論文 低品質再生骨材コンクリート充填円形鋼管の中心圧縮特性

岡崎 雄一*1·角掛 久雄*2·加藤 亮平*3·上中 宏二郎*4

要旨:近年の種々の環境問題に伴い,資源の有効利用に関心が向けられる中,解体時のコンクリート塊の再 生骨材として再利用技術が求められている。そこで,低品質再生骨材コンクリートをコンクリート充填円形 鋼管(CFT)の充填材として利用した時の力学特性を把握するために,収縮の影響を踏まえたうえで中心圧 縮試験を行った。その結果,低品質再生骨材コンクリートを用いても収縮の影響は小さく,中心圧縮耐力に 関しても普通骨材と同様に,現行のCFT指針で提案されている算定耐力でほぼ評価できた。 キーワード:低品質再生骨材,コンクリート充填鋼管,収縮,中心圧縮

1.はじめに

建設工事に伴って排出される建設廃棄物は 2008 年度 において約 6380 万トンであり,そのうちコンクリート 塊は約 3130 万トン (49%)¹⁾におよび,大きな割合を占 めている。ただし,現状において,97%程度が再利用さ れているが,そのほとんどが路盤材として用いられてい る。高度経済成長期に建設されたインフラ構造物の更新 や補修・補強時期を迎え,大量の解体コンクリートが発 生することが予想されることからも新たなコンクリー ト材料として利用する方法を提案することが望まれる。

コンクリート用再生骨材は3段階にJIS 規格化²され ており、再生砕石を高度処理した再生骨材 H(高品質) は普通骨材と同等に扱えるため、主に、再生骨材 M(中 品質)の利用について研究が多くなされている。再生骨 材 L(低品質)については高度処理を必要としないため、

製造に当たり CO₂削減など環境負荷は小さくなるが, 普 通骨材と比べて吸水率が非常に大きく, 骨材製造時に多 くの微粒分が発生することから, コンクリートに利用し た場合に自己収縮が大きく, 強度低下などの問題点を抱 えている。そのため, コンクリート構造物用としてでは なく, 裏込めコンクリートや均しコンクリートなどの無 筋コンクリートへの利用が行われている。

そこで、本研究では環境負荷の低減を考慮したコンク リート材料として低品質の再生骨材(再生骨材L相当も しくはそれ以下の低処理再生砕石)の有効利用方法を検 討することが、解体コンクリートのリサイクル方法の一 助になると考え、研究例の少ない構造物への利用を目指 し、コンクリート充填鋼管(CFT)を対象に検討を行っ た。コンクリート充填鋼管においてはコンクリートを被 覆および拘束している状態であるため収縮が低減され、 鋼管への影響が小さい³⁾こともあり、中品質再生骨材を 用いたコンクリート充填鋼管に関する研究⁴⁾は実施され ており、普通コンクリートを用いた場合と同様に、耐力 を算定することが可能であることが示されている。その ため、単体ではさらに収縮が大きいと考えられる低品質 再生骨材を用いたコンクリートにおいても検討を行う ため、収縮の影響と中心圧縮強度について試験を行った。

2. 再生骨材コンクリートの基本性状

本研究に用いた再生骨材は解体コンクリートを路盤 材用の骨材として加工した低品質再生骨材である。ただ し、再生骨材における微粒分が収縮等に影響を与えるこ とから、微粒分の有無をパラメーターとして検討するこ ととし、水洗いして微粒分を除去したものを微粒分無し として比較している。表-1,2に、今回用いた骨材の 品質を JIS 規格の値と併せて示す。表より、粗骨材、細 骨材ともに低品質に分類することが出来るが、細骨材に おいて微粒分量が、JIS 規格で定められた値 10.0%よりも 大きい結果となり、JIS 規格で定義されている骨材より も更に低品質な細骨材であった。

