬質砂岩	31.6	50	方法 1	0.32
7	角形	600×600×25	BCP325	1/100	石灰岩	24.0	50	方法 1	0.32
8	円形	609.6×19	STKN490B	1/100	石灰岩	32.1	50	方法 1	0.32
9	角形	600×600×19	BCP325	1/100	石灰岩	31.6	50	方法 2	0.32
10	角形	300×300×9	BCR295	1/50	石灰岩	33.3	50	方法 1	0.32

表-1 文献5)の試験体一覧

※1 部材角=(水平載荷部の水平変位/試験体筒体部長さ)

※2 方法1:上下柱を分離し落とし込みでコンクリート打設後, PC 鋼棒で結合 方法2:上下柱を一体で圧入によりコンクリート打設 ※3 常温時のコンクリートに対する軸力比=(軸力N/(コンクリート部位面積cA×圧縮強度coB))

2. 対象とする実験の概要

2.1 試験体及び実験方法

対象とする実験は、竹中技術研究所で実施された、複 曲率形式の複合加力を受ける無耐火被覆 CFT 柱の耐火 性能確認実験⁵⁾である。実大サイズ(□-600 mm 程度) の試験体による複合加力載荷加熱実験を行い、無耐火被 覆 CFT 柱の火災時の挙動と破壊に至るメカニズムにつ いて検討している。

試験体形状を図-1に、また試験体一覧を表-1に示す。 無耐火被覆 CFT 柱の耐火性能に影響を及ぼすと考えら れる軸力比,部材角,断面寸法,幅厚比,断面形状,骨 材種別,打設方法をパラメータとして,計10体の試験体 が計画された。断面を□-600×600×19,粗骨材を石灰岩 砕石,最大部材角を1/100 rad,軸力比を0.32とした試験 体4が標準試験体であり、これと異なる項目を表-1に網 掛けで示している。コンクリート強度は実験時の実強度 が 50N/mm²となるように計画された。鋼管には一部の試 験体を除き BCP325 が使用された。

実験装置を図-2に示す。下部柱の脚部は固定条件となるよう PC 鋼棒で堅結され、上部柱の頂部は球座を介し

図-2 実験装置(単位: mm)

て鉛直加力用のジャッキと接続された。上下柱の中間に あたる接合部は、梁の伸び出しを模擬した水平変位を与 えるためのジャッキと接続された。加熱範囲は下部柱の みであり、炉内の接合部及び柱脚部はセラミックブラン ケットで被覆された。

表-1 に示す軸力比に相当する鉛直軸力を試験体に与 えた上で, ISO384 に規定された標準加熱温度曲線に従い, 試験体が破壊するまで加熱された。水平方向には,柱の 部材角が1時間で表-1に示す最大部材角に到達するよう, 柱頭の水平変位を一定の速度で漸増させ,最大部材角到 達後は水平変位を固定させた。

2.2 実験結果の概要

主要な実験結果を以下にまとめる。

- 試験体 1~3 の耐火時間比較により、軸力比が小さくなるほど耐火時間が長くなることが確認された。
- ② 試験体 3~5 の比較により、部材角が小さいほど耐火時間が長くなることが確認された。

③ 柱頭及び柱脚に鋼管の局部座屈が生じ、その内側部 分にコンクリートの圧壊が集中する現象が見られた。 上記③の現象は、加熱により局部座屈を生じることで部 分的に鋼管の拘束が失われ、軸力と曲げを同時に受ける ことで広範囲に圧壊し、軸力支持能力を喪失したと推察 された(図-3参照)。

図−3 鋼管の局部座屈とコンクリートの圧壊

3. シミュレーション解析の概要

3.1 解析概要

上述の実験を対象として,非線形 FEM によるシミュ レーション解析を実施した。解析の目的は,熱による材 料の劣化と,軸力及び曲げの荷重が複合することによる, 軸力保持能力喪失の過程を解析的に評価し,無耐火被覆 CFT 柱の耐火時間を予測することとし,下記の条件の下 で実施した。

- 1. コンクリート及び鋼管の温度依存特性を考慮する。
- 鋼管及びコンクリートの温度推移は、実験の測定デ ータを利用し、熱伝導解析は実施しない。
- 一定軸力を載荷後に、材料の温度変化と同時に水平 方向の強制変位を与える。
- 加熱による鋼管の伸びや局部座屈等の現象はシミュレーションの対象外とし、鋼管及びコンクリートの熱膨張ひずみ及び過渡ひずみ、クリープひずみは考慮しない。
- 5. FEM によるモデル化は、曲げモーメントが最も大き くなる柱脚部分のみとし、計算負荷を低減する。

