論文 循環流動層ボイラー灰と高炉スラグ微粉末を結合材とした硬化体の 高強度化と耐久性

長谷川 諒*1・山下 紘太朗*2・佐川 孝広*3・濱 幸雄*4

要旨:本研究では,循環流動層ボイラー灰(CFB 灰)と高炉スラグ微粉末(BFS)を結合材とした硬化体の高強度 化および耐久性について検討している。水酸化カルシウムを CFB 灰に外割りで 6%,工業用無水石膏を CFB 灰に内割りで 2.5%混入し,比表面積 6000 cm²/g の BFS を用い,CFB 灰と BFS の質量比を 75:25,水結合材 比を 40%,高性能 AE 減水剤使用量を結合材に対して 4%,練混ぜ時間を 5 分とした条件で作製した場合に, 適度なワーカビリティを有し,28 日強度で 40N/mm²以上の硬化体が得られた。また,セメントモルタルと比 べ中性化抵抗性は低いが,耐凍害性は同程度で,耐硫酸塩性は優れていることを確認した。 キーワード:循環流動層ボイラー灰,高炉スラグ微粉末,圧縮強度,凍結融解抵抗性,中性化,耐硫酸塩性

1. はじめに

東日本大震災および東電原発事故以降、わが国では脱 原発の流れが加速するとともに電力の安定供給が危惧さ れており,将来的には自然エネルギー,再生可能エネル ギーの開発・普及が求められている。しかし、直近の対 策としては火力発電,大規模工場の自家発電の重要性が 増し, それにともない石炭灰の発生量が増加することが 予想される。特に、大規模工場で自家発電施設として利 用されている循環流動層ボイラー(CFB)は、燃焼効率 の良さ、環境保護の観点からも関心が高まっているが、 発生する石炭灰は一般的なフライアッシュ (FA) とは組 成,性状が異なり,JIS 規格外の灰の排出増加へとつなが る。しかしながら、それらの利用方法は現段階では確立 されておらず、一般のコンクリート用混和材料としての 有効利用は困難である¹⁾。CFB は固体粒子を流動化して 燃焼する方法であり,発生する CFB 灰は微粉炭燃焼ボイ ラーと比較して,低温で燃焼させ,同時に石炭に含まれ る硫黄成分を石灰(CaCO₃)により脱硫を行うことから、 FAとは組成,性状が異なる。

既往研究において著者らは、CFB 灰と高炉スラグ微粉 末を結合材とした硬化体を作製し、CFB 灰と高炉スラグ 微粉末の質量比が 75:25 の条件で 20N/mm²程度の 28 日 強度が得られること、養生温度、CFB 灰の品質の違いが 圧縮強度および細孔構造に与える影響は小さく、養生温 度、水結合材比の影響はセメントモルタルと同様である ことを明らかにしている。また、耐久性については凍結 融解抵抗性、塩分浸透抑制効果、中性化抵抗性はセメン トモルタルと同様に水結合材比が小さくなるほど向上し、 耐硫酸塩性はセメントモルタルよりも優れているが中性 化抵抗性が低いことを明らかにしている²⁾。さらに、CFB 灰のガラス化率、鉱物組成を粉末 X 線回折(XRD)/リ ートベルト法により測定し、CFB 灰は通常の FA と異な り、蒸気の炉内脱硫の影響により CaO(Lime)、無水石膏 (Anhydrite)、水酸化カルシウム(CH)等の Ca 塩が存在 することを示した上で、CFB 灰-高炉スラグ微粉末系結合 材では、CFB 灰中のこれら Ca 塩が高炉スラグ微粉末の 刺激剤として作用することで、セメントを用いずとも 20N/mm²以上の圧縮強度を持つ硬化体が得られることを 明らかとした³。