また, 粒度分布を図-1, 2に示す。図の破線は再生 骨材Lの標準粒度範囲²⁾を示している。図より, 粗骨材 の粒径15mmで一部範囲外のものが見られるが, 概ね一 般的な骨材と同程度の粒径と言える。なお, 骨材の最大 寸法は20mmとなるようにふるい分けを行った。

コンクリートは,再生骨材の微粒分の有無を一つのパ ラメーターにしているが,普通骨材コンクリートとも比 較を行った。以後,骨材名称および供試体名称において 普通骨材を N,再生骨材を RE,微粒分無しの再生骨材 を RN とする。配合は**表-3**に示すように,細骨材およ

*1 大阪市立大学大学院 工学研究科都市系専攻(現 大林組) (学生会員)

^{*2} 大阪市立大学大学院 工学研究科都市系専攻 講師 博(工) (正会員)

^{*3} 大阪市立大学 工学部都市学科

^{*4} 神戸市立工業高等専門学校 都市工学科 准教授 博(工) (正会員)

	JIC / 0 1 PL	114 F3 F8 J -1	11	C / V I	1144 F3 (F3	117 13 151	1111/00/11/11	1112/11		1.7(#
使用骨材	W/C	s/a	W	С	S	G	Ad	AE		
	(%) (%) (kg/m ³)							(cm)	(%)	
Ν					717	1039			17.2	4.8
RE	58	41.7	188	325	627	941	0.811	0.0389	13.0	6.2
RN					654	946			15.7	3.0

表-4 コンクリート硬化性状

供試体	材齢	圧縮強度	弾性係数	引張強度	
名称	(日)	(N/mm ²)	(kN/mm ²)	(N/mm ²)	
Ν		21.7	16.8	1.99	
RE	28	16.7	10.2	1.46	
RN		18.2	13.2	1.62	

表-5 鋼管材料定数

公称板厚	実測板厚	降伏強度	引張強度	弹性係数
(mm)	(mm)	(N/mm^2)	(N/mm^2)	(kN/mm ²)
2.30	2.28	415	498	210
4.50	4.21	439	492	208

び粗骨材の量のみを変化させて再生骨材において所定 のフレッシュ性状(目標スランプ 12±2cm,目標空気量 4.5±1.5%)が得られる様に配合を行った。材齢28日での 材料特性を表-4に示す。普通骨材のスランプ値が大き いことから,骨材などにより実態の水量が配合よりも多 くなったためか,強度は小さくなった。ただし,圧縮強 度をはじめ全てにおいて,普通骨材(N)コンクリート が最も高く,微粒分無しの再生骨材(RN)コンクリート, 再生骨材(RE)コンクリートの順で低くなっており,微 粒分の有無による影響が顕著にみられる。特に,再生骨 材を普通骨材(N)と比較した場合,微粒分無し(RN) の場合は全てにおいて約80%となったのに対して微粒分 がある(RE)の場合は強度比が約75%であるが,弾性係 数比が 61%と弾性係数への影響が特に大きくなった。

3. 収縮試験

3.1 試験概要

本研究においては、円形のコンクリート充填鋼管を対象とし、充填コンクリートは2章で述べた3種類(N, RE, RN)を用いた。鋼管については鋼管の剛性がコンクリートの収縮に影響することが考えられるため、径厚比を2種類(*D*/*t*=36.7, 69.9)で比較することとした。た

だし、充填鋼管のコンクリート断面積を統一するため、 鋼管は外径 D=165.2mm で板厚 t=4.5mm の STK400 の既 成管をベースに外径を削り、小さくすることで内径を統 一した2種類の径厚比の鋼管を製作した。使用した鋼材 の材料定数を表-5に示す。また、コンクリート単体と の収縮を比較するために、CFT 内の充填コンクリートと 同一の大きさの円柱供試体と、一般的に収縮計測に用い られている100×100×400mmの角柱供試体でも実施した。