上記の解析は、材料構成則についてのみ熱的な影響を 考慮した構造解析に留まっており、実験で生じた全ての 事象を説明することはできない。しかしながら、軸力保 持能力喪失の最大の要因と考えられる、コンクリートの 熱による劣化と複合荷重は考慮されており、圧壊のタイ ミングを再現することを目的としている。

3.2 解析モデル

解析モデルを図-4に示す。CFT 柱の脚部を8面体ソリ ッドによる有限要素で、脚部以外の部分は梁要素として

表-2 常温時の材料特性

	ヤング係数 (N/mm ²)	2.70E+04
コンクリート	ポアソン比	0.2
(Fc50)	圧縮強度 (N/mm ²)	50.0
	圧縮強度時ひずみ	0.003
Non lete	ヤング係数 (N/mm ²)	2.05E+05
鋼官 (BCP325)	ポアソン比	0.3
(BCI 525)	降伏強度 (N/mm ²)	392.3

モデル化した。実験と同様に、鉛直方向に軸力を加えた

後,接合部に相当する位置に漸増の水平変位を強制変位 として与えた。また,水平変位と同時に実験で計測され た温度推移に基づく温度変化を材料に与える条件とした。

温度変化を与える材料は、図-4(b)に示すように、鋼材 に当たる材料 100 と、外側から 2 層目までのコンクリー ト(材料 1, 2)の3 種類とした。常温時の材料定数を表 -2 にまとめる。実験の条件を基に、全ケース同じ値を用 いるものとした。

3.3 荷重条件及び温度推移

図-5 に、鋼管(材料 100)及びコンクリート(材料 1,2) の温度推移曲線を示す。これは、各部位について安定し た温度推移が計測された、対象実験の試験体 6 の温度測 定結果に基づいて定めたものである。

また,温度推移と並行して与えられる水平方向強制変 位による部材角の履歴も図-5に併せて示す。水平変位は, 60分後に最大部材角に到達するよう線形に載荷され,60 分以降は最大部材角を保持させた。解析ステップは,軸 力載荷後1分間を100ステップに分割するものとして計 75分間,7500ステップとした。

3.4 解析ケース

解析ケースを表-3にまとめる。ケース(a)~(c)は,部材 角 1/50 で軸力比がそれぞれ異なるケースとなっており, 対象実験の試験体 1~3 に対応している。ケース(d)~(f)は 部材角 1/100,ケース(g)~(i)は部材角 1/200 としている。 ケース(e)が対象実験の試験体 4,ケース(h)が試験体 5 に それぞれ対応する。

表−3 解析ケース

3.5 解析手法

解析には、コンクリートの非線形構成則に野口らのモ デル^のを、材料の温度依存特性に Eurocode2 の特性⁷⁾を 組み込んだ FEM 解析プログラムを用いた。

図-6に、コンクリート要素の等価一軸応カーひずみ関係のスケルトンカーブを示す。コンクリート圧縮上昇域は Saenz 式⁸⁾, 圧縮軟化域は直線降下とした。圧縮方向 ピーク後の収斂点は, Kent-Park 式⁹⁾により定めた。引 張方向は、ひび割れまでは線形とし、ひび割れ後のテン ションスティフニング特性として出雲・岡村らの指数式 モデル (c=0.4)¹⁰⁾を用いた。せん断伝達特性には Al-Mahaidi 式¹¹⁾を用いた。ひび割れモデルは、一軸 3 方向の直交ひび割れモデルとした。

温度依存特性については, Eurocode 2 で示される強度 残存率(劣化時強度/常温時の強度)及び最大強度時ひ ずみ(鋼管の場合は降伏ひずみ)のテーブルに従って与 えた。

解析ステップ時の温度に従って,図-6に示す要素の圧 縮強度 Fc (鋼管の場合は降伏強度)と圧縮強度時ひずみ εc (鋼管の場合は降伏ひずみ)の値がプログラム内部で 変化するように拡張を行った。100℃ごとに定義されるテ ーブル間の特性については,線形補間により定められる ものとした。コンクリート及び鋼管の温度依存特性の一 軸応力ひずみ関係を図-7に示す。

4. 解析結果

解析の結果を表-4 と図-8 にまとめる。表-4 の軸力支 持能力喪失時間は,鉛直変位が10mmに達した時間,も しくは鉛直荷重が要因で解析不能となった時間として算

(a)コンクリート(圧縮側)

