論文 近赤外分光法によるポリマーセメントモルタルの硫酸腐食評価

野並 優二*1·塚越 雅幸*2·上田 隆雄*3

要旨:微破壊試験手法の1つである近赤外分光法を用いて,地下下水構造物に用いられた際に生じる化学的 なポリマーセメントモルタルの劣化度の評価手法について検討を行った。試験体は,普通ポルトランドセメ ントに対してアクリル系ポリマーの混合割合を5~20%として作製した。この試験体を用いて硫酸劣化を想定 した促進試験を行い,表層部の吸収スペクトルを近赤外分光法により測定した結果,セメントおよびポリマ ーの劣化と思われるスペクトルのピークの変化が見られた。さらに,特定のスペクトルの変化量から検量線 を作成することで,ポリマーセメントの劣化の進行度合いの推定の可能性が示唆された。 キーワード:ポリマーセメントモルタル,耐硫酸性,近赤外分光法,非破壊試験

1. はじめに

コンクリート構造物の劣化原因は様々あるが、下水道 構造物や地下ピット等では硫酸等の化学物質による劣化 が多い。このため、比較的耐酸性の強いポリマーセメン トを用いた表面仕上げや、断面修復などが適用される場 合があるが、このような構造物においても劣化や再劣化 が起こることが報告されている。これら構造物の維持管 理を適切に行う必要があり, 点検・診断技術の重要性が 高まっている。これまでに対象物に超音波を当て、その 反射波を電圧に変換することで対象物の内部の状態を確 認する超音波法や,打撃などにより衝撃弾性波を入力し, 発生する振動の波形を解析することで定量的な評価を行 う衝撃弾性波法など多くの劣化度判定手法が提案されて きており ¹⁾,劣化事象に応じてこれらを使い分けること で劣化現象を把握が可能であるとされている。しかし、 補修範囲や深度の調査には多大の時間と費用がかかるこ とから、迅速で手軽な測定方法が望まれている。

ここでは、非破壊検査手法の1つである近赤外分光分析に着目をした。近赤外分光法はこれまでに医療・食品 関連分野²⁾での活用の他に、建設業界においてもコンク リートの劣化の推定、たとえば近赤外反射スペクトルから塩化物イオン濃度の推定や³⁾、中性化の進行予測⁴⁾、 ASR の判定等⁵⁾への応用が進められている。さらに、前報での研究⁶⁾では、近赤外分光法によるポリマーセメン ト中の、ポリマーおよびセメントの各成分量とその分布 状況の定量的な評価方法について提案している。

そこで、本研究では近赤外分光法によるポリマーセメ ントモルタルの硫酸劣化度評価について検討を行う事を 目的とした。

実験概要

2.1 使用材料

セメントは普通ポルトランドセメント(密度:3.16 g/cm³),細骨材は徳島県阿波市市場町産砕砂(密度:2.57 g/cm³),ポリマーは市販のアクリル酸エステル系エマル ション(密度:硬化時およそ1.0 g/cm³)を用いた。

2.2 試験体の作製

試験体の調合は表-1 に示す通り、水セメント比(重量比)を40%、砂セメント比(重量比;以下 S/C)を150% と一定とし、ポリマーセメント比(重量比;以下 P/C)を 0、5、10、20%とした。これら調合条件にて JIS A 1171 に 準拠し練り混ぜた。その後、寸法40×40×160 mm に成 型後、20±2℃、80±8%R.H.の環境で2日、20±2℃の水 中で5日、20±2℃、60±6%R.H.の環境で21日間養生を 行い作製した。近赤外分光法および反射電子像による成 分変化の評価に用いる試験体は、養生後40×40×40 mm の試験体になるように分割したものを用いた。

2.3 硫酸劣化試験

JIS 原案「コンクリートの溶液浸せきによる耐薬品性試験方法(案)」に準じて行い,浸漬溶液は5%硫酸溶液を

配合名	W/C (%)	S/C (%)	P/C (%)	単位量 (kg/m ³)			
				W	C	S	Р
P/C 0	40	150	0	307	769	1153	0
P/C 5			5	296	740	1110	37
P/C 10			10	285	714	1071	71
P/C 20			20	266	666	999	133

