論文 ポリウレア樹脂層を有する炭素繊維シート補強工法の高温時におけ る付着特性に関する研究

新井 崇裕^{*1}·山野辺 慎一^{*2}·荒添 正棋^{*3}·佐藤 靖彦^{*4}

要旨: コンクリートと炭素繊維シートの界面にポリウレア樹脂層を配置した炭素繊維シート補強工法を煙突 構造物などの高温環境下に用いる場合を想定し、常温から高温における付着特性について実験的な検討を行 った。その結果、ポリウレア樹脂層を有する場合、常温(23℃)から高温(70℃)までポリウレア樹脂層の 無い場合にくらべて顕著に大きな付着耐力を示したが、70℃では常温に比べて付着性能が低下した。次に、 付着特性の定式化として、実験における付着応力ーすべり関係を整理し非線形 FEM 解析による定量化を試み た。その結果、定式化した付着応力ーすべり関係を用いて付着挙動を概ね再現できることを確認した。 キーワード:炭素繊維シート、ポリウレア樹脂、付着特性、高温環境下、FEM 解析、付着応力ーすべり関係

1. はじめに

ポリウレア樹脂層を有する炭素繊維シート補強工法は, コンクリートと炭素繊維シートの界面に,ヤング係数が 小さく伸び能力の高いポリウレア樹脂層を配置すること により,炭素繊維シートの付着特性を大幅に改善した工 法である¹⁾。低温環境下や疲労特性についての研究²⁾は 進んでいるものの,高温環境下においては,その研究例 は少ない。そこで,本研究では,高温環境下の付着特性 について実験的な検討を行った。本工法は,付着強度が 高いために,土木学会で提案されている連続繊維シート とコンクリートの付着試験方法(案)³⁾(以下,両引き 法と称す)では,繊維シートの剥離よりもコンクリート の付着割裂破壊が先行し,付着強度を評価できないため, 別の実験方法を用いた。次に,実験結果から得られた付 着応力ーすべり関係を整理し,これを用いて解析による 評価を試みた。

2. 実験的検討

2.1 実験パラメータ

付着強度実験のパラメータを表-1 に示す。実験パラ メータは、ポリウレア樹脂層の有無、環境温度、及び実 験方法の3つとした。ポリウレア樹脂層の有無について は、ポリウレア樹脂層が有ることによる付着特性の改善 効果について改めて確認する位置づけで設定した。環境 温度については、一般環境下として常温(23℃)を、ま た、高温環境下として50、70℃の2水準を設定した。こ れは、煙突構造物の環境温度が50℃程度であること、ま た今回用いたポリウレア樹脂を除く耐熱型樹脂材料のガ ラス転移点が70℃程度であることによる。実験方法につ いては、ポリウレア樹脂層が有る場合は付着強度が高く、 両引き法では繊維シートの剥離よりもコンクリートの付 着割裂破壊が先行し、付着強度を評価できない。このた め、本実験ではマッシブなコンクリートブロックを用い た片引き実験方法(以下、片引き法と称す)を用いるこ ととした。この実験方法の適切性を評価するために、ポ リウレア樹脂層が無いケースで、それぞれの実験方法を 実施した。なお、各々の実験では試験体数は3体とした。

表-1 実験パラメータ

	Case	ポリウレア 樹脂層	環境温度 [℃]	実験方法				
Case1	B-PU-23-0		23					
Case2	B-PU-50-0	有*1	50	ドコキは				
Case3	B-PU-70-0		70	лысд				
Case4	B-EP-23-0	*** *2	23					
Case5	B-EP-23-J	無	23	両引き法(JSCE)				
-								

*1 ポリウレア樹脂層有:ストランド型高強度炭素繊維シート4)を使用。

*2 ポリウレア樹脂層無:従来型高強度炭素繊維シート(ドライシート)を使用。

2.2 使用材料

実験に用いた主な使用材料の特性値を表-2 に示す。 コンクリートは,設計基準強度 30N/mm² (実験時の圧縮 強度は 32.0N/mm²)のものを用いた。含浸接着剤は,施 工後の熱キュアが不要な耐熱型のものを用いた。ポリウ レア樹脂層有りに用いた不陸修正材 (ポリウレア樹脂) は,表に示す通り圧縮弾性率が含浸接着樹脂に比べて 2 オーダー小さい特性を有するものであり,伸び能力は,約 300%である。連続繊維シートは,繊維目付量 600g/m², 設計厚さ 0.333mmの高強度型炭素繊維シートで,ポリウ レア樹脂層有りにはストランド型⁴⁾を,ポリウレア樹脂 層無しには従来型のドライシートを用いた。

