論文 小口径深穴穿孔機を利用した既設コンクリートの強度簡易推定法

井上 文宏*1・佐藤 智*2・渡邉 晋也*3・根間 栄順*4

要旨:橋梁床板等のコンクリート部材の強度を実現場で簡易に推定できる方法を考案するため、小口径深 穴穿孔機の送り速度をトルクモータで制御し、その穿孔速度の変化からコンクリート強度を推定する方法 を提案する。トルクモータを用いた穿孔速度と負荷力、回転数の関係から、コンクリート強度を推定する 簡易式を誘導した。強度の異なる試験体用いた穿孔実験より、コンクリート強度と穿孔速度は指数関数で 近似でき、また簡易式と相関する関係があることを確認した。この簡易式は既設コンクリートを用いた穿 孔実験のデータとも近似する傾向がり、簡易推定法の実用化に向けた可能性を得た。 キーワード:小口径深穴穿孔機、強度推定、自動送り制御、ダイヤモンドビット

1. はじめに

戦後の高度成長時代に都市部を中心とした建設された 各種の土木インフラ(橋梁,トンネル,高速道路など) の多くは寿命を迎え始め,大規模な修繕やリニューアル, 建て替えが必要な時期となっている。特にコンクリート 構造物は経年劣化に加え,塩害や中性化などの影響によ りその強度が著しく低下するケースもあり,早急な対応 が迫られている。

このような修繕が必要なコンクリート構造物に対して は、先ず劣化の度合いを客観的に判断できるコンクリー ト強度の推定が不可欠と考えられる。従来、既存のコン クリート構造物のコンクリート強度の推定する方法には、 (1) 既設構造物からコア試験体を採取し、圧縮強度試験 機で強度を測定する方法^{1,2}

(2) テストハンマーでコンクリート表面を打撃し、その 反発硬度から圧縮強度を測定する方法、また弾性波の伝 播速度と反射時間を計測する方法(iTECS法、2点法)
(3) 試験体に超音波を発信し、その伝播速度の変化から 圧縮強度を計測する方法

等が実際に使用されている。しかし、圧縮強度試験機を 用いる場合には、コア採取や強度試験など膨大な時間と 費用が掛ること、打撃法は簡易で使いやすいが、コンク リートの比較的近い表面付近の強度計測に限られること、 超音波計測では粗骨材の粒径や位置によっては散乱減衰 が起こり、伝播速度の計測精度が低下することなどが考 えられる。そのため、現地で簡易にコンクリート強度を 測定する方法が求められている^{3,4}。

これまで著者の1人は、小口径深穴穿孔機を利用した 穴の穿孔速度と穿孔機の押付け力の関係からコンクリー ト強度を推定する方法を考案した⁵⁾。圧縮空気で穿孔部 を一定力で押付けてコンクリートを穿孔することで、穿

*1 湘南工科大学 工学部機械工学科教授 工博 (正会員) *2 ㈱ティ・エス・プランニング 社長 (正会員) *3 施工技術総合研究所 研究第二部 工博 (正会員) *4 ㈱ティ・エス・プランニング 開発部長

孔速度が一定となり、穿孔速度はコンクリート強度によって異なることから、穿孔速度を計測することでコンクリート強度を推定した。しかしながら、圧縮空気は穿孔面での変動を直接吸収するため、コンクリート材料(骨材やばらつき)の影響よって穿孔部が大きく変動して計測精度が低下すること、設定する圧縮空気の圧力によって穿孔速度が決まるため、実用上適切な穿孔速度を設定することができないなど、改善すべき点も残されている。

そこで、本研究では小口径深穴穿孔機に対して、穿孔 部の送り速度をトルクモータで制御し、その穿孔速度の 変化からコンクリート強度を推定する方法を提案する。 一般に、トルクモータを用いた制御では、負荷荷重に応 じたトルクが出力され、穿孔部の送り速度は常に一定の 値となることが予想される。しかし、圧縮強度が高いコ ンクリートの穿孔では、穿孔機に設定トルク以上の負荷 が作用するため、送り速度は低下してほぼ一定の固有値 をとることを見出した。穿孔機全体は非常にコンパクト であり、小口径の深穴穿孔であるため、短時間での穿孔 や計測が可能であるため、現地でのコンクリート強度推 定を簡易に実施できる見込みがあると考えられる。