表-1 ポリマーセメントモルタルの調合

*1 徳島大学大学院(知的力学システム工学専攻建設創造システム工学コース (学生会員)

*2 徳島大学大学院 ソシオテクノサイエンス研究部エコシステムデザイン部門助教 工博 (正会員)

*3 徳島大学大学院 ソシオテクノサイエンス研究部エコシステムデザイン部門教授 工博 (正会員)

用いた。硫酸は設定濃度を保つように、1 週間ごとに交換を行った。浸漬方法は全面浸漬とした。

2.4 圧縮強度試験

圧縮強度試験は JIS A 1172 に準拠し行った。測定時期 は、硫酸浸漬なし、浸漬1日、3日7日、28日とした。 2.5 SEMによる微細構造観察

ポリマーセメントモルタルでの硫酸劣化により生じる, セメントおよびポリマーの化学的変化を,走査型電子顕 微鏡(SEM: Scanning Electron Microscope)により微細構 造を観察した。

観察を行う前に,電気伝導性を与えるために約 10 nm の白金コーティングを行った。観察には反射電子検出器 を付属している走査型電子顕微鏡を使用して,倍率 200 倍にて反射電子像(以下 BEI)の測定を行った^{7,8)}。加 速電圧は 15kV でワーキングディスタンスは 10 mm で行 った。また,観察の対象元素としては,ポリマーの構成 成分である炭素(C)元素,セメント硬化体の主成分と考 えられるカルシウム(Ca)元素と,細骨材の主成分と考 えられる珪素(S_i)元素とした。

BEI では元素番号の違いにより輝度が異なり,元素番号が小さい方が暗く,明るいほど元素番号が大きい。既 往の研究⁸より,元素番号とそのコントラストを表す BSE 係数の関係は以下の式(6)によって表せる。

 $\eta_0 = -0.0254 + 0.016Z - 1.86 \times 10^{-4}Z^2 + 8.3 \times 10^{-7}Z^3$ (6) ここで、 η_0 : BSE 係数、Z: 元素番号

これより, Ca 元素の BSE 係数は 0.2268 となり, Si 元 素の BSE 係数は 0.2009 となり, C 元素では 0.0641 とな る。Ca 元素, Si 元素, C 元素の順で高い値を示しており, このことから元素の判別が可能である。また劣化による 成分変化は, Ca(OH)2 から CaSO4 と変質することによる 輝度の変化で行った。

2.6 近赤外分光法の概要⁹⁾

2.6.1 近赤外分光装置の概要

近赤外分光法による測定方法を写真-1 に示す。測定 に用いた装置は 350 から 2500 nm の高波長域をサンプリ ング間隔 1.4 nm と 2.0 nm で高速スキャニングでき、リ アルタイム連続波長を表示することが可能である ASD 社製の Field spec pro,光源受光一体型のリフレクタンス プローブを用いた。白板にはセラミックス製スペクトロ ン標準反射鏡を使用した。粉体資料の測定を行う際には、 専用セル (内径 30 mm×高さ 13 mm)を用いた。

2.6.2 近赤外分光法による測定方法

近赤外分光法での評価に用いる吸光度は以下の方法で 算出する。

- 1) 白板の反射光の強さ Is(λ)を測定
- 2) 試料の反射光のI(λ)を測定

以下の式(1)を用いて反射率 R(λ)を算出し、
 これから式(2)を用いて吸光度 A(λ)を算出

$$R(\lambda) = \{I(\lambda)/I_s(\lambda)\}$$
(1)

$$A(\lambda) = \log\{1/R(\lambda)\}$$
(2)

