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ABSTRACT 

The tensile properties of strain hardening cementitious composites are modelled by using 
multi-layer microplane model with multi-layered microplane structure. In the simulation to verify 
the validity of the present model, the statistical variation of material properties due to spatial 
distribution of short randomly distributed fibers are considered. The total crack widths and 
stress-strain relationship are examined for uniaxial direct tensile loading along with crack 
distribution, spacing and number of cracks. The analytical results are compared with experimental 
data. The uniaxial compression behavior is also verified. A good agreement is found in analytical 
and experimental values. 

 Keywords: multiple cracking, SHCC, microplane model 
 
 
1. INTRODUCTION 
 
     Strain hardening cementitious composites is the 
material which exhibits strain hardening, quasi-ductile 
behavior due to bridging of fine multiple cracks by 
short, randomly distributed polymer fibers as shown in 
Fig.1. The strain hardening is followed by the 
phenomenon of increased tensile load with increased 
overall elongation. The favorable mechanical properties 
of this material offer many possible applications in new 
and old structures as well as in the strengthening and 
repair of structural elements made of reinforced 
concrete or other traditional materials [1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Multiple cracking system in SHCC 
 
     Several research projects have proposed different 
modelling approaches for SHCC subjected to tensile 
loading. Han et al.[2] and Vorel and Boshoff [3] 
introduced the constitutive relations for SHCC based on 
the reproduction of experimental results obtained from 
the test on bulk SHCC specimen. The derived formulas 
are adequate for the use in structural analysis. Much 
less focus has been given on the effect on mechanical 
properties of SHCC based on statistical variation in 

material properties and still it is needed to explain the 
modelling of material micromechanical behavior based 
on statistical variation that can be implemented for not 
only uniaxial tension and compression but also for 
biaxial and multiaxial behavior of SHCC. Besides this 
more study is very essential to model crack width and 
number of cracks in a multiple cracking system. 
     This model reflects the fact that the fiber volume 
fraction   in reality varies between individual crack 
planes (mainly due to material processing in fresh state). 
This implies that    is a random variable. This study 
presents the multilayer model that can predict 
stress-strain relationship under uniaxial tensile loading 
(after combining with microplane model) as well as the 
uniaxial compression behavior. Namely, this study 
presents explicitly prediction for total crack width as 
recursive form of expressions. 
     In microplane model, the constitutive properties 
are characterized separately on planes of various 
orientations within the material, called the microplanes. 
Kinematic constraint is used on these microplanes, i.e., 
the total strain vector on each microplane (crack) is 
assumed to be resolved component of the macroscopic 
strain tensor while the fibers are assumed to be directed 
to normal to each microplane. The state of each 
microplane is described by normal deviatoric and 
volumetric strain and by shear strain (further split into 
two orthogonal components) [4].  
                  
2. MULTI-LAYERED MICROPLANE MODEL 
 
     Multiple cracking behavior can be modelled by 
expressing total strain by summation of strains in the 
uncracked part and those in the cracked part [5]. 
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Fig .2 Multiple cracking system in SHCC 

 
 
 
where    is the number of cracks,       and  
are the strain increments for cracked and uncracked part 
respectively. The multiple cracking system is shown in 
Fig.2 where     and    are the lengths of uncracked 
part and cracked part at  -th crack respectively. The 
total strain, then, can be obtained by the substitution of 
the equations for strain increments of uncracked and 
cracked parts in Eq.2. 
 
2.1 Material condition before cracking 
     The Fig.3 shows the material condition when 
stress   is applied to SHCC specimen (with original 
length    and length after elongation is   ). The 
applied stress is less than the tensile strength before 
cracking. Therefore, the elastic modulus of SHCC (by 
composite law)     and tensile strength (by empirical 
relationship)    can be expressed as 
 
 
 
 
 
Where    is local fiber volume fraction,    is volume 
fraction of matrix,    is elastic modulus of fiber,      
is elastic modulus of matrix,     is tensile strength of 
matrix,    is tensile strength of fiber. When  
then         where    is applied tensile stress in 
uncracked part,     is change in length after applying 
stress and    is strain in uncracked part.  
 
 
 
 
 
 

Fig.3 Material condition before cracking 
 
2.2 Assumptions 
     The following assumptions are used for the 
multi-layered model based on multiple cracking 
system.  
(1)        , where    and     are the loads in  -th         
uncracked and cracked part respectively. 
 (2)         , where    is the fiber pullout stress in       
bridging fibers at  -th crack and     is the maximum 
bridging stress of fibers acting on a microplane with 
normal vector n as shown in Fig 4(a),(b). 