CFT 柱の収縮は、充填コンクリートの軸中心にモール ドゲージを埋め込み、充填コンクリートの軸方向ひずみ を計測する。また、鋼管には一軸および二軸ひずみゲー ジで鋼管のひずみを計測した。コンクリート円柱に関し ても充填コンクリートと同様に軸中心にモールドゲー ジを、さらに打設1日後にコンクリートの硬化を確認し たうえで表面に一軸ひずみゲージを貼付し、コンクリー トの収縮を計測している。コンクリート角柱は円柱と同 条件で比較するため、円柱同様、ひずみゲージを貼付す ることで計測している。表-6に供試体一覧を示し、図 -3に各供試体の計測概略を示す。表中の供試体名は最 初に CFT、Col (コンクリート円柱)、Pri (コンクリート 角柱)を示し、次に骨材の種類 N、RE、RN を示す。CFT の後に続く数字は鋼管厚を表す。供試体数は各パラメー

供試体名称	-N	-RE	-RN	-N	-RE	-RN	Col-N	Col-RE	Col-RN	Pri-N	Pri-RE	Pri-RN
最小収縮量 (μ)	-135	-114	-103	-101	-124	-70	-863	-955	-943	-906	-1345	-1199

ターに対して1体ずつとし,計測期間は200日以上,供 試体は室内温度20℃,相対湿度60%を一定に保った環境 で気中養生し,計測を行った。

3.2 収縮試験結果

図-4にコンクリート円柱(Col)と角柱(Pri)の収 縮量の経時変化を示す。なお,円柱は2つの収縮量が同 等であったためモールドゲージによるひずみ量を、角柱 はひずみゲージによるひずみ量を表しており、計測はす べて脱型後(材齢1日)から始めている。図中において, 参考値として角柱に対して「コンクリート標準示方書[設 計編15)」より算出した設計値も併せて示す。なお、算定 式等については紙面の都合上、割愛する。図より、普通 骨材に関しては、形状に関わらず 800μ 程度から収縮増 分量が低減しはじめ、算定値よりやや大きいが近い値で 収束している。再生骨材の場合は普通骨材より収束する 材齢は遅く、160 日程度から収束しはじめ、当然のこと ながら,最終的に再生骨材が普通骨材の収縮量より大き く、微粒分を有する場合が最も収縮量は大きくなった。 円柱と角柱で収縮量に違いがあるが、これは表面積比の 違いによる影響が大きいと考えられる。

また, CFT 柱の充填コンクリートの最大収縮ひずみを 表-7に示すとともに, CFT 供試体の高さ方向の鋼管の 軸方向ひずみ分布を30日間隔で示したものをCFT-REを 例として図-5に示す。表より、コンクリート単体の収 縮量と比較して、鋼管内部の充填コンクリートの収縮量 は 150 以下と非常に小さくなっており,再生骨材と普 通骨材による差異もほとんど見られず、低品質再生骨材 を用いても鋼管に充填することで、コンクリートの収縮 を大きく低減できた。図より、鋼管の剛性の違いにより、 充填コンクリートの収縮が鋼管に与える影響に差異が 生じているが、鋼管のひずみは t=2.3mm の供試体の場合 でも最大で降伏ひずみの 5%程度であり、充填コンクリ ートの収縮が部材耐力に与える影響は小さいと考えら れる。なお、鋼管のひずみも材齢1日から計測したため、 硬化時の収縮ひずみを計測できておらず、鋼管に及ぼす コンクリートの収縮による応力が小さくなったため、も しくは付着応力の低下によって初期時に生じた収束ひ ずみが解放される方向に作用したため、引張側に移行し たものと考えられる。ただし、別途検討が必要と思われ る。

4. 中心圧縮試験

4.1 試験概要

収縮試験において、コンクリート単体の収縮がほぼ収 束したと判断し、収縮試験で用いた供試体に対して中心 圧縮試験を行った。本実験で使用する供試体は乾燥収縮 試験で使用した供試体と同一であるため、パラメーター、 寸法および使用材料は3章と同様である。また、CFT 柱 との比較を行うために、コンクリート単体(C柱)およ び表-8に示す鋼管単体(S柱)の供試体でも行った。