本報告では、小口径深穴穿孔機の概要と穿孔原理、コ ンクリート強度の推定方法、実際の穿孔実験による結果 および得られた成果と考察について報告する。

2. 小口径深穴穿孔機の概要

実験に使用した穿孔機の概要を図-1に示す。本シス テムは、①小口径穿孔ドリル、②スライドブロック(送 り装置)、③水循環装置、④真空ポンプから構成される。 各装置の仕様を**表-1**に示す。

小口径穿孔ドリルは,先端にダイヤモンドビットを取 り付けた研磨ドリルであり,高速回転でコンクリート面

図-1 実験に使用した穿孔機の概要

を研磨しながら、深穴穿孔が可能である。

穿孔ドリルはラックとピニオンで構成されるスライ ドブロックに固定され、ポールベースに沿って上下に移 動する。ポールとベースは傾斜させることができる機構 であり、様々な角度の穿孔にも対応できる。ベース部は 真空ポンプを用いて内部を負圧にすることで、試験体と ベースを真空密着させて固定することができる。穿孔時 には水循環装置を用いることで、ビッドの冷却と潤滑、 穿孔したコンクリートカスの排出を行う。また、水循環 装置の内部ではフィルターを介して清水をドリル内に送 り込むことができ、穿孔性能を維持させている。

3. ドリルの穿孔速度とコンクリート強度の関係

(1)穿孔速度とトルク特性

ドリルの穿孔に対して、ドリル本体の送りを自動化す るため、スライドブロック内の歯車に減速機を介してト ルクモータを結合した。トルクモータは定格トルク内の 負荷に対しては、設定した回転数で運転できる特性を有 しており、回転数が0の状態でも連続運転が可能である。 またコンクリート内部の粗骨材の影響で穿孔速度が急激 に低下してもモータへの負荷は小さく抑えられる。

ー般に、ラック・ピニオンを用いたドリルの穿孔速度 は、図-2に示すようにトルクモータのトルクを*T*、モ ータの回転数を*N*、ドリルの穿孔速度を*v*、ドリルの穿 孔に対する負荷力を*F*とすると、式(1)の関係がある。

$$v = k_0 \frac{2\pi N_0 T}{F} \tag{1}$$

ただし、koはモータの効率やラック・ピニオンの摩擦係 数を含む定数を表す。

トルクモータを用いた制御では、ドリルの負荷力 *F* が設定トルク *T*₀の範囲であれば、負荷力 *F* に追随した

①小口径穿孔ドリル	 (1)ドリル ・回転数: 133 1/s, 電流: 5.2 A, 出力: 500W, 重量: 1.6 kg (2)シャンク・ロット軸 ・長さ: 400mm, 軸径: 15.5mm, 材質: ステンレス製 (3)ダイヤモンドビッド: ・長さ: 25mm, 軸径: 15.5mm
②スライドブロック	 (1)ポール ・長さ:910 mm, 断面:50×50 mm, ラック付 (2)トルクモータ: ・定格トルク:0.1 Nm, 定格回転数:4000 rpm 減速比:200, オリエンタルモータ (3)レーザ変位計 ・計測距離:250±150mm, 北陽電機
③水循環装置	・真空圧: 2000 mmAq, 流量: 2.5 m ³ /min ・出力: 1.1 kW, タンク容量: 15 L
④真空ポンプ	・真空圧 : 750 mmHg, 流量 : 1.5 m ³ ∕min ・出力 : 1.5 kW