また,今回用いるポリマーセメントモルタルのように ポリマー,セメント,細骨材といった複数の材料で構成 されている材料の劣化を評価する際には,同じ波長の範

写真-1 近赤外分光法による測定

囲で、複数の材料の成分が変化することが考えられる。 そこで本研究では図-1 に示すように解析を行うことと した。近赤外分光法による評価は測定により得られた吸 光度スペクトルを±2nmの範囲5点の吸光度を用いて平 滑化した原スペクトルおよび平滑化した原スペクトルを 中央差分法により2次微分することで原スペクトルの傾 きの変化率に変換した2次微分スペクトルにより、ピー ク波長域を特定することとした。2次微分スペクトルで は位相が反転するため、成分の光の吸収によるピークは 負の値としてあらわされる。また、「2次微分化により3 nm 程度のピーク位置の変化が生じるが、原スペクトルの 平滑化の影響と比較すると小さな値であると考えられる ため考慮しないこととした。

2.6.3 ポリマーセメントモルタルの構成材料評価

ポリマーセメントモルタルの構成材料である、ポリマ ー,セメント、細骨材それぞれの評価を行うために材料 単体での近赤外分光法による測定を行った。またセメン トは水和により組成が変化するため、実環境で測定をす る際に、セメント単体でのデータを利用することができ ないと考えられる。そこで、セメントペーストを別途作 製し、28 日水和後のセメントのピークの測定を行った。 また、ポリマーセメントモルタルではポリマー、セメン ト、細骨材により構成されているため、近赤外分光法に よる測定結果が複数の材料のピークの和となっているこ とが考えられる。そこで、P/Cを5%と一定とし、S/Cを 75、150、300%と変化させたもの、S/Cを150%と一定 にし、P/Cを0、5、10、20%と変化させたものを作製 し、ポリマーセメントモルタルの成分比率が吸光度に与 える影響の評価を行った。

2.6.4 近赤外分光法による硫酸劣化評価

硫酸によるポリマーセメントモルタルの成分であるセ メントおよびポリマーは以下の化学式¹⁰⁾で示すように 変化すると考えられる。

セメント:

$H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 \cdot 2H_2O$	(3)
$3Ca(OH)_2 + 3H_2SO_4 \cdot 3CaO \cdot Al_2O_3 + 26H_2O$	

```
→ 3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 32H_2O
ポリマー:
```

 $[CH_2CH(COOR)]_n + H_2O \rightarrow [CH_2CH(COOH)]_n + ROH$ (5) よって近赤外分光法による評価はセメント成分の評価は $CaSO_4 \cdot 2H_2O$ で行い,ポリマー成分の評価はRの分離に よって評価を行うこととした。

近赤外分光法による測定は,供試体の表層部を行い, 測定時期は,表層部では成分変化が早期で起こることが 考えられるため,劣化なし,1時間,3時間,6時間, 12時間,1日,3日,7日,28日とした。

3. 実験結果

3.1 硫酸劣化による外観の変化

硫酸浸漬 28 日での試験体を写真-2 に示す。P/C=0% では、表層部のペーストが離脱し、細骨材が露出してい ることが確認された。それに対し P/C=5,10,20 では ペーストの離脱が一部分のみで確認され、P/C が増加す るにつれ外観の変状が少なくなる傾向が見られた。しか し、P/C=20%のものでは内部から劣化が進行しているこ とが確認された。

3.2 硫酸劣化による圧縮強度の変化

劣化なしおよび浸漬1日,3日,7日,28日での圧縮 強度を図-2に示す。劣化なしの状態での圧縮強度はP/C が増加するにつれ低下していくことが確認された。また, 浸漬28日での強度はP/C=0,5,10%のものではほぼ同 等となったことからポリマーを混入させることにより, 耐硫酸性が向上することが確認された。しかし,P/C=20%

P/C=5%

写真-2 硫酸浸漬28日での外観

(4)

P/C=0% 劣化なし

P/C=0% 浸漬7日

P/C= 5% 浸漬 7 日

P/C=20% 浸漬7日

図−3 SEMによる微細構造観察の結果

のものでは劣化なしの状態で,圧縮強度がほかの調合に 比べ著しく低い値となった。この結果から,内部での微 細構造がその他の調合のものと異なっていたと考えるこ とができ,硫酸による浸漬による外観の変化の違いは, 内部の微細構造に違いが生じていたからだと考えられる。 ポリマーの混入量の増加による微細構造の変化は,既往 の研究¹¹⁾でも確認されており,表層部で早期におけるポ リマーの被覆により,内部でのセメントの水和反応が十 分に起こらなかったために,微細構造に違いが生じたた めであると考えられる。