*1 鹿島建設(株) 技術研究所 (正会員)
*2 鹿島建設(株) 技術研究所 博士(工) (正会員)
*3 新日鉄住金マテリアルズ(株) コンポジット社 (正会員)
*4 北海道大学 北海道大学大学院工学研究院北方圏環境政策工学部門准教授 博士(工) (正会員)

表-2(a) 樹脂材料								
試験項目	ポリウ 樹脂り	ポリウレア 樹脂層 無 ^{*1}						
	含浸接着樹脂	不陸修正材	含浸接着樹脂					
引張強度 [N/mm ²]	35	7	43					
圧縮強度 [N/mm ²]	74	4	92					
压縮弾性率 [N/mm ²]	2,805	2,666						
*1 不時格正材け、ポリウレア樹脂層方の今温焼着樹脂と同じものた体田								

表-2(b) 炭素繊維シート

_									
_	試験項	目	ポリウレア 樹脂層 有 ^{*1}	ポリウレア 樹脂層 無 ^{*2}	試験方法				
_	引張強度	[N/mm ²]	4,360	3,890	JIS A 1191				
	ヤング係数	[kN/mm²]	269	249	JIS A 1191				

*1 ストランド型高強度炭素繊維シート4)を使用。

*2 従来型高強度炭素繊維シート(ドライシート)を使用。

* 引張強度, ヤング係数とも23℃の値を記載(50,70℃で大きな差は無し)。

2.3 実験方法

本実験で採用した片引き法を図-1 に、両引き法を図 -2にそれぞれ示す。

片引き法は、断面が 300×300mm, 高さが 800mm のコ ンクリートブロックに,幅が 100mm,長さが 1,060mm の炭素繊維シートを貼付した試験体とし、コンクリート ブロックを PC 鋼棒で固定して一方向に片引きで載荷を 行うものとした。コンクリートの上端部においては、離 型部分として 20mm の非接着区間を設け、炭素繊維シー トとコンクリートとの付着長さは 700mm とした。高温 時のケースについては,電熱シートと断熱材(発泡ポリ スチレンフォーム)により,温度管理を行った。実験時 の計測項目は、荷重、実験装置のストローク(変位)、炭 素繊維シート下端における相対変位、炭素繊維シートの

図-2 実験方法(両引き法)

ひずみ,及び環境温度とした。

両引き法は、断面が 100×100mm、長さが 620mm で中 央部分に 20mm 深さのノッチを有するコンクリートブロ ックに、幅が 50mm,長さが 620mm の炭素繊維シートを 2 面に貼付した試験体とし、断面中心に配置した全ねじ 鋼棒(M24, S45C)によって両方向に載荷を行うものと した。一方の端部は、試験体の軸直角方法に 100mm の 定着用シートを設けた。実験時の計測項目は,荷重,実 験装置のストローク (変位),及び炭素繊維シートのひず みとした。

2.4 実験結果

(1) 実験結果一覧

実験結果の一覧として、最大荷重、剥離破壊エネルギ 一,最大付着応力,有効付着長,及び破壊状況を表-3 に示す。ここで、界面剥離破壊エネルギーは以下に示す 式(1)により、最大付着応力、有効付着長は、JCI 規準集 2004 連続繊維補強コンクリート研究委員会報告書(Ⅱ) ⁵⁾に従って算定した。代表的な破壊状況として、プライ マー面の剥離破壊 (Case1-1), シート破断 (Case1-2), 樹脂面の剥離破壊(Case3-1)を写真-1に示す。

$$G_f = \frac{P_{\max}^2}{2 \cdot b^2 \cdot E_f \cdot t} \tag{1}$$

ここに,	G_f	:界面剥離破壊エネルギー [N/mm]
	P _{max}	:最大荷重 [N]
	b	:連続繊維シート幅の平均値 [mm]
	E_{f}	:連続繊維シートのヤング係数 [N/mm ²]
	t	: 連続繊維シートの厚さ [mm]

