# 論文 AFRP 帯で水中接着せん断補強した RC 梁の耐荷性状

杉本 成司<sup>\*1</sup>·栗橋 祐介<sup>\*2</sup>·三上 浩<sup>\*3</sup>·岸 徳光<sup>\*4</sup>

要旨:本研究では,せん断破壊型 RC 梁に対して,AFRP 帯を水中で巻き付けてせん断補強した場合の補強効 果を検討することを目的に,静載荷実験を実施した。その結果,1)提案の補強工法により,水中接着の場合 においても破壊形式を曲げ破壊型に移行可能であること,2)水中せん断補強した RC 梁は気中せん断補強し た梁と同程度の耐荷性能を発揮すること,3)施工・養生環境にかかわらず,AFRP 帯幅を広くすることで,ひ び割れの開口や AFRP 帯の発生ひずみを効率的に抑制可能であること,などが明らかになった。 キーワード: RC 梁,AFRP 帯,水中接着せん断補強,水中接着樹脂

1. はじめに

近年,地震の巨大化や発生頻度の増加に伴い,耐震補 強工事が急速に進められている。最近では,耐震補強工 法の1つとして連続繊維シート(以後,FRPシート)接着 工法が数多く採用されている。ここで,河川橋脚等の水 中構造物の耐震補強の場合には,いずれの補強工法に対 しても施工部を乾燥状態にするために構造物周辺の仮締 切工事を行うことが通例である。そのため,この種の構 造物の耐震補強工事は陸上での補強工事に比較して膨大 なコストを要することより,未だ限定的に実施されてい るのが実情である。これより,仮締切工事が不要で安価 かつ効率的な工法の開発が喫緊の課題となっている。

著者らはこのことに着目し、予めアラミド繊維製 FRP シート(以後、AFPRシート)にエポキシ系樹脂を含浸硬 化した AFRP 帯を水中接着樹脂を用いて接着補強する工 法を考案し、その適用性について検討を行ってきた。既 往の研究では、提案の工法を用いて曲げ補強した RC 梁 や巻付け補強したコンクリート円柱試験体に関する載荷 実験を行い、気中接着と同程度までの耐力の向上が可能 であることを明らかにしている<sup>1), 2)</sup>。しかしながら、RC 梁に帯状の AFRP 帯(以後、AFPR 帯)を巻き付けて補強 する水中せん断補強法の確立やその効果に関する研究は 未だ行われていないのが現状である。また,水中構造物 の耐震補強においては,せん断耐力の向上が求められる 場合も多いことから,提案工法によるせん断補強効果を 検討することにより,その汎用性を広げることが可能に なるものと考えられる。

このような背景より,本研究では提案工法のせん断補 強効果の検討を目的に,AFRP帯を水中で巻付けた RC 梁 の静載荷実験を行い,せん断補強効果やAFRP帯のひず み分布性状について検討を行った。

### 2. 実験概要

### 2.1 試験体概要

**表**-1には、本実験に用いた試験体の一覧および各種 計算結果を示している。なお、表中の設計曲げ耐力 $P_u$ お よび設計せん断耐力のコンクリート分担分 $V_c$ は土木学会 コンクリート標準示方書<sup>3)</sup>に準拠し、コンクリート実圧縮 強度 $f'_c = 30$  MPa、軸方向鉄筋の実降伏強度 $f_y = 395$  MPa を用いて算出した。また、AFRP 帯の設計せん断耐力分 担分 $V_{AF}$ はアラミド補強研究会の「アラミド繊維シート による鉄筋コンクリート橋脚の補強工法設計・施工要領

表-1 試験体一覧

| 試験   | 施工・  | AFRP    | 設計曲げ耐力        | 設計せん断耐力 $2 \times V_u$ (kN) |                             |       | せん断余裕度  |
|------|------|---------|---------------|-----------------------------|-----------------------------|-------|---------|
| 体名   | 養生環境 | 帯幅 (mm) | $P_u(1)$ (kN) | コンクリート分担分 $2 \times V_c$    | AFRP 带分担分 2×V <sub>AF</sub> | 合計(2) | (2)/(1) |
| N    | - 気中 | -       |               | 59.8                        | -                           | 59.8  | 0.60    |
| A-20 |      | 20      |               |                             | 26.6                        | 86.4  | 0.86    |
| A-40 |      | 40      |               |                             | 53.1                        | 113   | 1.12    |
| A-60 |      | 60      | 100.4         |                             | 79.7                        | 139   | 1.39    |
| W-20 |      | 20      |               |                             | 26.6                        | 86.4  | 0.86    |
| W-40 | 水中   | 40      |               |                             | 53.1                        | 113   | 1.12    |
| W-60 |      | 60      |               |                             | 79.7                        | 139   | 1.39    |

