論文 廃瓦骨材を活用した RC はりのせん断強度

Mwangi M. MACHARIA^{*1}・小川 由布子^{*2}・山口 克己^{*3}・佐藤 良一^{*4}

要旨:水セメント比(W/C),廃瓦骨材(PCA)置換率およびPCAの粗骨材(PCCA),細骨材(PCFA)の相違を 検討要因とし,PCAの内部養生が高炉 B 種 RC はりのせん断特性に及ぼす影響の検討を行った。W/C は 0.5, 0.35 であり,PCAの容積置換率は W/C=0.5 の場合,粗骨材で 0%,10%,20%,細骨材で 12%,W/C=0.35 の 場合は粗骨材で 0%,20%,30%である。RC はりは有効高さ 250mm,鉄筋比 1.03%である。実験の結果,RC はりのせん断強度は W/C=0.5 の場合,PCCA置換率 10%で 30%, PCFA12%で 40%増加し,PCFAの効果が高 かった。W/C=0.35 の場合は置換率によらず約 15%低下した。

キーワード:高炉 B 種コンクリート,廃瓦骨材,内部養生,鉄筋コンクリート,せん断強度

1. はじめに

環境負荷低減を目的に、建設リサイクル法やグリーン 購入法が制定され、産業副産物である高炉スラグ微粉末 を含む高炉セメントB種が実構造物に広く使用されてい る(セメント協会によれば 2012 年の生産量が全体の 2 割)。高炉セメントB種を用いたコンクリート(BBC)は 普通ポルトランドセメントのみを用いたコンクリート

(NC)よりセメントの水和反応が遅く,強度発現は,特 に若材齢時の養生の影響を強く受ける¹⁾。初期に乾燥を 受けると,その後湿潤状態を保っても,強度発現が悪く なるとともに,耐久性の低下および乾燥収縮が増大する こともある¹⁾。このため BBC の湿潤養生期間は NC の 場合よりも長くする必要がある²⁾が,実構造物において は,養生が十分に行われない場合もある。

屋根瓦の製造時に発生する約 10,000t/年の JIS 規格外 品石州瓦は,一部が路盤材として再利用されているが, 大部分は産業廃棄物として埋め立て処分されており,廃 瓦の有効活用が望まれている。

これらに対応するために,重松ら³⁾,佐藤ら⁴⁾はセメ ントの水和反応に伴って水分を供給する内部養生材とし て適度な吸水率と比較的高い強度を持つ廃瓦に着目し, 廃瓦粗骨材(PCCA)を BBC に適用した結果,収縮低減お よび強度増進などの効果があることを報告した。

廃瓦骨材(PCA)を構造用コンクリートに適用する場合, 無筋コンクリートの力学特性,耐久性に関わる諸特性と 共に鉄筋コンクリート(RC)部材の力学特性を把握する必 要がある。中でもせん断強度の把握は,せん断破壊が急 激に生じ壊滅的な破壊をもたらすため,特に重要である。

PCCA の破砕値は,BS812 の試験法によれば,内部養 生材として実績のある人工軽量骨材の半分程度であるが, 天然砕石の倍程度と大きい。ちなみに破砕値が大きいと 破砕しやすいことを意味する。軽量骨材は,破砕値が大 きいためそれを粗骨材全量置換すれば, RC はりのせん 断強度の低下をもたらすことが知られている ^{5),6)}。ま た,超高強度コンクリートを用いた RC はりの場合は, PCCA20%置換であっても,せん断強度が低下すること が報告されている⁷⁾。

以上のことを踏まえて本研究では、PCAの構造物への実用化を目指して高炉 B 種 RC はりに適用し、その内部養生効果が RC はりのせん断特性に及ぼす影響の検討を行った。

2. 実験概要

2.1 使用材料および配合

本研究において使用した材料を表-1 に示す。セメントには高炉スラグ微粉末40~45%置換の高炉セメントB 種を使用した。

粗骨材は黒瀬町産石英斑岩砕石および江津産廃瓦,細 骨材は黒瀬町産石英斑岩砕砂を用いた。廃瓦粗骨材は7 日間吸水させたものを表乾状態に調整し使用した。水セ メント比は0.5 および0.35 とした。