実験方法の相違による結果への影響について、Case5 に対する Case4 の比をとってみると、最大荷重 (44.8/48.4=0.93), 界面剥離破壊エネルギー (1.13/1.34=0.84), 最大付着応力(5.00/4.37=1.14)とも 同様な結果が得られた。これより、片引き法は、実験方 法として妥当性のあるものと考えた。

Case1-1 Case1-2 Case3-1 剥離破壊(P面)シート破断 剥離破壊 (樹脂面)

写真-1 破壊状況

0.000	最大荷重 [kN]		界面剥離破壊工	ネルギー [N/mm]	最大付着応力 [N/mm ²]		有効付着長 [mm]		破壊状況	
Case	データ	平均值	データ	平均值	データ	平均值	データ	平均值	破壊形態	破壊面
Case1-1	117.4		7.72		3.44		341.4		剥離破壊	プライマー面
Case1-2	136.1	126.8	10.38	9.05	3.21	3.33	423.8	382.6	シート破断	—
Case1-3 ^{*1}	66.1		2.45		1.96		337.6		剥離中の破断	—
Case2-1	124.0		8.61		2.89		428.5		剥離破壊	プライマー面
Case2-2	115.4	123.8	7.46	8.62	5.33	3.96	216.5	334.8	剥離中の破断	_
Case2-3	132.1		9.78		3.67		359.5		剥離中の破断	—
Case3-1	91.1	77.5	4.65		8.12		112.2	158.8	剥離破壊	樹脂面
Case3-2	69.2		2.68	3.42	17.50 ^{*2}	5.82	19.8 ^{*2}		剥離破壊	樹脂面
Case3-3	72.2		2.92		3.52		205.3		剥離破壊	樹脂面
Case4-1	43.7		1.08		5.86		74.6		剥離破壊	コンクリート面
Case4-2	44.4	44.8	1.10	1.13	4.75	5.00	93.5	91.1	剥離破壊	樹脂面
Case4-3	46.2		1.20		4.39		105.2		剥離破壊	樹脂面
Case5-1	54.2	48.4	1.66		3.25		165.7		剥離破壊	コンクリート部
Case5-2	49.8		1.40	1.34	6.35	4.37	81.4	135.4	剥離破壊	コンクリート部
Case5-3	41.2		0.96		3.50		159.1		剥離破壊	コンクリート部

表-3 実験結果一覧

*1 載荷が適切に行えなかったため不使用(平均値に考慮しない)。*2 ひずみの計測が適切に行えなかったため不使用(平均値に考慮しない)。

(2) 界面剥離破壊エネルギー

剥離破壊エネルギーと環境温度の関係を図-3 に示す。 ポリウレア樹脂層を有する場合,常温(23℃)から高 温(70℃)までポリウレア樹脂層のない場合に比べて界 面剥離破壊エネルギーは大きな値を示した。

また、常温(23℃)に対する 50℃, 70℃の比をとって みると, それぞれ, 8.62/9.05=0.95, 3.42/9.05=0.38 であり, 50℃では低下が見られないこと, 70℃では、6 割程度の 低下が見られることがわかった。表-3 に示すように破 壊モードは、シートの破断、あるいはプライマー面の剥 離破壊から, 樹脂面での剥離破壊と相違が見られた。70℃ はガラス転移点近傍の温度であり、その領域において付 着特性が大きく変化したものと考えられる。

図-3 界面剥離破壊エネルギーと環境温度の関係

(3) 荷重一変位関係

荷重-変位関係を図-4に示す。これより, Case1 (23℃, ポリウレア樹脂層有) と Case2 (50℃, 有) では大きな 差はないこと, Case1,2 と比べて Case3 (70℃, 有), Case4 (23℃, 無) は性状が大きく異なることが見て取れる。 シートの破断により終局に至った Case1-2 は,最大荷重 に到達したあと脆性的に破壊しているのに対し,プライ マー面や樹脂面での剥離破壊によって終局に至ったその 他のケースは,最大荷重に到達した後に若干のじん性の ある挙動が見られた。