 
 
 
 
 
 
 
 
   
       Microplane (cracks) 
        Fibers 
 
Fig.4 a) Fibers and microplanes b) The fiber pullout 

force~displacement relationship 
 
 (3)Bilinear relationship for the bridging (pullout) 
stress-fiber pullout displacement is assumed Fig.4 (b). 
 
2.3 Numerical Model 
     Due to spatial distribution of short fibers, the 
material properties have a certain amount of statistical 
variation concluding that     is the only independent 
parameter. The statistical distribution of the fiber 
volume fraction    is assumed to follow the uniform 
distribution with mean    , the standard deviation      
and the coefficient of variation           . It is 
assumed that cracking sequence is in the increasing 
order of tensile strength of SHCC. 
     Now at first crack        where     and     
are the stress applied and the tensile strength of material 
at first crack respectively as in Fig.5. To apply 
assumption (1), the following relations are considered. 
 
 
 
  
 
where   is load passing through uncracked part,   is 
the cross sectional area of uncracked part with width     
and height   ,    is the load passing through bridging 
fibers,    is the area of fibers,    is the number of 
bridging fibers,    is cross sectional area of single 
fiber,   is bridging stress of fiber (Addition of         
in the subscripts represents the condition corresponding 
to given number of crack). Therefore, considering 
assumption (1),   
 
 
 
 
 
Considering assumption (3), 
 
 
 
 
 
 
 
  
 

Fig.5 Material condition after first crack 
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where    is the fiber pullout displacement at first 
crack,   is the stiffness of fiber at first crack and       
is the individual crack width of the first crack. Hence 
total strain of cracked part after first crack is     that 
can be evaluated as   
 
 
 
 
 
 
 
 
 

Fig.6 Material condition after 2nd crack 
 
     For 2nd crack, the condition is       (due to      
statistical variation of tensile strength) see Fig.6. Hence 
when       , 2nd crack will appear. The individual 
width at 2nd crack level is       that can be evaluated 
as 
 
 
 
where    is the increased tensile strength at 2nd crack 
corresponding to increased local fiber volume. 
Meanwhile, the first crack width increases due to                
difference of load/stress at 2nd crack stage and 1st crack 
stage.  
 
 
 
where    and    are the load at first crack stage and 
2nd crack stage respectively,         is the difference 
of load at 1st and 2nd crack stage. and       is the 
increase in first crack width due to difference of loading. 
Hence total crack width at 2nd crack is       i.e,  
 
 
 
 
 
where     is the strain at 2nd crack stage and   is the 
original length of specimen and superscript ‘I’ with     
represents the individual crack width and superscript ‘T’ 
represents the total crack width at  -th crack stage 
while superscript      with    represents the 
increase of crack width due to increase in load from     
to     .        
     Following the same sequence, the equation to 
calculate displacement at  -th crack stage for    num-       
ber of cracks can be expressed as follows.  
 
 
 
where  
 
 
 
 

 
 

and      is the total crack width at  -th crack stage,     
      is the individual crack width at  -th crack 
stage.Hence the strain at  -th stage of cracks for 
cracked part is     that can be calculated in terms of 
stiffness of fiber by using Eq.17  
  
 
 
 
 
2.4 Implementation of multi-layered model in 
microplane model  
     The incremental macroscopic stress-strain 
relation as per microplane model is given as 
 
 
 
where      and     are the macroscopic stress and 
strain increments,     and     are the strain 
increments for shrinkage and thermal strains,       is 
the stress increments for cracked part,      is the 
inelastic strain increment,      is the stiffness tensor 
that can be evaluated as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where   and   are the incremental volumetric and 
deviatoric secant moduli for current loading for a 
microplane.     and    are the inelastic volumetric 
and deviatoric stress increments.    is the strain 
increments for cracked part. (F(n) = 1 which is a weight 
function of the normal direction that can introduce 
anisotropy in its initial state).    with subscripts        
are the direction cosines.              
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where                are the material empirical 
constants and    ,    are the initial volumetric and 
deviatoric secant moduli,   ,   are volumetric and 
deviatoric damage coefficients and   ,    are the 
volumetric and deviatoric strains respectively.  
 
2.5 Crack distribution model 
     The crack distribution of SHCC can be modelled 
by assuming uniform discrete distribution of fibers. The 
cracking sequence can be explained based on various 
experimental data. The first crack will appear at the 
middle specimen with least fiber volume/tensile 
strength. The subsequent cracks will appear in the 
middle of each equally spaced section from left to right 
with statistically increasing fiber volume at each 
discrete interval (see Fig.7). This process continues till 
crack spacing will equal to critical crack spacing. At 
this stage localization of cracks will start.   
 