図-2 移動速度とトルク特性

トルク
$$T = k_1 F$$
 (k_1 は比例定数)が出力されるため,

$$v = 2\pi N_0 \cdot k_0 \cdot k_1 \qquad (T \le T_0) \tag{2}$$

となり、穿孔速度は一定となる。

一方、コンクリート強度が高くなり、ドリルの負荷力

表-1 実験に使用した穿孔機の各仕様

Fが設定トルク T_0 以上であれば、トルク T_0 は一定となり、負荷力Fに応じてモータの回転数が変化するため、 穿孔速度も変化する。すなわち、式(3)の関係を得る。

$$v = k_0 \frac{2\pi N \cdot T_0}{F} \qquad (T > T_0) \tag{3}$$

(2) コンクリート強度と穿孔速度の関係式

ドリルでコンクリート面を穿孔する際、ドリルの負荷 カFとコンクリート強度 σ の関係が不明であるため、負 荷力Fが σ の α 乗に比例すると仮定すると、 $F = k_2 \cdot \sigma^a$ (k_2 は比例定数)で表され、この関係を式(3)に代入 して σ で表すと

$$\sigma = \left(\frac{k_0}{k_2} \frac{2\pi N \cdot T_0}{\nu}\right)^{1/\alpha} = K_0 \cdot \nu^{-1/\alpha}$$
(4)

を得る。すなわち,負荷力 F が設定トルク T_0 以上であ れば,コンクリート強度 σ は ν に対して冪数関数で表さ れる曲線となることが分かる。上記の関係を模式的に示 した関係を図-3に示す。

このことから、本装置を用いて穿孔実験を行い、コン クリート強度に対する穿孔速度や各種の定数を求めるこ とで、コンクリート強度を簡易に推定できる推定式を得 ることができる。次章では実験によって、上記の関係を 検証する。

4. 実験概要

4.1. 試験体の作製

本研究で用いたコンクリートの基本配合を表-2に示 す。水セメント比 37.8%とし、セメントには早強セメン トを用いた。また、本試験ではコンクリート強度を変動 させる目的で、基本配合で混練を行った後、加水を実施 し、パン型ミキサーを用いて再度2分間の混練を行った 試験体も作製した。加水量は 1m³ 当たり、11.6(kg)、 23.2(kg)、34.8(kg)および 69.6(kg)の4種類であり、加水し たコンクリートの配合を表-3に示す。試験体の寸法は、 基本配合試験体では長さ 100(cm)×幅 100(cm)×深さ 20(cm)、加水試験体では、長さ100 (cm)×幅 50 (cm)×深 さ 20(cm)とした。上記の配合で作製した試験体の材齢1、 3、7日に対するコンクリート強度の関係を表-4に示す。 4.2. 試験方法

(1)送り機構のパラメータ設定

送り機構のパラメータを設定するため、モータの基準 トルク T=0.1 (Nm) に対する設定割合 Trを10~20(%)変 化させ、穿孔時のトルクを計測した。各試験体に対し、 穿孔時のトルクが設定割合と常に等しく、負荷力 F が設 定トルク T₀ 以上となる条件を選定した。また、モータ の回転数 N は実際の現場作業に適用できる実用的な値

図-3 コンクリート強度と穿孔速度の関係図

表-2 コンクリート試験体の基本配合

単位量	量(%)		単位量 (kg/m ³)						
W/0	6/-				8	0			
W/C	5/a	vv	C	S1	S2	G	Ad		
37.8	39.9	170	450	404	269	1024	4.5		
備考									
C:普通オ	C:普通ポルトランドセメント(3.16g/cm ³)、S1:富士川産川砂(2.64g/								

表-3 加水したコンクリート試験体の配合

単位	量(%)	単位量 (kg/m ³)								
W/C	S/a	W+ 加水	加水後 のW/C	w	С	S1	S S2	G	Ad	加水
37.8 39.9	182	40.4	170	450	404	269	1024	4.5	11.6	
		193	42.9	170	450	404	269	1024	4.5	23.2
	39.9	205	45.5	170	450	404	269	1024	4.5	34.8
	39.9	240	53.2	170	450	404	269	1024	4.5	69.6

表 4 札	材齢に対する	るコンクリ	リート	強度の関係
-------	--------	-------	-----	-------

	試験体	単位量(%)	コンク	コンクリート強度(N/m ²)			
	NO.	W/C	材齢1日	材齢3日	材齢7日		
基本配合	1	37.8	4.5	29.9	42.0		
加水配合	2	40.4	8.1	32.4	39.7		
	3	42.9	7.0	29.0	40.1		
	4	45.5	5.8	27.4	37.3		
	5	53.2	3.6	18.3	30.6		