しかし,セメントモルタルに代わる硬化体としてその 用途を検討するうえで,圧縮強度 20N/mm²程度では十分 とは言い難く,より高強度な硬化体の作製条件の検討は 意味のあることと考える。そこで本研究では,CFB 灰の 品質変動の確認と結合材としての特徴付けを行うととも に,CFB 灰-高炉スラグ微粉末系硬化体の高強度化を目的 として,水酸化カルシウムおよび無水石膏の添加による 効果,高炉スラグ微粉末比表面積の影響および高性能 AE 減水剤の使用量,練混ぜ時間が圧縮強度に及ぼす影響に ついて検討を行い,その結果を踏まえて作製した高強度 の CFB 灰-高炉スラグ微粉末系硬化体の力学性状と凍結 融解抵抗性,耐硫酸塩性,中性化抵抗性などの耐久性に ついてセメントモルタルと比較検討を行っている。

2. 実験概要

2.1 CFB 灰のキャラクタリゼーション

本研究では、北海道内の製紙工場から排出される CFB 灰のうち、採取年月の異なる 9 種類および比較用 FA の 物理試験結果および XRD/リートベルト法によるガラ

*1 室蘭工業大学大学院 工学研究科建築社会基盤系専攻 博士前期課程 (学生会員)
*2 鴻池組(株) 技術研究所 修士(工学)(正会員)
*3 日鐵住金セメント(株) 製品開発部 博士(工学) (正会員)
*4 室蘭工業大学大学院 工学研究科くらし環境系領域 教授 博士(工学) (正会員)

ス化率,鉱物組成の測定を行った。

物理試験は JIS A 6201 (コンクリート用フライアッシュ) に準じ,強熱減量,密度,45µm 残分,ブレーン比表 面積,フロー値比,メチレンブルー吸着量および活性度 の測定を行った。XRD の測定は Panalytical 製 CubiX Pro を,リートベルト解析は SIROQUANT Ver3.0 をそれぞれ 用いた。

2.2 CFB 灰-高炉スラグ微粉末系硬化体の高強度化と耐久 性実験

(1) 使用材料

CFB 灰-高炉スラグ微粉末系硬化体の結合材として, CFB 灰 (2010 年 10 月採取) と比表面積 4000 cm²/g と 6000 cm²/g の高炉スラグ微粉末を使用した。細骨材は再 生骨材 (表乾密度 2.60g/cm³,吸水率 1.78%),陸砂 (表乾 密度 2.67g/cm³,吸水率 1.57%)を使用した。また,ポリ カルボン酸系高性能 AE 減水剤 (SP), AE 剤 (アルキル エーテル系陰イオン界面活性剤),水酸化カルシウム試薬 および工業無水石膏を用いた。

(2) 実験計画及び方法

表-1 に実験要因を,表-2 に調合表を示す。No.1~7 で は、W/B=60%での高強度化を目的として、無水石膏およ び水酸化カルシウムの添加、高炉スラグ微粉末比表面積 の影響についての検討を行った。その中で最も高強度と なる水酸化カルシウムと無水石膏の添加率、高炉スラグ 微粉末比表面積の条件を選定し, No.8~13 では SP を用 いた W/B=40%の硬化体を作製するための SP 使用量お よび練混ぜ時間の最適条件を決定するために、フレッシ ュ性状、圧縮強度、細孔構造の測定を行った。なお、無 水石膏は CFB 灰に対し内割混入,水酸化カルシウムは外 割混入とした。さらに、No.8~13の結果を踏まえて、高 炉スラグ微粉末比表面積 6000cm²/g, 無水石膏: 2.5%, 水 酸化カルシウム:6%, SP:4%, 練混ぜ時間5分として, 耐 久性を考慮して目標空気量を 4%とした高強度 CFB 灰-高炉スラグ微粉末系硬化体(No.14)と W/C が 40%と 60%のセメントモルタル (No. 15, 16) を作製し, 力学性 状試験と耐久性試験を行った。

圧縮強度試験は, φ50×100mmの円柱供試体を用い, 材 齢 3, 7, 28, 91 日で JIS A 1108 に準じて試験を行った。

凍結融解試験は、40×40×160mmの角柱供試体を用い、 JIS A 1148 A 法に準じて、材齢 28 日まで水中養生を行っ た後、最低温度-18℃、最高温度 5℃の凍結融解を 1 日 6 サイクルの条件で繰返し、質量および 1 次共鳴振動数 を測定した。