 
 
 
  
 
 
 
 
 
Fig 7 Crack distribution/spacing model for SHCC 
   
3. RESULTS AND DISCUSSIONS    
 
3.1 Uniaxial tensile loading 
     To demonstrate the capability of present 
multi-layered microplane model in predicting the 
uniaxial tensile stress-strain behavior, the analytical 
verification for SHCC is carried out and this is done by 
comparing results with experimental work [6]. The 
matrix and fiber properties are given in Table 1. 
     For computation, the simplified form of 
microplane model [9] is followed with certain 
assumptions. The strain hardening cementitious 
composites show almost negligible shear resistance as 
synthetic fibers are very flexible. Hence for present 
model, practically the resistance in tangential direction 
is neglected i.e.       . Another simplification is 
made by considering normal stiffness equal to 
volumetric stiffness (deviatoric stiffness is assumed to 
be negligible), i.e.,         and       . Further, the 
normal stiffness is used as tangent modulus in normal 
direction. Therefore, considering    equal to initial 
modulus, the expression for tangent modulus can be 
obtained as                    where  (softening 
parameter)and   are material constants and         . 
These parameters can be related to parameters used for 
secant modulus in Eq. 25 as                        
The value of two elastic constants, Poisson’s ratio  and  
initial modulus    are fixed prior to data fitting. The 
total macroscopic strain is considered as sum of strain 
due to microplane system   and additional elastic 
strain  , i.e.,          . The related detail of 
derivation of   and definition and value of parameters 

are given in Ref. [10]. 
     The comparison results of analytical and 
experimental data have been depicted in Fig.8. The 
computation is done for two different behaviors, i.e., by 
SL (single layer) model and ML (multi-layered) model 
for SHCC where former model represents the overall 
behavior as single layer of microplane model and latter 
represents the overall behavior as multi-layered 
microplane model that is obtained by the envelope of 
each SLC (single layer at each crack) model behavior. 
There is some difference of behavior is observed in SL 
model results because the exponential variation of 
tangent stiffness is considered in this model while in 
real behavior the stiffness of SHCC does not vary 
exponentially. In data fitting, much focus has been 
given to adjust maximum tensile strength and 
strain-hardening up to certain extend. This comparison 
is modified by using ML model in which not only the 
initial stiffness but strain-hardening and multiple 
cracking of SHCC is also verified. The simplification is 
made by considering tensile strength varying from 
minimum to maximum tensile strength from test data. 
The material parameters for SL and SLC model are 
given in Table 2. The value of   is variable for each 
SLC model, i.e., 30000, 27000, 26000, 25000, 24000, 
23000, 22500, 22000, 21800, 21500, 21000, 20500, 
20000 from 1st SLC model to 12th SLC model. 
 
3.2 Total crack width and crack distribution 
     This model can efficiently be used to simulate 
total crack width at increasing load steps. The 
simulation results are verified by comparing with 
experimental data [6]. In this work, the average crack 
widths are measured at 0.5%, 1% and 2% strain values 
with 4, 8 and 12 number of cracks respectively at 
corresponding strain values. The total crack width can 
be evaluated by multiplying the crack width with 
number of cracks and considering standard deviation 
value for crack width given in the experimental data. 
The fiber and matrix properties are given in Table 1. 
For simulation of total crack width, Eq.15 is used.  
     For this purpose, tensile strength/loads are taken 
from the experimental data of uniaxial tensile 
stress-strain relationship at each crack [6]. The mean 
volume fraction is considered as 2.25%. The uniform 
distribution of fiber volume fraction is considered from 
1st crack (minimum) to 12th crack (maximum).  
     The standard deviation value is considered as 
0.11%. Hence considering equally spaced cracks, the 
values of volume fraction from 1st crack to 12th crack 
are calculated as 1.68%, 1.8%, 1.9%, 2.02%, 2.13%, 
2.25%, 2.36%, 2.47%, 2.58% 2.7% 2.81% and 2.92%. 
The total cross sectional areas of bridging fibers are 
calculated corresponding to above fiber volume 
fractions at each crack. The stiffness of bridging fibers 
is calculated as          where    is the debonding 
length of bridging fiber that is considered as     in 
this case where   is the length of fiber. The    is the 
elastic modulus of fibers that is considered constant and 
adjusted by the first crack width of measured data, i.e. ,       
    = 4740 MPa. The simulation results are shown in 
Fig.9 which shows satisfactory agreement with  
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Fig.8 Comparison of analytical results with test 
data for uniaxial tension of SHCC [6] 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10 Comparison of model results with test data 
for crack distribution/spacing of SHCC [6] 
 
 

 
 
Fig.12 Comparison of analytical results with test 
data for uniaxial compression of SHCC [8] 
 