N=500(1/min) を採用した。

(2) 計測装置と記録

(1)で得られたトルクの設定値を基に、各試験体を約 150 (mm)の深さまで穿孔し、穿孔に掛る経緯と時間を記 録した。穿孔深さは、穿孔機のスライドブロックに取り 付けたレーザ変位計で計測し、合わせてモータのトルク を時系列にメモリーハイコーダに記録した。

(3) 穿孔実験

各試験体に対して穿孔実験を5回行い,実験による再 現性が得られるように工夫した。写真-1に穿孔実験の 様子を示す。実験開始に合わせて穿孔状態をモニタで観 察し,穿孔速度の大きな変化や異常状況を確認した。穿

写真-1 穿孔実験およびデータ計測状況

孔間隔は予備実験によって 10 (mm)間隔でも実験データ には影響がないことを確認したが,粗骨材の最大寸法(25 (mm))を考慮して約 20 (mm)の間隔を開けて実施した。

なお、ダイヤモンドビットは、最初に約400(mm)の予 備穿孔を行い、ダイヤモンドの目出しを確認してから、 穿孔実験を開始した。ビッドの限界穿孔長は8~10(m) であることを実験で確認しており、本実験では安定な性 能が確保できる穿孔長5(m)を限界として、ビッドの交換 を実施した。実験に伴ってビットのダイヤモンド砥粒の 消耗が生じたが、実験毎に穿孔長を記録・管理すること で、穿孔性能が同じになるように考慮した。写真-2に 実験で穿孔した試験体の結果を示す。試験体全範囲を使 用することで、穿孔部位の違いによる影響も考慮した。

5. 実験結果とその考察

5.1 コンクリート強度と穿孔速度の測定

作製した試験体に対して,穿孔実験を行った測定結果 を表-5に示す。また実際の穿孔深さと穿孔時間との関 係を示すデータを抜粋して図-4に示す。なお,送り機

写真-2 実験で穿孔した試験体の状況

表-5 実験による圧縮強度と穿孔速度の測定結果

	試騿体	圧縮強度		穿	孔速度	(mm/	/s)	
	NO.	(N/m^2)	1	2	3	4	5	平均
	1	4.5	0.81	1.27	1.21	0.91	1.22	1.09
	2	8.1	0.79	1.41	1.19	1.02	1.21	1.12
材齢1日	3	7.0	0.84	0.98	1.17	1.01	1.17	1.03
	4	5.8	0.83	1.37	1.07	1.05	1.23	1.11
	5	3.6	0.87	1.18	1.13	1.11	1.07	1.07
	1	29.9	0.41	0.66	0.70	0.88	0.72	0.68
	2	32.4	0.33	0.51	0.40	0.77	0.80	0,69
材齢3日	3	29.0	0.60	0.67	0.57	0.63	0.68	0.63
	4	27.4	0.56	0.72	0.73	0.70	0.69	0.68
	5	18.3	0.55	0.73	0.54	0.48	0.55	0.57
	1	42.0	0.53	0.41	0.79	0.34	0.72	0.56
	2	39.7	0.60	0.46	0.77	0.66	0.74	0.65
材齢7日	3	40.1	0.65	0.69	0.72	0.70	0.67	0.69
	4	37.3	0.69	0.74	0.69	0.66	0.72	0.70
	5	30.6	0.60	0.62	0.63	0.50	0.63	0.60

構のトルク設定割合は10(%)にし、ドリルへの負荷が設 定トルクを超える値とした。すなわち、コンクリート強 度に応じて、送り速度が変化する範囲の値を用いた。

図-4より,穿孔深さは穿孔時間に比例して増加する 値をとなり,コンクリート強度が同じであれば,ほぼ同 じ穿孔状態となることが分かる。またコンクリート強度 が高いほど,穿孔速度は低下する傾向が見られる。穿孔