コンクリートの配合を表-2 に示す。水セメント比が 0.5 の場合,細骨材率(s/a)を 44.6%,単位水量を 170kg/m³の一定とした。廃瓦粗骨材の置換率は,容積比 で 0%,10%および 20%とした。廃瓦細骨材は,廃瓦粗 骨材の内部養生水量(吸水量)と同等となるよう調整し, 容積比で12%置換した。

水セメント比 0.35 の場合, 細骨材率 (s/a) を 40.3%, 単位水量を 170kg/m³ の一定とした。廃瓦粗骨材の置換 率を容積比で 0%, 20%および 30%とした。また,引張 鉄筋は, 曲げ破壊を防ぎ確実にせん断破壊を生じさせ るため,高強度の異形 PC 鋼棒 C 種 1 号 (記号:

*1 広島大学 工学研究科社会基盤環境工学専攻 (学生会員)
*2 広島大学 工学研究院社会環境空間部門 博士(工学) (正会員)
*3 国土交通省 中国地方整備局 浜田河川国道事務所 (非会員)
*4 広島大学 工学研究院社会環境空間部門 工博 (正会員)

使用材料	種類	記号	物理特性
セメント	高炉セメントB種	BB	密度3.02g/cm ³ 、比表面積3760cm ² /g
細骨材	石英斑岩砕砂 (広島県東広島市黒瀬町産)	S	表乾密度2.58g/cm3、吸水率1.56%
	石英斑岩乾式砕砂 (広島県東広島市黒瀬町産)	DS	表乾密度2.57g/cm3、吸水率1.71%
	廃瓦細骨材 (江津産)	PCFA	表乾密度2.29g/cm3、吸水率8.1%
粗骨材	石英斑岩砕石 (広島県東広島市黒瀬町産)	G	表乾密度2.62g/cm ^{3、} 吸水率0.59%
	廃瓦粗骨材 (石州瓦)	PCCA	表乾密度2.26g/cm3、吸水率9.0%

表-2 配合表

表-1 使用材料

					~ -									
		E				単								
配合記号	W/C	スランプ (cm)	空気量 (%)	s/a	w	BB	混合砂		混合砕石		AE 減水剤	打込み 温度 (℃)		
							S	DS	PCFA	G	PCCA			
50BBC				44.6	170	340	503	270	-	977	-	0.90 %	14.0	
50BBC-G10	0.5									880	84		23.0	
50BBC-G20	0.5	0±2								781	170		15.0	
50BBC-S12			4.5±1.5				441	236	85	977	-		24.0	
35BBC										977	-		16.5	
35BBC-G20	0.35	0.35	0.35 18±2		40.3	170	486	423	226	-	781	170	1.20%	24.0
35BBC-G30										684	253		16.0	

図-1 RC はりの供試体概要

SBPD1080/1230)のD22を使用した。

RC はり供試体の寸法は、300×305×2300mm,有効 高さdを250mmとした。引張鉄筋比は1.03%とした。 RC はり供試体の断面と供試体の側面図を図-1 に示す。 せん断設計の基本となるせん断引張強度を明らかにする ために、せん断補強は行わなかった。RC 供試体は、結 果の信頼性を高めるため、各配合で2体ずつ作製した。

2.2 養生条件

すべての配合において,養生条件は材齢7日まで封緘 その後は屋内気中曝露したものであり,RC はりは,乾 燥の影響が長手方向で一様になるよう,両端面にアルミ 粘着テープを貼付し,水分の逸散を防止した。養生期間 中においての平均温度は 16.7℃で,平均相対湿度は 56.4%であった。

2.3 検討項目

2.3.1 強度試験

強度試験として圧縮強度試験,割裂引張強度試験およ び静弾性係数試験を行った。各試験は,それぞれ JIS A 1108, JIS A 1113 および JIS A 1113 に準拠した。

2.3.2 破壊エネルギー試験および評価方法

破壊エネルギー試験は日本コンクリート工学会の試験 法⁸⁾に準じて行い、切り欠きの深さは50mmとした。ま た破壊エネルギーおよびひび割れ発生強度に影響すると されている特性長さは、試験法と同様 JCI の方法により 求めた。ここで、特性長さが長くなることは破壊が延性 的になることを意味する。