Table 1 Fiber and matrix properties 
 

Properties 
 

Uniaxial tensile 
loading/ Total 

crack width [6]
Specimen size (mm) 100x40x24 
Fiber volume (%) 2.25 
Fiber length (mm) 12 
Fiber diameter (µm) 40 
Stress at first cracking 
(MPa) 

3.6 

Tensile strength (MPa) 4.7 

     
 
Fig.9 Comparison of analytical results with test 
data for total crack width of SHCC [6]  
 

 
Fig.11 Comparison of analytical results with test 
data for uniaxail compression of SHCC [7]  
 

Table 2 Material parameters for analytical 
verification of material behavior 

 
Table 3 Fiber and matrix properties 

 

Properties 
 

Uniaxial 
compression 

[7] 

Uniaxial 
compression

[8] 
Fiber volume (%) 2.0 2.0 

Fiber length(mm) 38 12 

Fiber diameter(µm) 38 39 

Peak stress(MPa) 49.9 51 

Peak strain (%) 0.27     0.32 

 
 

0

1

2

3

4

5

6

0 1 2 3 4
strain(%)

st
re

ss
(M

P
a)

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5

st
re

ss
(M

P

strain(%)

0
10
20
30
40
50
60
70
80

0 0.5 1 1.5 2 2.5

strain(%)

cr
ac

k 
w

id
th

(µ
m

)

Model
Data

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5

st
re

ss
(M

P
a)

Strain(%)

Model
Param-
eters

 

Uniaxial 
tension 

SLC 
[6] 

Uniaxial 
tension

  SL 
[6] 

Uniaxial 
compression 

[7] 

Uniaxial 
compression

[8] 

 
(MPa)

4500 1100 35000 30000 

 0.2 0.2 0.20 0.2 

 - 1100 0.0 0.0 

 0.0 0.0 39 38 

 0.20 0.20 0.20 0.20 

 SL Model 
SLC Model 
ML model 

   Data

   Model 
   Data 

 

  
1.0%strain 1.5%strain 0.5%strain 

   Model 
   Data 

   Model 
   Data 

NE



k

d
p

-293-



experimental data. 
 
3.3 Crack distribution/spacing 
 
     To model crack distribution and number of cracks, 
the data [6] is referred. In this case total of 12 cracks 
are observed during strain-hardening zone. The crack 
distribution by experimental results may be attributed 
to non-uniform distribution of mechanical properties. 
This whole range is divided uniformly into 12 discrete 
statistical intervals. The first crack will appear at the 
middle of the first statistical interval and this sequence 
will continue from left to right. The verification results 
are shown in Fig.10 which depicts a satisfactory 
agreement with experimental data of crack distribution 
at 0.5%, 1.0% and 2.0% strain values. It is clear from 
figure that at 0.5% strain, number of cracks is four, at 
1.0% strain number of cracks is eight and at 2.0% strain 
number of cracks is twelve which verify the 
experimental results for number of cracks based on 
uniform statistical increase of fiber volume.  
 
3.4 Uniaxial compression 
     The presented microplane model can also be 
implemented for simulating uniaxial compression 
behavior. The analytical results are compared for two 
different experimental data by Refs. [7] and [8]. The 
related fiber and material properties are given in 
Table.3. For uniaxial compression, the assumptions are 
considered, i.e.,                   and      .The 
tangent modulus is calculated as arctan function as                     
                where           in which   is 
compressive strength parameter. The elastic material 
constants    (initial modulus) and Poisson’s ratio  are 
fixed and then   is identified by computation. The 
adjusted value of material parameters are shown in 
Table 2. The analytical results show satisfactory 
agreement with experimental data as shown in 
Figs.11-12. 
 
4. CONCLUDING REMARKS 
 
(1) The results show the applicability of multi-layered 

microplane model with good agreement with 
experimental data. This model has an advantage of 
predicting total crack width, crack 
distribution/spacing and number of cracks. In this 
way the phenomenon of multiple cracking and 
stress-strain relationship for uniaxial tensile 
loading can be predicted. This model is 
comparatively more realistic to state crack 
distribution behavior of SHCC. 

(2) The multi-layered microplane model has wide 
range of applicability. This can be implemented for 
various strengths of the SHCC material and fiber 
volume. The material behavior can be simulated 
for a wide range of tensile or compressive strengths 
and fiber volume as fiber volume is observed the 
main parameter that identifies the SHCC material 
behavior.  

(3) Being three dimensional analytical characteristics, 
this model can be extended to multi-axial loading 

of strain-hardening cementitious composites along 
with uniaxial behavior. Various experimental data 
is available for biaxial and triaxial compressive 
behavior [7] and [8]. This can contribute an 
efficient advantage of this model. The model 
details and analytical verifications will appear in 
continuation of recent research work. 
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