\*1 室蘭工業大学大学院工学研究科 博士前期課程 建築社会基盤系専攻 (学生会員)

\*2 室蘭工業大学大学院 くらし環境系領域 社会基盤ユニット 講師 博(工) (正会員)

\*3 三井住友建設(株)技術研究開発本部 技術開発センター 上席研究員 博(工) (正会員)

\*4 釧路工業高等専門学校 校長 工博 (正会員)



図-1 試験体の形状寸法, 配筋状況およびせん断補強概要の一例

| 繊維        | 保証     | 国々    | 引張    | 弾性    | 破断   |
|-----------|--------|-------|-------|-------|------|
| 目付量       | 耐力     | 厚 C   | 強度    | 係数    | ひずみ  |
| $(g/m^2)$ | (kN/m) | (mm)  | (GPa) | (GPa) | (%)  |
| 280       | 392    | 0.193 | 2.06  | 118   | 1.75 |

表-2 AFRP シートの力学的特性値 (公称値)

(案)」(以後,補強設計要領)<sup>4)</sup>に準拠し,下式(1)により算 出した。

$$V_{AF} = A_w f_{wyd} (\sin \alpha + \cos \alpha) z/s \tag{1}$$

ここに、 $A_w$ : せん断補強面における AFRP 帯の総断面 積、 $f_{wyd}$ : AFRP 帯の引張強度、 $\alpha$ : AFRP 帯と部材軸との なす角度、z: 圧縮力の合力の作用位置から引張鋼材図心 までの距離 (= d/1.15), d:有効高さ、s: AFRP 帯の配置間 隔である。なお、AFRP 帯の引張強度は補強設計要領に準 拠し、**表**-2 に示す値に 0.6 を乗じて評価している。

試験体数は,無補強試験体および施工・養生環境,AFRP 帯の幅を変化させた全7体である(**表-1**参照)。試験体 名の内,第1項目は施工・養生環境(A:気中,W:水中), 第2項目はAFRP帯幅(単位:mm)を示している。

図-1には、試験体の形状寸法、配筋状況およびせん断 補強概要の一例 (A/W-40 試験体)を示している。試験体は 断面寸法 150 × 200 mm, 純スパン長 1.7 m の複鉄筋 RC 梁 である。なお、断面の四隅には 10 mm の面取りを施して いる。上下端鉄筋には D19(SD345)を 2 本ずつ配置してい る。スターラップには D6(SD345)を用い 片側の等せん断 力区間を除き 50 mm 間隔で配置している。AFRP 帯によ る巻付け補強位置はスターラップを配置していない等せ ん断力区間の 6 等分点とし、**表-2** に示す保証耐力 392

### 表-3 水中硬化型接着樹脂の力学的特性値(公称値)

| 接着材種類                                   | 材料特性 | 物性值(MPa) | 測定方法         |
|-----------------------------------------|------|----------|--------------|
| パテ件                                     | 圧縮強度 | 53.0     | JIS K - 6911 |
| // /// // // // // // // // // // // // | 曲げ強度 | 32.4     | JIS K - 6911 |
| 按 信 烟 阳                                 | 引張強度 | 15.0     | JIS K - 6911 |
| 液状                                      | 曲げ強度 | 40.0     | JIS K - 6911 |
| 接着樹脂                                    | 圧縮強度 | 35.0     | JIS K - 6911 |