載荷時の計測概要を図-6に示す。供試体の上下端に 加圧板を設置し、上下加圧板の間隔を変位計で4箇所計 測した。また、ひずみゲージおよびモールドゲージ設置 位置は2章と同様であるため、図-3を参照願いたい。

4.2 実験結果

4.2.1 コンクリート柱(C柱)

C柱の軸方向の応力-柱高中央ひずみ関係を図-7に結 果一覧を表-9に示す。強度および剛性は表-4の材料 表-8 中心圧縮試験供試体(S柱)

#+⇒+/+-		汉百世	寸法(mm)					
供 (1) (名称	構造	任序儿	鋼管厚	外径	内径	高さ		
יניי בר		D/t	t	D	d	L		
S-23	网络	69.9	2.3	160.8	156.2	500		
S-45	述 则'目'	36.7	4.5	165.2	130.2	300		

表-9 中心圧縮試験結果(C柱)

供試体 名称	材齢 (日)	圧縮強度 (N/mm ²)	圧縮破壊 時ひずみ (%)	弹性係数 (kN/mm ²)	ポアソン 比
Col-N		21.0	0.328	17.1	0.176
Col-RE	252	16.0	0.414	9.9	0.155
Col-RN		17.3	0.430	11.8	0.153

(a) CFT23-N (b) CFT23-RE (c) CFT23-RN 図-9 載荷後の損傷状態

試験と同様に普通骨材(N)の方が大きく,最大応力時 のひずみは0.1%(1000µ)程度再生骨材の方が大きくな った。なお、コンクリート柱の破壊形式は全て上面から の圧縮せん断破壊であった。また、各定数は表-4の材 料試験と概ね同様の傾向が得られた。

4.2.2 鋼管柱 (S柱)

S 柱の軸方向の応力-柱高中央ひずみ関係を図-8に 示す。S-23 は下部で、S-45 は上部で顕著なエレファン ト・バックリングが発生して破壊に至り、急激な荷重低 下をした。なお、図中の座屈位置は設置した座屈発生付 近のひずみゲージ挙動より決定している。局部座屈の影 響より、最大荷重時のひずみは *t*=4.5mm の方が大きく表 -5の材料試験結果より強度は低くなった。

4.2.3 CFT 柱

(1) 損傷状態

載荷後の損傷は図-9に示すように、充填コンクリートのせん断圧縮破壊とそれに伴い鋼管の左右に局部座 屈が生じた。なお、載荷時の観察において各供試体とも に最大耐力発揮以前に鋼管の膨らみを確認し、その後、 最大耐力発揮以降に顕著な局部座屈が生じた。CFT45-RE に関しては、部材降伏はしているが、早期に偏心が生じ 曲げ変形が卓越したため、載荷装置の制約の関係上、鋼 管の局部座屈発生前に終了した。

			実験値					算》	主値		
/II.35./I.	是十古舌	CH	str:	単純累加		Ctt	str:	単純	i累加	拘束効果考慮	
供試体	取八忉里		ら仕	荷重	耐力比		STÍ	荷重	耐力比	荷重	耐力比
名称	N _{exp}	$_{c}N_{exp}$	s N _{exp}	N'_{exp}	N_{exp}/N'_{exp}	$_{c}N_{c}$	$_{s}N_{c}$	N_0	N_{exp}/N_0	N _{cu1}	N_{exp}/N_{cu1}
	kN	kN	kN	kN	kN	kN	kN	kN		kN	
CFT23-N	1113	402	474	876	1.27	416	475	891	1.25	1019	1.09
CFT23-RE	956	307	474	782	1.22	320	475	795	1.20	923	1.04
CFT23-RN	999	331	474	805	1.24	349	475	824	1.21	952	1.05
CFT45-N	1593	402	908	1310	1.22	416	996	1412	1.13	1681	0.95
CFT45-RE	1283	307	908	1215	1.06	320	996	1316	0.97	1585	0.81
CFT45-RN	1469	331	908	1239	1.19	349	996	1345	1.09	1614	0.91