速度(直線の傾き)の変化は粗骨材等の影響と考えられ, 粗骨材の種類によっても穿孔時間が異なるものと推定さ れる。これは粗骨材を穿孔する部位を過ぎれば,再び穿 孔速度が元の傾きになることからも確認できる。そこで, 明らかに粗骨材の影響による時間のロスが見られた実験 では,ロス時間を全体の穿孔時間から差引き,差引いた 時間と穿孔深さの関係から各穿孔速度を決定した。

穿孔実験における各穿孔速度の平均と試験体の圧縮 強度の関係を図-5に示す。 σ はvに対して右下がりの 分布となり,冪数関数を用いて最少二乗近似した σ の式 $\sigma = 8.1 \cdot v^{-2.8}$ は、相関係数 (r = 0.86)も1に近く、各 データの相関が高いことが分かる。このことから、穿孔 速度を計測して近似式に代入することで、コンクリート 強度を推定することが可能となった。また、式(4)の中 では、穿孔機に作用する負荷力Fが、コンクリート強度 σ の α 乗に比例する仮定をしたが、実験結果でも同様な 関係が見られた。今後、各種の定数値を求めることで、 精度の高い推定式が得られるものと考えられる。

5.2 トルクの設定割合

ドリルの送り機構に与えるトルクの設定割合 T_r を変え て、穿孔速度の測定を行った。その結果を表-6に示す。 また、穿孔速度とコンクリート強度の関係を図-6に示 す。 $T_r = 10$ (%)では、穿孔時のトルク表示は 10 (%)を示 し、 σ はvに対して右下がりの分布となった。一方、 $T_r =$ 15, 20 (%)では、穿孔時のトルク値は、いずれも 15 (%) 以 下となり、穿孔負荷に対して十分に余裕があることが分 かる。この場合、穿孔速度はコンクリート強度に関わら ず、ほぼ等しい値となっている。 T_r が 15 (%)および 20 (%)では与えたトルク値が異なるため、穿孔速度も異なる 値になると考えられる。

5.3 既設コンクリート部材の強度推定

上記で得られたコンクリート強度と穿孔速度との関係 が、既設コンクリート試験体(材齢1年程度)でも適用 できるかを穿孔実験によって検証した。既設の試験体に は、低強度試験体(強度:21.3 (N/mm²))と高強度試験 体(強度:57.6 (N/mm²))を使用し、下向き方向と上向 き方向の穿孔実験を行うことで、重力方向の違いや自重 量の影響なども検討した。

表-7に実験で得られた既設試験体の圧縮強度と穿孔 速度の関係を示す。また、写真-3に下向き穿孔実験の 様子を、図-7(a)に上向き穿孔実験における荷重とト ルクの関係を、図-7(b)に上向き穿孔実験の様子を示 す。なお、上向き穿孔ではトルク設定割合Trに自重を考 慮した値を用いる必要があるため、Trを変えることで最 適な値を確認した。

表-6 設定トルクに対する穿孔速度の測定結果

	計除け いつ	圧縮強度	トルクモ	ータの設定割	合T _r (%)
	ittliget i the second	(N/m^2)	10	15	20
	1	4.5	0.83		
	2	8.1	1.24		
材齢1日	3	7.0	1.15		
	4	5.8	1.02		
	5	3.6	1.18		/
	1	29.9	0.59	1.17	1.26
	2	32.4	0.66	1.05	1.25
材齢3日	3	29.0	0.59	1.19	1.34
	4	27.4	0.69	1.22	1.21
	5	18.3	0.69	1.22	1.45
	1	42.0	0.61	1.15	1.64
	2	39.7	0.58	1.22	1.44
材齢7日	3	40.1	0.69	1.21	1.33
	4	37.3	0.57	1.19	1.41
	5	30.6	0.70	1.15	1.06