表-4 パテ状接着樹脂の材料組成および性状

|      | 主剤       | 硬化剤           |
|------|----------|---------------|
| 主成分  | 変成エポキシ樹脂 | 変成ポリアミドアミン    |
| 概観   | 白色パテ状    | 暗灰色パテ状        |
| 比重   | 1.85     | 1.78          |
| 配合比  |          | 1:1           |
| 可使時間 | 30分      | (at. 25 °C)   |
| 硬化時間 | 2 時間     | ] (at. 25 °C) |

kN/mのAFRP帯を接着している。

表-3には、水中接着樹脂の力学的特性値の一覧を示 している。本研究に用いた水中接着樹脂は2種類であり、 いずれも2種混合型のエポキシ系接着樹脂である。AFRP 帯とコンクリートの接着には、主剤、硬化剤ともに表-4 に示す材料組成および性状のパテ状の接着樹脂を用い、 AFRP帯のラップ部分には、液状の接着樹脂を用いた。な お、パテ状の水中接着樹脂の接着性能は、土木学会「連 続繊維シートを用いたコンクリート構造物の補修補強指 針」<sup>5)</sup>における「連続繊維シートとコンクリートの接着試



図-2 各試験体における作用せん断力 (P/2) -変位関係の実験結果および計算結果の比較

験方法(案)」に準拠して評価した。その結果, 試験は母 材コンクリートの引張破壊で終了し, 破壊時における強 度の平均値は 2.0 MPa であった。この値は, 既設コンク リートの補修・補強用接着材料に関する一般的な照査値 (1.5 MPa)を上回っている。従って,本実験に用いた水中 接着樹脂は接着材料としての性能を満足しているものと 判断される。

液状水中接着樹脂については,継手長を10 cm 程度以 上とすることで AFRP 帯の保証耐力以上の付着力を確保 できることを確認している。従って,AFRP 帯の継手長 はRC 梁上面において13 cm とした。

### 2.2 RC 梁の水中接着補強方法および実験方法

RC 梁の水中接着補強は,大型の水槽を用いて RC 梁を 水没させた状態で行った。水中接着補強における施工手 順は,以下の通りである。

- 1) 水中接着樹脂を混合し,厚さ4mm程度に成形する。
- 2) 気中でAFRP帯と接着樹脂を一体化させる。
- 3) 水槽内に設置された RC 梁の接着面に 2) を配置し圧 着する。
- 4) 圧着した状態で5日間程度水中養生する。

なお、上記の水中接着は専用の装置を用いて一面づつ 圧着し、接着樹脂の可使時間 (30 分程度) 内にすべての面 の接着を完了している。樹脂の厚さは圧着後 3 mm 程度 になるように施工した。なお、気中接着補強の場合には、 AFRP シートを汎用の含浸接着樹脂を用いて接着した。

載荷実験は, RC 梁を単純支持状態で設置し,容量 200 kNの油圧ジャッキを用いて4点曲げ載荷試験法により 行った。水中接着補強した RC 梁の載荷実験は,試験体を 水から引き揚げた後,ひずみゲージを貼り付けた後直ち に行うこととしている。本実験の測定項目は,荷重,ス パン中央点変位(以後,変位)および AFRP 帯各点の巻付 け方向ひずみである。また,実験時には RC 梁のひび割 れを連続的に撮影し,実験終了時には破壊状況を撮影し ている。

### 3. 実験結果と考察

### 3.1 荷重-変位関係

図-2には、各試験体の作用せん断力 (P/2) - 変位関係 に関する実験結果および計算結果を示している。計算結 果は、土木学会コンクリート標準示方書<sup>3)</sup>に準拠して断面 分割法により算出したものである。

図より,無補強のN試験体は40kN程度までほぼ線形 に増加した後,急激に低下していることが分かる。実験 時には,後述するようにスターラップを配筋していない 片側せん断スパンのせん断破壊により終局に至っている ことを確認している。

一方,補強試験体の場合には,いずれも荷重が40kN に到達した後も増加していることが分かる。また,荷重 が50~55kN程度で剛性勾配が急激に低下していること から,この時点で主鉄筋降伏に至っていることが分かる。 これより,AFRP補強材の幅や施工・養生環境にかかわら ず,AFRP帯を用いて水中せん断補強したことによりRC 梁の破壊形式がせん断破壊型から曲げ破壊型に移行した ことが分かる。

### 3.2 ひび割れ性状

写真-1には、各試験体の最大荷重時のひび割れ性状 を示している。写真より、N試験体のひび割れは、載荷 点から下端鉄筋配置位置近傍までアーチ状に発生し、さ らに支点部に直線的に進展しせん断破壊に至っているこ とが分かる。実験時には、最大荷重到達後これらのひび 割れが急激に開口して終局に至った。