(4) ひずみ分布

最大荷重時のひずみ分布を図-5 に示す。ポリウレア 樹脂層のある Case1,2 は、計測位置の 0~700mm にかけ て緩やかにひずみが伝達されており、全長に渡って付着 応力を分担していることが見て取れる。また、Case3 に ついても、主に付着応力を分担しているのは 0~100mm 程度の区間であるが、それでも 700mm の位置までひず みが伝達されていることがわかる。一方、ポリウレア樹 脂層の無い Case4 は、前者とは異なり、局所的に付着応 力を分担していることがわかる (Case4-1 では、125~ 400mm、Case4-2,3 では、400~700mm の区間)。これは、 ポリウレア樹脂のヤング係数が小さく伸び能力が高い特 性によるものと考えられ、この特性によって界面剥離破 壊エネルギーが大幅に改善されることが確認できる。

3. FEM 解析による検討

3.1 解析概要

付着特性の定式化を目的として,後述する実験におけ る付着応力-すべり関係を整理し非線形 FEM 解析によ る評価を行った。解析コードは,DIANA9.4.4 を用いた。 解析モデルは,図-6 に示すように試験体を忠実に再現 したものとした。主要構成要素であるコンクリートと炭 素繊維シートはソリッド要素で,コンクリートと炭素繊 維シートの界面は,図-7 に示すように法線方向剛性とせ ん断剛性を評価できるものを用いた。

3.2 材料構成則

(1) コンクリート

コンクリートの材料構成則は、図-8(a)に示すように、 圧縮軟化特性には圧縮破壊エネルギーに基づいて定式化 される Feenstra による放物線モデル⁶⁾を、引張軟化特性 には引張破壊エネルギー G_f を考慮した Hordijk モデル⁷⁾ を用いた。材料特性値は、圧縮強度 32.0N/mm²、圧縮破 壊エネルギー49.8N/mm、引張強度 2.32N/mm²、引張破壊 エネルギー0.0862N/mm を用いた。

(2) 炭素繊維シート

炭素繊維シートの材料構成則は、図-8(b)に示すよう に、Brittl型を用いた。材料特性は、Case1~3 は、引張 強度 4,360N/mm²、ヤング係数 269kN/mm²、Case4 は、引 張強度 3,890N/mm²、ヤング係数 249kN/mm²を用いた。

(3) 界面要素

界面要素の材料構成則のうち、せん断剛性は付着応力 ーすべり関係を用いるものとし、図-8(c)に示すように、 バイリニア型を用いた。材料特性値となる τ_u 、 δ_e 、 δ_u は、張らの研究⁸⁾を参考にして、付着強度実験より算定 した。ここで、算定方法を概説すると、まず、炭素繊維 シートのひずみ分布から、ひずみゲージの値が無付着区 間(図-1 参照)と同じ値になった点を特定し、有効付 着長とした。次に、ひずみの増分にヤング係数と炭素繊 維シートの設計厚さを用いて付着応力を、また有効付着 長間における各々のひずみ値に長さを乗じたものを積算 することによりすべり量をそれぞれ算定した。算定結果 を表-4 に示す。なお、法線方向剛性は、1×10⁶N/mm³ とした。

表-4	実験結果の	τ _u , δ _e , δ	』の一覧				
Case	$\tau_{\rm u}$ [N/mm ²]	δ. [mm]	δ _u [mm]				
Case1-1	3.32	1.14	3.46				
Case1-2	2.70	2.36	3.99				
Case1-3 ^{*1}	1.38	0.63	1.70				
Case1平均	3.01	1.75	3.72				
Case2-1	3.04	2.74	4.25				
Case2-2	3.31	1.96	3.38				
Case2-3	3.11	2.33	5.13				
Case2平均	3.15	2.34	4.25				
Case3-1	6.51	1.05	1.53				
Case3-2 ^{*2}	4.11	1.61	1.61				
Case3-3	3.58	0.74	0.98				
Case3平均	5.05	0.89	1.25				
Case4-1	3.73	0.06	0.49				
Case4-2	1.64	0.04	0.25				
Case4-3	1.43	0.06	0.44				
Case4平均	2.27	0.05	0.39				
*1 載荷が適切に行えなかったため平均値に考慮しない。							