促進中性化促進試験には φ50×100mm の円柱供試体を 用い,試験体周面をブチルゴムで被覆し,JIS A 1153 に 準じて促進中性化試験を行い,0,1,4,8週において中 性化深さの測定を行った。 硫酸浸漬試験は, φ100×200mmの円柱供試体を用いて, JIS 原案「コンクリートの溶液浸せきによる耐薬品性試 験方法(案)」⁴⁾を参考に,硫酸水溶液の濃度を 5%とした 溶液に浸漬し,溶液が設定濃度を保つように管理しなが ら,適宜,外観観察と質量変化率の測定を行った。

細孔構造の測定は,試験体を 5mm 角の立方体に切断 し,アセトンに 24 時間浸漬し水和を停止させた後,試料 を真空状態でドライアイスの平衡水蒸気圧(-78℃, 0.5µHg)で D-dry 乾燥を1日間行った試料を用いて,水 銀圧入ポロシメータを用いて測定した。

3. 実験結果及び考察

3.1 CFB 灰のキャラクタリゼーション

表-3 に CFB 灰および FA の物理試験結果を示す。CFB 灰は FA と比較して強熱減量が大きく,フロー値比が小 さく,メチレンブルー吸着量が大きい傾向にあった。

図-1 には CFB 灰, FA および高炉スラグ微粉末の粒度 分布測定結果の例を示す。図中には各材料のブレーン比 表面積を記載した。図示されるように,各材料の粒度分 布形状は大きく異なり,工業的に粉砕・分級を行う高炉 スラグ微粉末と比較して,CFB, FA はブロードな粒度分

			1	κ, i	大歌	Σŀ	~				
		配合									
No.	W/B (%)	結合材	細骨材	無水石膏 (B×wt.%)	水酸化 カルシウム (B×wt.%)	SP (%)	練混ぜ 時間 (min)	目標 空気量 (%)	温度 (℃)	条件	測定項目
1 2 3 4 5 6	60	CFB:BFS(75:25) BFS:4000cm ² /g CFB:BFS(75:25)	再生骨材	- 2.5 5 7.5 10 -	-	1	4				フレッシュ性状 圧縮強度
7		BFS:6000cm ² /g		-	-			-			
8 9 10 11 12 13	40	CFB:BFS(75:25) BFS:6000cm ² /g	再生骨材	2.5	6	4	4.5 5 6 4 5 6		20	水中	フレッシュ性状 圧縮強度 細孔構造
14	40	CFB:BFS(75:25) BFS:6000cm ² /g	再生骨材	2.5	6	4	5				フレッシュ性状 圧縮強度
15	40		_	_	_	4	4±1%			凍結融解 硫酸浸漬 中性化試験	
16	6 60	010	P±19			-	4				一 細孔構造 静弾性係数

表−1 実験要因

表-2 調合表

No.	W/B (%)	セメント [kg/m ³]	CFB [kg/m³]	高炉スラグ 微粉末 [kg/m ³]	無水石膏 [B×wt.%]	水酸化 カルシウム [B×wt.%]	水 [kg/m³]	細骨材 [kg/m ³]	SP [%]	AE剤 [%]	練 混 間 [min]	空気量 [%]
1 2 3 4 5	60		435 421 406 392 377	145 (4000)	- 2.5 5 7.5 10	-	348	1160	1		4	-
6 7			435 435	145 (6000)	-	-		1125 1160		-		
8 9 10 11 12 13	40	-	426	160 (6000)	2.5	6	256	1280	4		4.5 5 6 4 5 6	0.5 0.6 0.7 0.4 0.5 0.5
14	40		423	159 (6000)	2.5	6	255	1273	4	0.05	5	3.6
15 16	60	682 600	-	-	-	-	273 360	1365 1201	-	0.01	4	3.9 4

布形状であった。このように粒度分布が大きく異なる材 料間でブレーン比表面積の値を直接比較することはほと んど意味を持たず,ブレーン比表面積は同一材料間での 相対比較を行う物性値であると考えられる。