2.3.3 RC はりの計測項目および載荷試験方法

RC はりの挙動を明らかにするために,図-1 に示す位 置の鉄筋ひずみの経時変化を打込み直後から測定した。 載荷は2点集中載荷とし,鉄筋ひずみ,支間中央たわみ および曲げせん断域のせん断変位を,ワイヤストレイン ゲージ(ゲージ長 5mm), π型変位計(精度:1/1000mm), 高感度変位計(精度:1/1000mm~1/200mm)により測定し た。載荷は,単調増加とし所定の荷重で計測を行った。

3. 実験結果および考察

3.1 力学特性

図-2 および図-3 に、W/C=0.5 および 0.35 のコンクリ

図-4 鉄筋ひずみに及ぼす PCA の影響

ート基礎物性に及ぼす PCA の内部養生の影響を示す。 これらの図によれば, 圧縮強度,割裂引張強度は,既往 の研究^{3,4}と同様,いずれの W/C においても内部養生 効果が認められ,とりわけ W/C=0.35 の効果が顕著であ った。W/C=0.5 の場合には廃瓦粗骨材と細骨材の使用に よる差異はほとんど見られなかった。ヤング係数につい ては,W/C=0.5 の場合は無置換に比べて同程度であった が,W/C=0.35 の場合は PCA 置換率が 30%のとき小さく なる傾向が見られた。

3.2 収縮による鉄筋ひずみ

図-4 には打込み以降のせん断特性検討に用いた RC は りの鉄筋ひずみの経時変化を示す。W/C=0.5 の場合は, 50BBC-G20 に内部養生による自己収縮低減効果が認め られるものの,長期的にはいずれの場合も内部養生の効 果は認められなかった。一方,W/C=0.35 の場合は,内 部養生を行った 35BBC-G20 の鉄筋ひずみが小さい。こ れは自己乾燥および乾燥曝露による細孔中の湿度低下を 内部養生水で抑制したことによると考えられる。置換率 の大きい 35BBC-G30 の場合は気中曝露前の自己収縮低 減があるものの,曝露後は乾燥の影響を大きく受け,材 齢 300 日において無置換(35BBC)と同程度となった。 これの理由の一つとして,置換率が多く図-3(c)に示さ れているように,細孔中の負圧と釣り合う骨格のヤング 係数が小さいことが考えられる。

3.3 せん断特性に及ぼす PCA の影響

表-3 には RC はりおよびコンクリートの載荷試験時材 齢,コンクリートの力学特性,載荷時直前の収縮による 鉄筋ひずみと鉄筋位置およびはり下縁のコンクリート応 力,鉄筋位置のコンクリート応力=0 の時の鉄筋ひずみ を示す。この表によれば,内部養生を行ったコンクリー

百日	材料試験材齢		RC載荷材齡			⊐:	ンクリートの	強度		載荷時直前の収縮による鉄筋ひずみとコンクリート応力				
- 現日					圧縮強度	引張強度	ヤング係数	破壊 エネルギー	特性長さ	鉄筋ひずみ	鉄筋位置の コンクリート応力=0 の時の鉄筋ひずみ	鉄筋位置の コンクリート 応力	下縁コンク リート応力	
記号	実材齢	有効材齢	実材齢	有効材齢	f_c	f_t	Ec	G_f	l _{ch}	E s, def	E s0,def	$\sigma_{c,def}$	$\sigma_{c0,def}$	
単位	П	日	П	B	N/mm ²	N/mm ²	kN/mm ²	N/mm	mm	×10 ⁻⁶	×10 ⁻⁶	N/mm ²	N/mm ²	
50BBC-A	20	20	43	22	22.0	2.70	27.8	0.168	638	-91	-103	0.33	0.52	
50BBC-B	39	20	46	23	33.0					-104	-117	0.37	0.59	
50BBC-G10-A	106	216	193	214	39.3	3.22	26.5	0.220	564	-147	-167	0.52	0.74	
50BBC-G10-B	190	210	198	217						-163	-185	0.58	0.82	
50BBC-G20-A	40	20	43	22	26.0	3.27	28.0	0.208	546	-87	-98	0.31	0.49	
50BBC-G20-B	40	20	45	23	30.5					-81	-91	0.29	0.46	
50BBC-S12-A	205	210	205	219	219 40 5	2 20	30.3	0.209	551	-156	-175	0.56	0.79	
50BBC-S12-B	205	215	209	221	40.5	3.33				-160	-179	0.57	0.81	
35BBC-A	262	070	250	263	47.0	3.50	31.4	0.200	513	-270	-301	0.97	1.36	
35BBC-B	202	2/2	254	267	47.0					-269	-300	0.97	1.35	
35BBC-G20-A	220	227	235	240	617	4.07	34.2	0.207	428	-194	-215	0.70	0.98	
35BBC-G20-B	229	237	234	240	01.7					-206	-228	0.75	1.04	
35BBC-G30-A	200	200	282	286	59.0	4 17	20.1	0.209	350	-275	-309	0.99	1.38	
35BBC-G30-B	290	230	285	288	55.0	4.17	23.1	0.208		-264	-296	0.95	1.33	