*2 ひずみの計測が適切に行えなかったため平均値に考慮しない。

3.3 解析結果

(1) 荷重 – 変位関係

荷重-変位関係について,実験結果と解析結果の比較 を図-9 に示す(解析結果は付着応力-すべり関係の各 ケースの平均値を用いた結果のみ示す)。破壊が炭素繊維 シートの破断で終局に至った Case1-2,載荷が適切に行 えなかった Case1-3,ひずみの計測が適切に行えなかっ た Case3-2 を除くと,荷重-変位関係は,比較的よく再 現ができているものと考えられる。特に, Case2 シリー ズと Case4 シリーズは,良好な一致が見られる。

(2) ひずみ分布

代表的なひずみ分布として,荷重-変位関係の良好な 一致が見られた Case1-1, Case2-1, Case4-1 について,実 験結果と解析結果を比較したものを図-10 に示す。図に は,解析ステップとして,変位が 3mm,6mm 時(Case4 は、1mm,2mm 時)のものと最大荷重時のものを示して いる。いずれのステップにおいても、良好な一致が見ら れ、付着挙動を概ね再現できていると考えられる。

(3) 解析結果一覧

解析結果の一覧として,最大荷重,及び界面剥離破壊 エネルギーを表-5 に示す。同表には,実験結果,並び に実験結果に対する解析の精度(解析/実験)の結果を 併記する。

まず,各々の付着応力ーすべり関係を用いた①解析/ 実験について,試験体毎の解析精度を見てみると,最大 荷重では,0.71~1.18,界面剥離破壊エネルギーでは,0.51 ~1.39の解析精度であった。

次に、付着応カーすべり関係の定式化の検討として、 付着応カーすべり関係の平均値を用いた②解析平均/実 験について、同じく試験体毎の解析精度を見てみると、 最大荷重では、0.64~1.12、界面剥離破壊エネルギーの平 均値は0.41~1.26の解析精度であった。

付着応カーすべり関係の平均値を用いても最大荷重, 界面剥離破壊エネルギーとも解析精度は大きく変わらな い結果となった。

今回は、付着応カーすべり関係を簡易なモデルに置き 換えて検討を行ったが、今後はモデルを精緻化するなど して解析精度の向上を図る予定である。

4. まとめ

ポリウレア樹脂層を有する炭素繊維シート補強工法に ついて,片引き法を用いた付着強度実験による検討,及 び実験結果から算定した付着応カーすべり関係を用いて 非線形 FEM 解析による検討を行った結果,得られた知 見を以下に示す。

- 付着強度実験より-

Case	最大荷重 [kN]					界面剥離破壊エネルギー [N/mm]				
	実験	①解析	①解析/実験	②解析平均	②解析平均/実験	実験	①解析	①解析/実験	②解析平均	②解析平均/実験
Case1-1	117.4	102.7	0.87		0.85	7.72	5.91	0.77		0.73
Case1-2	136.1	96.8	0.71	100.23	0.74	10.38	5.25	0.51	5.63	0.54
Case1-3 ^{*1}	66.1	4 5.6	0.69		1.52	2.45	1.17	0.48		2.30
Case1平均	126.8	99.8	0.79		0.80	9.05	5.58	0.64		0.64
Case2-1	124.0	106.4	0.86		0.88	8.61	6.34	0.74		0.78
Case2-2	115.4	100.7	0.87	109.31	0.95	7.46	5.68	0.76	6.69	0.90
Case2-3	132.1	118.8	0.90		0.83	9.78	7.91	0.81		0.68
Case2平均	123.8	108.6	0.88		0.89	8.62	6.64	0.77		0.79
Case3-1	91.1	100.2	1.10		0.85	4.65	5.63	1.21		0.73
Case3-2	69.2	81.6	1.18	77.64	1.12	2.68	3.73	1.39	3.38	1.26
Case3-3	72.2	56.8	0.79		1.08	2.92	1.81	0.62		1.16
Case3平均	77.5	79.6	1.02		1.02	3.42	3.72	1.07		1.05
Case4-1	43.7	43.9	1.00		0.68	1.08	1.08	1.00		0.46
Case4-2 ^{*2}	44.4	21.0	0.47	29.67	0.67	1.10	0.25	0.22	0.49	0.45
Case4-3 ^{*2}	46.2	24.2	0.52		0.64	1.20	0.33	0.27		0.41
Case4平均	44.8	43.9	1.00		0.66	1.13	1.08	1.00		0.44