表-4 に CFB 灰および FA の鉱物組成およびガラス化 率を示す。CFB 灰中に含まれる不活性な結晶相はいずれ も二酸化ケイ素 (Quartz) が主体であり,ガラス化率は概 ね 50%程度であった。また,表中に黄色で示す高炉スラ グ微粉末や CFB 灰のポゾラン反応の刺激剤となる Ca 化 合物である Lime,無水石膏,水酸化カルシウム,炭酸カ ルシウム (Calcite) の含有量にはやや幅があり,これら を CaO として合算すると表中の右端に示すように 3-9% 程度の範囲にあった。

CFB 灰-高炉スラグ微粉末系結合材における CFB の役 割は、高炉スラグ微粉末の刺激剤としての作用と CFB 灰 のガラス相のポゾラン反応相としての作用の2つである。 この観点で表-4を見ると、CFB 灰中のガラス化率はいず れも 50%程度で大きな差はない。また、CFB 灰のガラス 相の塩基度は、高炉スラグ微粉末よりは小さいが FA よ りは大きく, FA のポゾラン反応よりも活性が高い³⁾。さ らに、高炉スラグ微粉末の刺激剤としての作用について は、CaO量にやや差があることから、CFB灰の品質変動 の影響を受けることも考えられる。しかし、既往の研究 において CFB 灰-高炉スラグ微粉末の混合比率によらず 硬化体の圧縮強度は同程度となったことから, CFB 灰の 品質変動が硬化特性に及ぼす影響は小さく,例えば CFB 灰中の Ca 塩量に応じて CFB 灰-高炉スラグ微粉末の混 合比率を変化させること等で、CFB 灰の品質によらず同 等の硬化特性となることが考えられる。

3.2 CFB 灰-高炉スラグ微粉末系硬化体の高強度化

図-2 に無水石膏添加率が圧縮強度に及ぼす影響を示 す。無水石膏添加率 2.5%において 3, 28, 91 日強度にお いて圧縮強度が高い結果となった。

図-3 に水酸化カルシウムおよび高炉スラグ微粉末比 表面積が圧縮強度に及ぼす影響を示す。水酸化カルシウ ムを6%混入することで,材齢28日以降,高い圧縮強度 となる結果となった。高炉スラグ微粉末の反応にはアル カリの刺激が必要であり,CFB 自体が有するアルカリ刺 激剤の量は十分ではないと言える。また、高炉スラグ微 粉末比表面積を 6000cm²/g とすることで、7 日強度以降 から高炉スラグ微粉末比表面積 4000 cm²/g と比べて明ら かに圧縮強度が高くなる結果となった。比表面積が大き くなることで高炉スラグ微粉末が反応しやすくなり強度 が高くなったと考えられる。以上の結果より、無水石膏 添加率は 2.5%、水酸化カルシウムは 6%混入し、高炉ス ラグ微粉末比表面積 6000cm²/g とすることで、高強度化 することができることを確認した。

図-4 および図-5 に SP 使用量と練混ぜ時間がフロー 値, 圧縮強度に及ぼす影響を示す。SP 使用量が多く,練 混ぜ時間が長いほど流動性が向上する結果となった。ま た, SP 使用量が多くなる凝結遅延が起こり,初期強度が 小さくなる傾向が見られた。しかし, SP 使用量,練混ぜ 時間によらず,材齢 28 日で約 40N/mm², 91 日で約 50N/mm²の圧縮強度を得ることができた。以上のように,

表-3 CFB 灰および FA の物理試験結果

CFB sample	Ig.loss (%)	Density (g/cm³)	45µm residue (%)	Blaine (cm²/g)	Flow ratio (%)	MB (mg∕g)	Activity index (28d)
2010-07	11.8	2.46	20	8100	57	0.26	76
2010-10	10.1	2.53	19	8390	59	0.46	89
2010-11	9.7	2.48	25	7900	59	0.67	76
2010-12	10.3	2.42	24	8080	57	0.63	80
2011-01	9.8	2.52	22	8680	60	0.62	99
2011-02	8.8	2.55	23	8420	60	0.71	77
2012-10	11.2	2.37	29	6390	60	0.64	63
2012-11	9.7	2.53	27	7960	58	0.83	88
2012-12	8.2	2.48	29	7510	59	0.65	100
FA	3.2	2.24	14	3770	98	0.32	99