ξ

表-10 各種耐力比

(2)荷重-ひずみ関係

図-10に CFT 柱の荷重と柱高を変位で無次元化し た軸方向ひずみ関係を示す。載荷は軸方向ひずみ6%(変 位 30mm)を最大とし、破壊形状や変形状態に応じて、 6%未満でも終了した。図中の降伏はひずみ値より得られ た降伏点を示す。図より、図-8の結果同様、t=2.3mm の鋼管を用いた方が最大荷重への到達は早く、また、図 -7のC柱の結果同様,再生骨材を用いた方が最大荷重 時のひずみは大きくなる傾向が得られた(曲げが卓越し た CFT45-RE を除く)が、微粒分有の再生骨材において は影響が小さくなった。降伏後の挙動については骨材の 差異および鋼管厚による影響はほとんど見られず、鋼管 の降伏以降,緩やかに荷重増大し,最大耐力を迎えた後, 鋼管の局部座屈が進展しながら、非常に緩やかな荷重低 下を示した。CFT 指針^のより,幅厚比が大きいほど,最 大耐力発揮以降の耐力減少の程度が大きくなることが 示されていたが、今回の実験では、明瞭な傾向の差異は 見られなかった。また、初期剛性に関しては、コンクリ ートの弾性係数と同様に普通骨材を用いた CFT 柱が大 きくなった。

(3) 耐力比

実験で得られた中心圧縮強度 N_{exp} と算定強度 N_0 , N_{cu1} を示す。 N_0 は鋼とコンクリートの耐力を単純累加した値 であり、 N_{cu1} は CFT 指針^ので提案されている拘束効果を 考慮した中心圧縮強度算定式であり、式(1)~(2)に示す。

$$N_{cu1} = {}_{c}N_{c} + (1+\xi) {}_{s}N_{c}$$
(1)

$$= 0.27$$
 (2a)

$${}_{c}N_{c} = {}_{c}A \cdot {}_{c}\gamma_{U} \cdot {}_{c}\sigma_{B}$$
(2b)

$${}_{s}N_{c} = {}_{s}A \cdot {}_{s}\sigma_{y} \tag{2c}$$

ここで, $_{c}A$: コンクリートの断面積, $_{s}A$ 鋼管の断面積, $_{cy_{U}}$: コンクリートの強度低減係数 (=1), $_{c}\sigma_{B}$ コンクリー トのシリンダー強度, $_{s}\sigma_{y}$: 鋼管の降伏強度を表す。

各種耐力および比率(最大荷重/耐力)を表-10に 示す。なお、耐力算定に用いた材料定数は、材料試験の 値を用いた。また、曲げが卓越した CFT45-RE は参考値 として示す。CFT 柱での最大荷重は C 柱と S 柱それぞれ の単体での最大荷重および拘束効果を考慮しない耐力 の累加耐力に比べて 9%以上大きくなった。拘束効果を 考慮した算定耐力と比べると t=4.5mmの場合は耐力より 下回っているものの全ての供試体で最大荷重の10%前後 となった。再生骨材を用いた場合、普通骨材よりもコン クリートの弾性係数などが小さいが耐力比の差異は普 通骨材に比べ5%程度の差であり、供試体数は少ないが、 低品質再生骨材でも普通骨材と同様の算定方法で評価 できることが推定される。

(4) 鋼管の2軸応力状態

図-11に鋼管の応力履歴を示す。図中の点線は平面 応力状態における Von-Mises の降伏曲線である。弾塑性 状態の応力-ひずみ関係は Prandtl-Reuss の構成則⁷となり, 式(3)~(4)に示す。

$$\begin{pmatrix} d\sigma_z \\ d\sigma_\theta \end{pmatrix} = \left\{ \frac{E_s}{1-\nu^2} \begin{bmatrix} 1 & \nu \\ \nu & 1 \end{bmatrix} - \frac{1}{S} \begin{bmatrix} S_1^2 & S_1 S_2 \\ S_1 S_2 & S_2^2 \end{bmatrix} \right\} \begin{pmatrix} d\varepsilon_z \\ d\varepsilon_\theta \end{pmatrix}$$
(3)