一方, せん断補強した試験体のひび割れは載荷点から 斜め下方に進展しているものの,ひび割れの本数や開口 幅は AFRP 帯幅が大きい場合ほど小さくなる傾向にある。



最大ひび割れ幅 3.5 mm 程度





図-3 AFRP帯のひずみ-変位関係の一例

なお,W-20 試験体の場合には,斜めひび割れの開口に 伴って AFRP 帯に発生するひずみが増大し,使用した接 着樹脂の伸び率を超えたため,AFRP 帯が部分的に剥離 したことを確認している。また,気中および水中接着補 強した試験体の結果を見ると,AFRP 帯幅が 20 mm の場 合を除き,両者はひび割れの発生位置が若干異なってい るものの,ひび割れの本数や開口幅がほぼ同様の性状を 示していることより,AFRP 帯に剥離が生じていない場 合には水中においても気中で施工した場合と同様の補強 効果を発揮しているものと判断される。

# 3.3 AFRP 帯のひずみ - 変位関係

図-3には,AFRP帯の軸方向ひずみと変位の関係を A/W-40試験体の場合について示している。ここで,AFRP 帯の呼称を載荷点側から支点側に向かって A-1~A-5 と する。また,図には各 AFRP帯においてひずみ値が最も 大きく示された測定値を示している(ひずみゲージ位置は



図-4 主鉄筋降伏時における AFRP 帯各計測点のひずみ分布性状の一例



図-5 主鉄筋降伏時における AFRP 帯最大ひずみの分布性状

### **図-4**参照)。

図より, A-40 試験体の場合には, いずれの AFRP 帯も 変位  $\delta = 4 \sim 5 \text{ mm}$  程度において, ひずみが急激に増加し ていることが分かる。また, 変位  $\delta = 8 \text{ mm}$  程度における 主鉄筋降伏時以降では, 各ひずみ値がほぼ一定値を示し ている。これは, 主鉄筋降伏後において作用せん断力が ほとんど増加していないことと対応している。各 AFRP 帯の最大ひずみは, A-1の場合が最も小さく, A-2の場合 が最も大きい。これは, 後述する斜めひび割れの発生状 況と密接に関連している。

W-40 試験体の場合には、ひずみが急増する変位が A-40 試験体の場合よりも若干小さいものの概ね同様の傾向を 示している。また、ひずみが急激に増加し、主鉄筋降伏 以降後に各ひずみ値がほぼ一定値を示す性状も、A-40 試 験体の場合とほぼ同様である。なお、AFRP 帯の最大値 は A-40 試験体の場合よりも 1000 µ 程度小さい。これは, ひび割れ発生部とひずみゲージ貼付部との位置関係の影 響が大きいものと考えられる。

これらの結果より,施工・養生環境にかかわらず,AFRP 帯は斜めひび割れ発生後,梁に作用するせん断力に対し て有効に抵抗していることが分かる。このような性状は, A/W-20 および A/W-60 試験体においても同様であること を確認している。

# 3.4 AFRP帯のひずみ分布

図-4には、主鉄筋降伏時における AFRP 帯の各ひずみ 測定点のひずみ分布性状を A/W-40 試験体について示して いる。図より、A/W-40 試験体ともに、各測定点のひずみ 値は 0.25 ~ 0.5 % 程度か、もしくは微小な値を示してい ることが分かる。また、前述のひび割れ性状(写真-1) と比較すると、大きなひずみの発生位置とひび割れの発

| 試験   | 作用せん    | N に対する   | AFRP 帯の最大 | AFRP 帯の換算                    | AFRP 帯の最大作用                   |            |
|------|---------|----------|-----------|------------------------------|-------------------------------|------------|
| 体名   | 断力 (kN) | 荷重増分(kN) | ひずみ(%)    | 引張応力 <sup>*1</sup> (i) (MPa) | 引張応力 <sup>*2</sup> (ii) (MPa) | (11) / (1) |
| Ν    | 38.1    | -        | -         | -                            | -                             | -          |
| A-20 | 53.3    | 15.2     | 0.83      | 1414                         | 976                           | 0.69       |
| A-40 | 53.9    | 15.8     | 0.50      | 737                          | 592                           | 0.80       |
| A-60 | 51.4    | 13.3     | 0.18      | 414                          | 207                           | 0.50       |
| W-20 | 52.1    | 14.0     | 1.05      | 1304                         | 1236                          | 0.95       |
| W-40 | 54.1    | 16.0     | 0.43      | 744                          | 508                           | 0.68       |
| W-60 | 54.8    | 16.7     | 0.24      | 519                          | 285                           | 0.55       |