分布の例

モー4 UFD 次のよいFA の弧彻租队のよいカノヘル	₹-4	CFB 灰および FA	Aの鉱物組成およびガラス化率
-----------------------------	-----	-------------	----------------

CFB	Mineral composition determined by Rietveld method (%)									Irritant		
sample	Quartz	Anorthite	Hematite	Gehlenite	Albite	Mullite	Lime	Anhydrite	СН	Calcite	Glass	CaO(%)
2010-07	25.0	4.7	1.4	1.5			0.4	1.8	4.8	0.9	47.6	5.3
2010-10	20.3	5.6	1.3	2.1			2.5	2.4	2.4	0.9	52.3	5.8
2010-11	18.9	6.4	1.8	2.3			2.0	3.6	6.1	1.8	47.5	9.1
2010-12	19.5	7.6	1.1	1.2			4.7	2.1	1.3	0.3	51.9	6.7
2011-01	20.5	7.6	1.5	1.3			3.1	2.8	4.4	0.7	48.2	8.0
2011-02	21.4	5.0	1.3	1.5			3.8	3.1	4.6	0.6	49.9	8.9
2012-10	21.4	4.6	1.4	1.2	1.4	6.4	2.4	1.2		0.8	48.0	3.3
2012-11	21.8	4.7	1.9	1.7			5.2	3.0		1.5	50.4	7.3
2012-12	22.6	4.9	1.2	1.0	1.3	3.9	4.9	1.2			50.7	5.4
FA	6.6		1.3			6.9					82.0	

CFB 灰と高炉スラグ微粉末(比表面積 6000cm²/g)の質 量比を 75:25, W/B=40%とし, 無水石膏添加率を 2.5%, 水酸化カルシウムを 6%, SP を 4%混入することで, セ メントを用いずに CFB 灰-高炉スラグ微粉末系結合材だ けで高強度な硬化体の作製が可能であることを確認した。 3-3 高強度 CFB 灰-高炉スラグ微粉末系硬化体の空隙構

造と耐久性

図-6および図-7に CFB 灰-高炉スラグ微粉末系硬化体の細孔構造の測定結果を示す。図-6 は SP 使用量および 練混ぜ時間影響を示しているが, SP 使用量,練混ぜ時間 によらず細孔直径 20nm 付近で極めて高いピークが存在 する結果となっており,総細孔量の違いは細孔直径 10~ 20nm のピークの細孔量に依存している。 また,図-7 は高強度化した CFB 灰-高炉スラグ微粉末 系硬化体 No.14 および W/C=40%と 60%のセメントモル タルの細孔構造を比較したものであるが,No.14 では図 -6 と同様に細孔直径 20nm の細孔径に高いピークを示し ているのに対して,セメントモルタルの場合は幅の広い ブロードなピークを示し,その範囲は 10~100nm となっ ている。また,CFB 灰-高炉スラグ微粉末系硬化体の総細 孔量は同じ水比(40%)で比べるとセメントモルタルよ りも多くなっているが,60%のモルタルよりは少ない。

図-8 に高強度化した CFB 灰-高炉スラグ微粉末系硬化 体 No.14 とセメントモルタル No.15, 16 の圧縮強度を比 較して示す。CFB 灰-高炉スラグ微粉末系硬化体 No.14 は W/C=60%のモルタル No.16 よりも高い圧縮強度結果と なった。

図-9 に高強度化した CFB 灰-高炉スラグ微粉末系硬化 体 No.14 とセメントモルタル No.15, 16 の圧縮強度と静 弾性係数の関係を示す。CFB 灰-高炉スラグ微粉末系硬化 体とセメントモルタルの圧縮強度と静弾性係数の関係は 概ね一致している。