トの破壊エネルギーは無置換に比べて大きくなるが,引 張強度も大きくなるため,コンクリートの破壊の脆性度 を表す特性長さは小さくなる傾向が見られた。

図-5にはせん断 RC はりスパン中央のたわみに及ぼす PCA の影響を示す。また、図-6 には曲げせん断域のせ ん断変位に及ぼす PCA の影響を示す。図中の丸印は図-5 の場合斜めひび割れ発生荷重で図-6 の場合は斜めひび 割れ発生時のせん断力を示している。斜めひび割れ発生 荷重の決定では荷重とたわみ関係のみならず、曲げせん 断域で測定した鉛直方向変位およびせん断変位も考慮し て決定した。図-5 より、いずれの W/C においても斜め ひび割れ発生までの荷重-たわみ関係に対する内部養生 の影響はほとんど見られない結果となった。しかし、図 -6にも見られるように、W/C=0.5の場合には、内部養生 により斜めひび割れ発生荷重が増大する場合があり、ま た最大耐力もいずれも増大して、内部養生した RC はり の斜めひび割れ後のたわみは無置換に比べ小さい。

図-7 にそれぞれの RC はりのせん断強度に及ぼす PCA の内部養生効果を示す。図中に RC 部材のせん断強度の 土木学会示方書式の原式である二羽らの式(1)で求めた 値および式(2)に示す等価鉄筋比の概念⁹により収縮の影 響を考慮した二羽式による計算値も示している。

			斜めひび割れ発生荷重・強度										局耐力	
項目	RC載	č荷材 齡	実測値			ニ羽式による 計算値		実測値/ 計算値	等価鉄筋比を用 いた二羽式の計 算値		実測値/ 計算値	実測値	実測値/ 計算値	破壊形態
記号	実材齢	有効材齢	V _{c,m}	Тс	LL	$V_{c.cal}$	T _{c,cal}	V _{c,m} /	V _{c.cal}	T _{c,cal}	V _{c,m} /	P _{u,m}	P _{u,m} /	
単位	H	B	kN	N/mm^2	ц	kN	N/mm ²	V _{c.cal}	kN	N/mm ²	V _{c.cal}	kN	V _{u,m}	
50BBC-A	43	22	191	1.27	1.00	168	1.12	1.14	159	1.06	1.20	192	1.01	せん断引張破壊
50BBC-B	46	23	180	1.20	1.00			1.07	158	1.05	1.14	220	1.22	せん断ずれ破壊
50BBC-G10-A	193	214	231	1.54	1 2 1	177	1 1 0	1.30	163	1.09	1.41	240	1.04	せん断圧縮破壊
50BBC-G10-B	198	217	220	1.47	1.21		1.10	1.24	162	1.08	1.36	254	1.16	せん断引張破壊
50BBC-G20-A	43	22	186	1.24	0 00	174	1.16	1.07	166	1.11	1.12	186	1.00	せん断引張破壊
50BBC-G20-B	45	23	180	1.20	0.99			1.03	167	1.11	1.08	226	1.26	せん断ずれ破壊
50BBC-S12-A	205	219	241	1.61	1 20	179	1.19	1.35	165	1.10	1.46	281	1.16	せん断圧縮破壊
50BBC-S12-B	209	221	242	1.62	1.30			1.35	164	1.10	1.47	262	1.08	せん断引張破壊
35BBC-A	250	263	261	1.74	1.00	100	1.26	1.39	165	1.10	1.58	265	1.02	せん断圧縮破壊
35BBC-B	254	267	241	1.61	1.00	100		1.28	165	1.10	1.46	268	1.11	せん断圧縮破壊
35BBC-G20-A	235	240	225	1.50	0.96	206	1.37	1.09	189	1.26	1.19	234	1.04	せん断圧縮破壊
35BBC-G20-B	234	240	206	1.37	0.00	200		1.00	188	1.25	1.10	225	1.09	せん断引張破壊
35BBC-G30-A	282	286	209	1.39	0.01	202	1 25	1.03	178	1.18	1.17	241	1.16	せん断圧縮破壊
35BBC-G30-B	285	288	211	1.41	0.84	202	1.35	1.05	178	1.19	1.18	220	1.04	せん断圧縮破壊