$$S = (S_1 s_z + S_2 s_\theta) \tag{4a}$$

$$S_1 = \frac{E_s}{1 - \nu^2} (s_z + \nu s_\theta) \tag{4b}$$

$$S_2 = \frac{E_s}{1 - \nu^2} (s_\theta + \nu s_z) \tag{4c}$$

$$s_z = \frac{2\sigma_z - \sigma_\theta}{3} \tag{4d}$$

$$s_{\theta} = \frac{2\sigma_{\theta} - \sigma_z}{3} \tag{4e}$$

ここで, σ_z :鋼管の軸方向応力, σ_θ :鋼管の周長方向 応力, E_s :鋼管の弾性係数, s_z :鋼管の軸方向偏差応力, s_θ :鋼管の周長方向偏差応力,v:鋼管のポアソン比, ε_z : 鋼管の軸方向ひずみ, ε_θ :鋼管の周長方向ひずみを表す。

なお、ここでは圧縮を正の値としている。また、図の 判例は図-3の計測位置を示す。図より、S 柱では鋼管 の降伏以降、周長方向応力が引張側へ流動していたが、 CFT 柱では、降伏以降圧縮側へ流動している部分も見ら れる。周長方向応力が引張側へ流動している部分も見ら れる。周長方向応力が引張側へ流動している部分は、充 填コンクリートが終局状態で、体積膨張の影響を受けて いると考えられる。充填コンクリートの破壊性状により CFT柱は位置により応力に幾分バラツキが発生している が骨材による顕著な差異は見られなかった。

5. 結論

本研究は、低品質再生骨材の有効利用法の検討をする ため、CFT 柱に適用した場合の収縮および中心圧縮試験 を行い、CFT 柱への影響について実験的に検討したもの である。得られた結果を以下に示す。

- (1) 低品質再生骨材を用いたコンクリートは同様な配合の普通骨材を用いたコンクリートよりも圧縮強度および弾性係数は小さくなり、収縮量は大きくなる。ただし、微粒分を除くことで5%以上抑制することが出来た。
- (2) CFT 柱において微粒分の有無に関わらず低品質再 生骨材を用いたコンクリートを充填してもコンク リートの収縮量は150µ以下で鋼管のひずみも100µ 以下で降伏ひずみの5%以内に抑えられた。

- (3) CFT 柱の中心圧縮載荷時の破壊形式は,骨材の違い に関わらず充填コンクリートの圧縮せん断破壊に 伴う座屈が生じて破壊した。さらに中心圧縮耐力も 普通骨材と同様に,現行のCFT指針で評価できた。
- (4) 鋼管の2軸方向応力履歴より、 CFT 柱の鋼管の挙 動への骨材の差異による影響は明確には見られな かった。

参考文献

- 国土交通省:平成 20 年度建設副産物実態調査結果, 2010.
- 日本コンクリート工学協会再生骨材標準化委員会:再生骨材コンクリートの現状と将来展望,日本コンクリート工学協会,2006.
- 3) 矢木誠一郎,江上武史,磯江暁,大西悦郎,吉川孝 男,大南亮一:コンクリート充填鋼管柱(CFT)の 強度および力学的特性に関する検討,土木学会,複 合構造の活用に関するシンポジウム講演論文集, Vol.4, pp.111-116, 1999.
- 藤本利昭,小松博,櫻田智之:再生骨材コンクリートの合成構造への適用に関する研究,日本建築学会技術報告集, Vol.17, pp.183-186, 2011.
- 5) 土木学会:2012 年制定コンクリート標準示方書[設 計編], pp.105-106,2013.
- 6) 日本建築学会:コンクリート充填鋼管構造設計施工 指針,2008.
- 山田嘉昭:マトリックス法材料力学, 培風館, pp.37-53, 1980.