図-10 に高強度化した CFB 灰-高炉スラグ微粉末系硬 化体 No.14 とセメントモルタル No.15, 16 の凍結融解試 験における相対動弾性係数の変化を示す。試験体の空気 量はすべて4%程度であり差がなかったにもかかわらず, W/C=60%のセメントモルタル No.16 は初期段階から大 きく劣化したが, CFB 灰-高炉スラグ微粉末系硬化体 No.14 とW/C=40%のセメントモルタルは良好な耐凍害 性を示した。 図-11 に高強度化した CFB 灰-高炉スラグ微粉末系硬 化体 No.14 とセメントモルタル No.15, 16 の硫酸浸漬試 験における質量変化率の経時変化を示す。また,写真-1 に硫酸浸漬供試体の外観を示す。セメントモルタルでは W/Cによらず表面剥離が進行する劣化を示しているの に対して,CFB 灰-高炉スラグ微粉末系硬化体は健全であ ることがわかる。また,モルタルでは W/C=40%の方が 60%よりも劣化が大きくなったが,この理由については 不明であるが,これと同様の結果を示す既往研究 ⁵も存 在する。

図-12 に高強度化した CFB 灰-高炉スラグ微粉末系硬 化体 No.14 とセメントモルタル No.15, 16 の促進中性化 試験結果を示す。CFB 灰-高炉スラグ微粉末系硬化体は基

本的にアルカリ源がなく PH は低い。また、外添してい る水酸化カルシウムは高炉スラグ微粉末の刺激剤として 働き、水和の進行とともにアルカリは低下する。したが って、中性化抵抗性を期待することはできない。

4. まとめ

本研究では, CFB 灰-高炉スラグ微粉末系硬化体のキャ ラクタリゼーションと高強度化のための条件の選定及び, 高強度化硬化体の耐久性評価を行った。その結果、以下 の知見を得た。

- 1) CFB 灰のガラス化率は概ね, 50%程度で大きな差異 はなく、ポゾラン反応の刺激剤となる Ca 塩の量に はやや差異が認められた。
- 2) CFB 灰-高炉スラグ微粉末の混合比率によらず硬化 体の圧縮強度は同程度となった既往研究の結果と 併せると、CFB 灰の品質変動が硬化特性に及ぼす影 響は小さいといえる。
- 無水石膏を CFB 灰に対する内割り 2.5%, 高炉スラ 3) グ微粉末の比表面積 6000cm²/g,水酸化カルシウム は CFB 灰に対する外割り 6%, SP は結合材量に対 して4%、練混ぜ時間は5分の条件とすることで適 度なワーカビリティを有し,28日強度で約40N/mm², 91 日強度で約 50N/mm²の硬化体が得られることを 確認した。
- 4) 高強度化した CFB 灰-高炉スラグ微粉末系硬化体は, セメントモルタルと比較して,中性化抵抗性は劣る が、耐凍害性、耐硫酸性は同等以上である。

謝辞

本研究の実施にあたり、ノーステック財団「研究開発 助成事業」の補助を受けた。記して深甚なる謝意を表 す。

参考文献

- 1) 山下紘太朗,高山長基,濱幸雄:循環流動層ボイラ 一灰を混入したモルタル・コンクリートの基礎性状, 日本建築学会大会学術講演梗概集(関東), pp.219-220, 2011
- 2) 山下紘太朗, 佐川孝広, 岸本嘉彦, 濱幸雄: 循環流 動層ボイラー灰と高炉スラグ微粉末を結合材とし た硬化体の強度性状と耐久性, コンクリート工学年 次論文集, Vol.35, No.1, pp.1579-1584, 2013
- 3) 佐川孝広,柏熊一輝,山下紘太朗,濱幸雄:循環流 動層ボイラー灰-高炉スラグ微粉末硬化体の強度発 現と水和反応,第66回セメント技術大会講演要旨, PP.298-299, 2012
- 4) JIS 原案「コンクリートの溶液浸せきによる耐薬品 性試験方法)」コンクリート工学, Vol.23, No.3, pp.59-62, 1985
- 5) 田中斉,桝田佳寛, 鹿毛忠継: 硫酸および硝酸によ るコンクリートの化学的腐食進行速度に関する実 験、コンクリート工学年次論文集, Vol.30, No.1, pp.1185-1190, 2008