3.3 SEM による微細構造観察結果

硫酸劣化なしおよび硫酸浸漬7日での微細構造の観察 結果を図-3に示す。P/C=0,5%のものでは劣化なしで は確認されなかった結晶が浸漬後には観察された。この 結晶は,既往の研究¹²⁾で報告されている二水石膏の結晶 と同様の構造をしているため,セメントの変質により二 水石膏が生成していると考えられる。また,ポリマー混 入量の多いP/C=10,20%のものでは,セメントの変質の みでなく,ポリマーの分解により,ポリマー部分の欠落 が確認された。

3.4 材料ごとの吸光度スペクトル

ポリマーセメントモルタルを構成する材料の吸光度を 図-4 に示す。また、セメントペーストでの測定結果お よび硫酸によるセメントの変質によって、生成すると考 えられる二水石膏の吸光度を図-5 に示す。セメント粉 末では吸光度にはピークが確認されなかった。しかし、 セメントペーストでは 1400 nm 付近および 1950 nm 付近 でのピークが確認されたこれはセメントの水和によるも のであると考えられる。二水石膏は、波長 1420 nm、1750

nm, 1950nm付近および2240 nm付近でピークを示した。 また、二水石膏はセメントペーストと比べると、1950 nm 付近での吸光度が増加している。吸光度が増加した理由 としては、セメント粉末ではピークがなかったのに対し て、水和が起こったと考えられるセメントペーストでは ピークを示したことから、水酸化カルシウムと二水石膏 での OH 基の量が変化することによるものであると考え られる。

砂セメント比を容積で変化させ作製した試験体での原 スペクトルを図-6 に示す。砂セメント比が小さなもの では、1400 nm 付近での吸光度が増加するという傾向が 見られた。しかし、1950 nm 付近での吸光度は砂セメン ト比を変化させても、変化が見られなかった。これらの ことから, 1400 nm 付近の吸光度はセメントの水和によ る影響が大きいと考えられる。また、ポリマー成分のみ がピークを示している波長 1690 nm 付近でのピークは砂 セメント比を変化させて作製した試験体では確認するこ とができなかった。この理由としては、ポリマーセメン ト比が低かったため、セメントおよび細骨材の吸光度が 大きな影響を与えるためであると考える。また、P/C を 変化させ作製した試験体での原スペクトルおよび2次微 分スペクトルを図-7 に示す。原スペクトルからは全て の調合で確認することができなかったが、2次微分スペ クトルでは P/C=10%, 20%の調合では波長 1690 nm 付近 でピークが確認された。確認されたピークの成分は、ポ リマー量を増加させることで確認することができたこと や、図-5 に示したポリマー硬化体の吸光度スペクトル が波長 1690 nm 付近でピークを示していることから、ポ リマー成分を示していることが考えられる。

3.5 近赤外分光法による硫酸劣化試験評価の結果

近赤外分光法による硫酸劣化後の試験体での結果の原 スペクトルを図-8 に示す。また、吸光度の変化の大き な波長域での原スペクトルおよび2次微分スペクトルの 一部を図-9に示す。図-7では浸漬時間1時間で,魚 本らの研究¹³⁾ で報告されている波長 1755 nm での二水 石膏によるピークの発生が確認された。また、二水石膏 がピークを示す1755 nm 以外の波長域である1420,1950 nm 付近での吸光度は P/C=0%のもので硫酸浸漬 7,28 日 のものでは浸漬1時間の結果に比べ減少が確認された。 こちらの波長域は OH 基のピークを示すことから二水石 膏の評価に用いることは困難であると考えられる。この ことから、二水石膏の成分量評価に用いるのに適してい る波長域は波長 1755 nm 付近での吸光度であると考え られる。また、 P/C=20%では劣化なしおよび、硫酸浸漬 1時間のもので,ポリマー成分を示す波長 1690 nm 付近 でのピークを確認することができたが、浸漬7日のもの ではピークが確認することができなかった。式(5)に示し たように硫酸により、ポリマーの分子鎖が破断しメチル 基の量が減少したためであると考えられる。また、硫酸 劣化が進行していくにつれポリマーのピークの減少が確 認されたのに対して, 1755 nm 付近でのピークは確認す ることができなかった。この傾向は、微細構造観察での 結果と同様の傾向であった。