(2)

表-4 斜めひび割れ発生荷重の比較

 $V_c = 0.2 f_c^{\prime \frac{1}{3}} \left(\frac{d}{1000} \right)^{\frac{-1}{4}} (100 p_s)^{\frac{1}{3}} (0.75 + 1.4/(a/d)) bd$ (1) ここで, $f_c^{\prime}: = = = = > 0$ 日本の圧縮強度, d: 有効高さ, $p_s: 引張鉄筋比, a: せん断スパン長, b: 部材幅$

$$p_{s,e} = \frac{\varepsilon_s}{\varepsilon_s - \varepsilon_{s0,def}} p_s$$

ここで, ε_s: せん断スパン中央断面における斜めひび 割れ発生直前の曲げ理論による鉄筋ひずみ, ε_{s0,def}:引 張鉄筋にとのコンクリート応力が0となる鉄筋ひずみ

また,図-8 に無置換 RC はりの実測せん断強度=1 と し内部養生を行った RC はりのせん断強度比をとったも のを示す。図中に圧縮強度と等価鉄筋比の相違を除去す るするために式(3)を用いて実測値を正規化した値も示 している。表-4 には斜めひび割れ発生荷重の実測値と 計算値の比較を示す。

$$\tau^*_{c,m} = \frac{\tau_c}{f^{1/3}{}_c \times (100 p_{s,e})^{1/3}}$$
(3)

ここで, *τc*:実測せん断強度, *fc*:圧縮強度, *pse*: 等価鉄 筋比

図-7によれば、W/C=0.5の場合、無置換と比較すると、 50BBC-G10および 50BBC-S12のせん断強度が大きく、 50BBC-G20 は同程度であり、置換率 10%程度の効果が 高い。圧縮強度および等価鉄筋比の相違の影響を除いた 結果を示す図-8 によれば、それらの影響を含んだ結果 と大きくは異ならず、50BBC-G10 の場合およそ 25%、 50BBC- S12の場合およそ35%無置換より大きい。この ことは、式(3)のみでは上記の内部養生効果を説明でき ないことを示しており、破壊力学的アプローチを含めて、 今後検討したい。

W/C=0.35 の場合,内部養生を行った 35BBC-G20 および 35BBC-G30 のせん断強度は,正規化した場合も含めて,無置換に比べていずれのはりも約 20%低下した。 Walraven⁵⁾は,軽量骨材を用いたRCはりでは,ひび割れ面における骨材の噛み合いによるせん断伝達力が低下し,せん断強度が低下すると指摘している。一方,モルタル強度が高くなるとコンクリート中の軽量骨材は破壊しやすいことが報告され¹⁰⁾,また軽量骨材の破砕値が小さいことも報告されている¹¹⁾。これらのことからW/C=0.35 の場合で見られるせん断強度の低下は PCA の大きい破砕値による影響であると考えられる。

これらの結果から, W/C=0.5 では PCA 置換率 10%程 度でせん断強度が有意に増大し, W/C=0.35 では 20%を

超えるとせん断強度が有意に低下する。よって、本研究 の範囲では、W/C=0.35の場合を除けば、置換率 10%が PCA を実構造物に適用するのに最適であるといえる。