図-6 設定トルクによる圧縮強度と穿孔速度の関係

表-7 既設試験体の圧縮強度と穿孔速度の測定結果

	コンクリート 圧縮強度	穿孔速度(mm/s)							
試験体 NO.		Tr=10	Tr=15	Tr=20		Tr=25			
	(N/mm^2)	(%)	(%)	(5	6)	(%)			
		下向	下向	下向	上向	下向	上向		
		0.90	1.38	1.22	0.57	0.84	1.35		
		0.81	1.39	1.26	0.63	0.92	1.42		
	21.6	0.64	1.38	1.21	0.76	0.84	1.44		
低强度		0.79	1.44	0.67	0.89		1.50		
		0.63	1.52	0.61	0.85		0.96		
	平均	0.71	1.42	1.00	0.74	0.87	1.33		
		0.54	1.01	1.08	0.38	0.88	0.93		
		0.61	0.97	0.93	0.45	0.98	0.88		
吉沙西	57.6	0.68	0.91	1.14	0.53		0.88		
尚强度		0.63	0.94	1.10	0.63		0.80		
		0.58	0.86	1.13	0.50		0.97		
	平均	0.64	0.94	1.07	0.54	0.93	0.89		

写真-3 既設試験体におけ る下向き穿孔実験の様子

(a) 上向き穿孔における荷重とトルク

(b) 上向き穿孔実験の状況

図-7 既設試験体を用いた上向き穿孔実験

表-8に示した穿孔速度の平均とコンクリート強度 の関係を図-8に示す。参考として本実験で得られた近 似式を記載した。下向き穿孔実験($T_r = 10$ %)による穿 孔速度は近似式に沿う値となり,近似式が既設のコンク リートでも対応することが分かる。また,上向き穿孔実 験では,自重を考慮して $T_r = 20$ % とすることで,近似 式とほぼ等しくなる。上向き穿孔では下向き穿孔に対し て T_r を10(%)増加することで,コンクリート強度推定 のための設定ができるものと考えられる。その他のデー タは,穿孔時のトルクが設定割合 T_r より小さいデータで あり,近似式とは大きく異なることが分かる。本穿孔装 置を用いて強度推定を行う場合には,下向きでは T_r を10 (%)以下,上向きでは20(%)に設定すればよいことが 確認できた。

6. まとめ

本研究では小口径深穴穿孔機に対して,穿孔部の送り 速度をトルクモータで制御し,その穿孔速度の変化から コンクリート強度を推定する方法を提案した。トルクモ ータを用いた穿孔速度と負荷力,回転数の関係から,コ ンクリート強度を推定する簡易式を誘導した。

穿孔実験では、強度の異なる試験体用いた穿孔実験を 行い、 σ はvに対して右下がりの分布とることを確認 した。また冪数関数を用いて近似した σ の式は、相関係 数(r=0.86)も1に近く、各データの相関が高いことが 分かる。このことから、穿孔速度を計測して近似式に代 入することで、コンクリート強度を推定することが可能 となった。この近似式は同じトルク設定の範囲(下向き では10(%)以下、上向きでは20(%)では、既設のコン クリート部材にも適用できることを確認した。

今後は材質や強度の異なるコンクリートに対して本推 定法を適用し,精度の向上と穿孔機の改良を進めて行く。

図-8 既設試験体の圧縮強度と穿孔速度の関係

参考文献

- 藤倉裕介,青景平昌:補修・補強工事におけるコンク リート穿孔面の損傷程度が打ち継ぎ後の付着強度に 及ぼす影響,コンクリート工学年次論文集,Vol.28, No.1, pp.1709-1715, 2006.
- 2) 岩城圭介,加藤淳司,平間昭信,塩谷智基:微視的断 面観察による酸劣化したコンクリートの微細構造の 評価,コンクリート工学年次論文集,Vol.26,No.1, pp.999-1005,2004
- 長谷川哲也,畑中重光,三島直生,谷川泰雄:削孔式 表層強度試験器によるセメント硬化体の強度評価,コ ンクリート工学年次論文集,Vol.28, No.1, pp.1877-1882,2006
- 4)湯浅 昇:コンクリート構造物の非破壊試験・微破壊 試験の研究と実用化,建材試験情報、Vol.49、pp.2-8、 2013.4
- 5) 井上文宏: コンクリート強度の推定方法, コンクリー ト強度の推定システム, 及び穿孔装置, 公開特許公報, 特開2008-128831, 2008.