4. 結論

近赤外分光法によるポリマーセメントモルタルの硫酸 劣化の評価の可能性について検討を行うためポリマーセ メントモルタルを硫酸浸漬し測定を行った。硫酸劣化に より生じる二水石膏の分子式の一部である SO4 のピーク が波長 1755 nm 付近で確認することができた。測定を行 った表層部での微細構造を SEM により観察するとセメ ントの変質による二水石膏の生成を確認することができ ており, 1755 nm 付近での吸光度を測定することでご水 石膏を測定することができた。また,ポリマーにおいて は波長 1690 nm 付近でのピークが減少するという傾向 が一部の調合では確認された。こちらはポリマーを構成 するメチル基の破断によるものと考えられ,微細構造を SEM により観察を行うとポリマーの分解が確認された。

参考文献

- 西岡啓介,渡辺健,橋本親典,大津政康:弾性波法 における入力波長と部材寸法の関係が弾性波伝播速 度に及ぼす影響,コンクリート工学年次論文集, Vol.29, No.2, pp.655-660, 2007
- 2) 的場輝佳:近赤外分光法と調理科学非破壊分析法の調理 科学への応用,調理科学, Vol.23, No.4, pp. 341-347, 1990
- 石川幸宏,金田尚志,魚本健人,矢島哲司:近赤外 分光イメージングによるコンクリート中の塩分の定 量化に関する提案,コンクリート工学年次論文報告 集,Vol.28, No.1, pp.1865-1870, 2006
- 4) 上田隆雄ほか:近赤外分光法を用いたセメント硬化 体中の塩化物イオンの検出、コンクリート工学論文 集, Vol.29, No.2, pp.769-774, 2007

- 5) 松本義章ほか:近赤外分光法による ASR 劣化コンク リートの診断に関する検討,コンクリート工学年次 論文集, Vol.33, No.1, pp.1787-1792, 2011
- 6) 野並優二,塚越雅幸,上田隆雄:近赤外分光法によるポリマーセメント系仕上材料の組成分布評価手法, コンクリート工学年次論文集, Vol.36, No.1, pp.2014-2019,2014
- Karen L. Scrivener : Backscattered Electron Imaging of Cementitious Microstructures:understanding and quantificatio, Cement and Concrete Composites, No.26, pp.935-945, 2004
- 8) 胡桃澤清文:反射電子像及びエネルギー分散型 X 線 解析により測定した元素分布像による硬化セメント ペーストの観察,日本建築学会構造系論文集, No.595, pp.9-15, 2005.9
- 9) 尾崎幸洋,河田聡:近赤外分光法,日本分光学会 測 定法シリーズ 32,学会出版センター,1998
- 豊田えみ子,坪内健治郎:塗料・塗装と分析技術表 面・局所の分析,塗料の研究, No. 141, pp. 27-34, 2003
- 伊藤正憲,加藤佳孝,魚本健人:各種環境条件化にお けるポリマーセメント系断面修復材の性能評価,コン クリート工学年次論文集, Vol.28, No.1, pp.1757-1762, 2006
- 堀口至,福本直,岩田数典,市坪誠:PFBC 灰硬化体の耐硫酸性に対する微細構造の影響,コンクリート 工学年次論文集, Vol.31, No.1, pp.1855-1860, 2009
- 13) 金田尚志,石川幸宏,魚本健人:近赤外分光イメージングによるコンクリートの分析,コンクリート工学テクニカルレポート,Vol.44, No.4, pp. 26-32, 2006