表-5 解析結果一覧(実験結果との比較)

*1 載荷が適切に行えなかったため不使用(平均値に考慮しない)。

*2 付着応カーひずみ関係の算定が適切に行えなかったため不使用(平均値に考慮しない)。

- (1) 剥離破壊エネルギーについて、常温(23℃)において、ポリウレア樹脂層の有無に関する比をとってみると、9.05/1.13=8.01であり、大幅な改善効果があることを確認した。
- (2) ポリウレア樹脂層のある Case1,2 は、0~700mmの 炭素繊維シートの全長に渡って付着応力を分担し ていることを確認した。また、Case3 についても、 主に付着応力を分担しているのは0~100mm程度の 区間であるが、それでも 700mmの位置までひずみ が伝達されていることがわかった。一方、ポリウレ ア樹脂層の無い Case4 は、前者とは異なり、局所的 に付着応力を分担していることがわかった。
- (3) ポリウレア樹脂層を有する場合の界面剥離破壊エネルギーについて、常温(23℃)に対する50℃,70℃の比をとってみると、それぞれ、8.62/9.05=0.95、3.42/9.05=0.38であり、50℃では低下が見られないこと、70℃では6割程度の低下が見られることがわかった。
- ー非線形 FEM 解析よりー
- (4) 荷重-変位関係,及びひずみ分布より,付着挙動を 非線形 FEM 解析により概ね再現できていると考え られる。
- (5) バイリニアにモデル化した付着応カーすべり関係を 用いた解析では,解析結果と実験結果との比におい て,最大荷重では 0.64~1.12,界面剥離破壊エネル ギーでは 0.41~1.26 とばらつきが大きかった。解析 精度は,付着応カーすべり関係に大きく影響を受け るものであり,今後,付着応カーすべり関係により 精緻なモデルを用いるなどして精度の向上を図る 必要がある。

参考文献

- 高橋義裕,荒添正棋,小林 朗,佐藤靖彦:界面に ポリウレア樹脂を塗布された CFRP ストランドシー ト補強 RC はりの曲げ挙動に関する実験的研究,コ ンクリート工学年次論文集, Vol.35, No.2, pp.1285-1290, 2013.7
- 2) 小川泰成,佐藤靖彦,小林 朗,荒添正棋:常温・ 低温下におけるポリウレア樹脂層を有する炭素繊維 ストランドシートの付着耐力,土木学会第68回年次 学術講演会講演概要集,V-026, pp.51-52, 2013.9
- 3) 土木学会:コンクリートライブラリー101 連続繊 維シートを用いたコンクリート構造物の補修補強指 針,pp.73-78,2000.7
- 4) 小林 朗,佐藤靖彦,高橋義裕,立石晶洋:FRPストランドシートの材料特性とRC梁の曲げ補強効果に関する研究,コンクリート工学年次論文集,Vol.30,No.3, pp.1561-66, 2008.7
- 5) コンクリート工学会:連続繊維補強コンクリート研 究委員会報告書(II), pp.509-514, 2004.4
- 6) Feenstra, P. H., de Borst, R. and Rots, J. G.: Stability Analysis and Numerical Evaluation of Crack-Dilatancy Models, Proceedings of 2nd International Conference on Computer Aided Analyses of Concrete Structures, Zell-am-See, Vol. 2, pp. 987-999, 1990.4
- Hordljk, D. A.: Local Approach to Fatigue of Concrete.
 Ph.D Delft University of Technology, 1991
- 8) 張 広鋒,星隈順一,堺 淳一,運上茂樹:炭素繊 維シートと鋼板を併用した RC 橋脚の耐震補強工法 とその効果,土木学会論文集,A1(構造・地震工学), Vol.67, No.2, pp.430-445, 2011.