図-9 にせん断強度の実測値を二羽式ならびに等価鉄 筋比を用いた二羽式で求めた計算値で除した比示してい る。図-9 によれば、いずれの RC はりにおいても実測値 が計算値より大きく、安全側での評価が可能であること がわかる。また、収縮の影響を考慮した等価鉄筋比を用 いた二羽式による計算値はより安全側の評価を与える。

4. 結論

本研究の範囲内で明らかになったことを以下に示す。

- (1) 廃瓦骨材の内部養生効果により圧縮強度,割裂引 張強度,破壊エネルギーが増大することが確認で きた。しかし,大きい破砕値によると考えられる 特性長さの低下が見られた。また,ヤング係数は W/C=0.5 の場合同程度であったが,W/C=0.35 の場 合は置換率が大きいほど低下傾向が見られた。
- (2) 廃瓦骨材を用いた RC はりの鉄筋拘束ひずみは, W/C=0.5 の場合内部養生の影響をあまり受けない が, W/C=0.35 の場合は収縮低減する場合がある。
- (3) 廃瓦骨材を用いた RC はりのたわみは, W/C によ らず, 斜めひび割れ発生前では内部養生効果が認 められなかった。
- (4) 収縮の影響を無視したせん断強度の計算値は実験 値と同等以上であり、安全側での評価が可能であった。また、収縮の影響を考慮した等価鉄筋比を 用いた場合は、より安全側の評価であった。
- (5) 置換率 10%の廃瓦骨材を W/C=0.5 の高炉 B 種 RC はりに置換した場合, せん断強度は粗骨材置換で 25%, 細骨材置換で 35%増加し, 10%が最適な置 換率であった。しかし, W/C=0.35 の場合の最適 置換率は今後の課題である。
 - なお、本研究の一部は H25 年度 JSPS 特別研究員奨励

費(課題番号:257401) および H25 年度 JSPS 科学研究助 成金(挑戦的萌芽,代表 佐藤良一,課題番号: 25630187) に基づいて実施したものであり,紙面を借り て謝意を表したい。

参考文献

- 土木学会:高炉スラグ微粉末を用いたコンクリートの施工指針, Vol.17, No.5, pp.87-95, 1979.5
- 2) 土木学会:コンクリート標準示方書(施工編), pp.123,2002年
- 3) 重松明,温品達也,木村守,佐藤良一:廃瓦粗骨 材の内部養生による高炉B種コンクリートの性能向 上について、コンクリート工学年次論文集, Vol.31, No.1, pp.205-210, 2009.7
- Sato et al., Improvement of Properties of Portland Blast Furnace Cement Type B Concrete by Internal Curing Using Ceramic Roof Material Waste, JMCE, ASCE, Vol. 23, Issue 6, June 2011, pp.777-782.
- Walraven J.C, Size effects: Their Nature and their Recognition in Building Codes, Size Effect in Concrete Structures, JCI International Workshop, Oct.23-Nov.2, 1993., pp.295-314.
- 6) 土木学会:人工軽量骨材コンクリート設計施工マ ニュアル, No.56, 1985
- 7) 三谷 昂大,大賀 琢麻,佐藤 良一:実大規模 超高強度 RC はりにおける収縮低減とせん断挙動に ついて、コンクリート工学年次論文集, Vol.32, No.2, pp.667-672, 2010.7
- 8) 日本コンクリート工学会:コンクリートの破壊特 性の試験方法に関する調査研究委員会報告書, 2001
- Sato, R. and Kawakane, H. :A new concept for the early age shrinkage effect on diagonal cracking strength of reinforced HSC beams, Journal of Advanced Concrete Technology, Vol.6, No.1, pp. 45-67, 2008.
- 10) 北村 周郎, 尼崎 省二:人工超軽量骨材コンク リート RC はりに関する基礎研究,コンクリート工 学年次論文集, Vol.22, No.2, pp.247-252, 2000
- 11) 鶴田 浩章,松下 博通,陶 佳宏:粗骨材の破砕 値が及ぼす高強度コンクリートの圧縮強度への影
 響,コンクリート工学年次論文集,Vol.20, No.2, pp.991-996, 1998