図-7 スケルトンカーブの温度依存特性

表-4 解析結果

ケース	最大 部材角	軸力比	軸力支持能力 喪失時間** (min)	実験の耐火 時間 (min)	
(a)	1/50	0.36	47.8	51.0	
(b)	1/50	0.32	51.1	58.0	
(c)	1/50	0.27	48.2	65.5	
(d)	1/100	0.36	60.1		
(e)	1/100	0.32	66.9	65.5	
(f)	1/100	0.27	67.7		
(g)	1/200	0.36	60.8		
(h)	1/200	0.32	>75	72.5	
(i)	1/200	0.27	>75		

※軸力支持能力喪失時間は,鉛直変位が10mmに達した時間, もしくは解析不能となった時間として算出した。

出した。この時間は,文献 5)に示されている実験の耐火 時間と概ね対応した。図-8 には,柱頂部の鉛直変位の時 刻歴を示す。

図-9, 10には、ケース(i)(部材角 1/200,軸力比 0.27) 及びケース(e)(部材角 1/100,軸力比 0.32)の変形図及び 鉛直方向応力コンター図を示す。ケース(i)では、時間の 経過に従って曲げ変形が大きくなり、圧縮側で大きな鉛 直応力が発生していることが確認できる。また,60 min の段階では、熱の影響によって、最も圧縮ひずみが大き いと考えられる外縁部での応力が小さくなっており、断 面中央よりやや右側の非常に狭い領域でのみ圧縮力を負 担している状況が観察できる。

一方,ケース(e)では,30~40 min の間にコンクリート の圧壊が発生し,その後脚部の局所変形が拡大し,崩壊 していく様子が確認された。

5. まとめ

材料の温度依存特性を考慮した FEM 解析により,軸 力と曲げを同時に受ける無耐火被覆 CFT 柱の耐火性能 検証実験のシミュレーション解析を実施した。軸力比及 び水平方向の目標変形角をパラメータとして,柱内部の 応力状態の推移や,軸力支持能力を失う時間について検 討した。

解析の結果,熱の影響による CFT 柱内部の鉛直応力の 負担状況が明らかになった。また,実施した解析の軸力 保持能力喪失時間と,実験での柱耐火時間は概ね対応し, 本報の手法で無耐火被覆 CFT 柱の耐火時間がある程度 予測可能であることがわかった。

しかしながら、本報の手法は多くの仮定を含んだ条件 となっている。無耐火被覆 CFT 柱の破壊挙動の解明のた めには、熱膨張ひずみや大変形の考慮により、鋼管の局 部座屈を再現すること等が、今後の課題として挙げられ る。

参考文献

- 1) 新都市ハウジング協会: CFT 造耐火設計指針, 2004.4
- 新都市ハウジング協会調査研究委員会躯体構造部
 会 CFT 耐火 WG: 無耐火被覆 CFT 長柱の耐火性能,
 日本建築学会技術報告集,第 16 号, pp. 145-150,
 2002.12
- 古平章夫,藤中英生,岡本達雄,坪内幸一:複合荷 重を受ける充填型鋼管コンクリートの耐火性能,日 本建築学会学術講演梗概集 A-2, pp. 1405-1406, 1992.8

- 3(2) 湯谷孝夫ほか:高強度コンクリートを用いた無耐火 被覆 CFT 柱の耐火性能 その1~その4,日本建築学 会学術講演梗概集 A-2, pp. 51-58 1999.9
- 5) 西村俊彦,河野守,長岡勉: 複曲率形式の複合加力 を受ける無耐火被覆 CFT 柱の耐火性能に関する実 験的研究,日本建築学会構造系論文集,第 78 巻,第 686 号, pp. 885-894, 2013.4
- Noguchi, H., Kashiwazaki, T. and Miura, K.: Finite element analysis of reinforced concrete joints subjected to multi-axial loading, Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures, ACI SP-265, pp. 223-244, 2009.
- Eurocode 2: Design of concrete structures Part 1-2: General rules - Structural fire design, EN 1992-1-2, 2004.
- Saenz, L. P.: Discussion of equation for the stress-strain curve of concrete by Desayi and Krishman, Journal of ACI, Vol. 61, pp. 1229-1235, 1964.
- Kent, D. C. and Park, R.: Flexural members with confined concrete, Journal of Structural Division., ASCE, ST7, pp. 1969-1990, 1971.
- 10) 出雲淳一, 島弘, 岡村甫: 面内力を受ける鉄筋コン クリート板要素の解析モデル, コンクリート工学論 文, Vol. 25, No. 9, pp.107-120, 1987.
- Al-Mahaidi, R. S. H.: Nonlinear finiteelement analysis of reinforced concrete deep members, Report 79-1, Dept. of Struct. Eng., Cornell University, Jan., 1979.