### 表-5 主鉄筋降伏時における AFRP 帯の作用引張応力

<sup>\*1</sup> :式 (1) に基づき N に対する荷重増分から算定,<sup>\*2</sup>:AFRP 帯の最大ひずみから算定

生位置が概ね対応していることが分かる。このことから, AFRP帯は施工・養生環境にかかわらず,ひび割れ発生位 置において,適切に補強効果を発揮しているものと判断 される。

図-5には、各補強試験体の最大荷重時における AFRP 帯のひずみ分布を示している。なお、ひずみ値には各 AFRP帯に貼り付けた 5 点のひずみゲージ出力の最大値 を用いている。図より、AFRP帯の発生ひずみは施工・養 生環境にかかわらず、AFRP帯幅が小さいほど大きく示 される傾向にあることが分かる。これは、AFRP帯幅が 小さい場合において、AFRP帯幅が大きい場合ほど斜 めひび割れの開口を抑制する効果は高いものと判断され る。また、AFRP帯幅が 20 mm の場合において、水中施 工された AFRP帯のひずみが気中施工の場合よりも大き い。これは、W-20 試験体の場合において AFRP帯が部分 的に剥離し、1本の斜めひび割れが大きく開口したため と推察される。

### 3.5 AFRP帯の作用引張応力

表-5には、主鉄筋降伏時における AFRP 帯の作用引張 応力の一覧を示している。なお、表中の AFRP 帯の換算 引張応力は式(1)に基づき N に対する荷重増分から算定 し、AFRP 帯の最大作用引張応力は AFRP 帯の最大ひず みから算定している。表より、いずれの試験体において も、AFRP 帯の最大作用引張応力は換算引張応力よりも 小さく示されていることが分かる。特にこの傾向は幅が 最も広い A/W-60 試験体で顕著である。これは、AFRP 帯 の幅が増加することで補強材の断面積が増大するととも に、コンクリート躯体がより広範囲に補強されて無補強 区間が減少し、ひび割れの発生や進展が抑制されること に関連するものと推察される。

以上のことから,施工・養生方法にかかわらず式(1)の AFRP帯のせん断耐力分担分 $V_{AF}$ の算定式は,AFRP帯に 作用する引張応力を安全側に評価しているものと考えら れる。

## 4. まとめ

本研究では RC 梁の水中接着補強工法を確立すること を目的として,水中接着樹脂と AFRP 帯を用いて水中巻 付けせん断補強した RC 梁の静載荷実験を行った。本研 究の範囲内で得られた知見をまとめると,以下のとおり である。

- 1) 水中せん断補強により, せん断破壊型 RC 梁の破壊 形式を曲げ破壊型に移行可能である。
- 2) 水中せん断補強した RC 梁は,気中せん断補強した 梁とほぼ同程度の耐荷性能を発揮する。
- 3)施工・養生環境にかかわらず、AFRP帯幅を広くする ことで、ひび割れの開口やAFRP帯に発生するひず みの抑制効果が大きくなる。

### 参考文献

- 三上浩,岸徳光,栗橋祐介:水中硬化型接着樹脂と AFRP版を用いて水中補強したRC梁の静載荷実験, コンクリート工学年次論文集, Vol.32, pp.1327-1332, 2010.
- 河本幸子,栗橋祐介,三上浩,岸徳光:AFRP板水 中巻付け補強によるコンクリート円柱の耐荷性能向 上効果,コンクリート工学年次論文集,Vol.35,No.2, pp.1315-1320,2013.
- 3) 土木学会:コンクリート標準示方書[設計編],土木学 会,2007.
- アラミド補強研究会:アラミド繊維シートによる鉄筋コンクリート橋脚の補強工法設計・施工要領(案), 1998.
- 5) 土木学会:連続繊維シートを用いたコンクリート構造 物の補修補強指針,コンクリートライブラリー101, 2000.