# 論文 コンクリートの締固め状況の可視化に関する実験的研究

# 神代泰道<sup>\*1</sup>・金子智弥<sup>\*2</sup>

要旨:振動機による締固め時にコンクリート中に伝わる振動エネルギーの範囲を可視化できれば,締固め状況のシミュレーションが可能となり,効率的な施工計画,品質の向上を図れる可能性がある。本研究ではスランプの異なるコンクリートを対象として振動エネルギーと硬化性状の関係を把握し,締固めに必要な振動エネルギーとスランプの関係を考察した。次に,型枠内のコンクリート中の振動機が発生する振動エネルギーの分布状況を把握した。これらの結果を基にコンクリート中の振動エネルギーの可視化を試みた。 キーワード:スランプ,締固め,振動エネルギー,圧縮強度,単位容積質量

# 1. はじめに

コンクリートはバイブレータ等を用いて適度な振動エ ネルギーを加えることで,密実になる。コンクリート中 に伝わる振動エネルギーの範囲を可視化できれば,打込 み時の締固め状況のシミュレーションが可能となり,効 率的な施工計画による人手不足の解決,初期欠陥の防止 による品質の向上を図れる可能性がある。

締固めによる振動エネルギーとコンクリートの硬化 性状の関係については,硬練りコンクリートを対象とし た研究した事例1)はあるが,建築分野で用いられる比較 的軟練りのコンクリートを対象とした研究事例はない。 そこでスランプ 8cm~21cm のコンクリートおよび増粘 成分を含む流動化剤を添加してスランプフロー55cm と した流動化コンクリート<sup>2)</sup>を対象とし,スランプの異な るコンクリートについて,振動エネルギーと硬化性状の 関係を把握した。さらに,型枠内に打ち込まれたコンク リート中の加速度を測定し,コンクリート中に伝播する 振動エネルギーの伝播状況を確認した。これらの結果を 用いてコンクリートの締固め状況の可視化シミュレーシ ョンを試みた。

### 2. 振動エネルギーと硬化性状の把握

### 2.1 実験概要

ここでは流動性の異なるスランプ 8cm~21cm のコン クリートおよび増粘成分を含む流動化剤を添加してスラ ンプフロー55cm とした流動化コンクリート 2)を対象と して,振動エネルギーと硬化性状の関係を把握した。実 験ではテーブルバイブレータを用いてコンクリート供試 体に振動を与え,供試体に作用する加速度から振動エネ ルギーを算定し,振動エネルギーとコンクリートの硬化 性状の関係を把握した。 (1) 測定システム

振動はセメント強さ試験用のテーブルバイブレータ (モータ回転数 2,800rpm)を用いて与えた。加速度は加 速度計(500m/s<sup>2</sup>,応答周波数520Hz)と動ひずみ計を用 いて測定した。写真 - 1 に測定システムを示す。実験に 先立ち, テーブル上の加速度をX, Y, Z軸方向につい て測定した。その結果を図 - 1 に示すが, バイブレータ による振動は Z 軸方向(鉛直,±40m/s<sup>2</sup>)が主であり, 水平成分のX軸およびY軸は無視できることを確認した。 また,周波数は46.8Hzで,モータの回転数(46.6Hz)と ほぼ一致した。次にテーブルバイブレータにコンクリー トを充填した円柱供試体を2個固定し,テーブル上およ び供試体の型枠に加速度計を取り付け, 垂直方向の加速 度を測定した。その結果,加速度はいずれの箇所でも同 じ大きさであった。以上のことから,加速度は,テーブ ルに取り付けた加速度計により, Z軸方向(鉛直)成分 を測定した。



写真 - 1 計測システム



図 - 1 テーブルバイブレータの加速度測定結果

村田らによると振動エネルギーは加速度と振動時間 で以下のように表すことができる<sup>3)</sup>。

$$Et = \rho \frac{\alpha^2}{4\pi^2 f} t \tag{1}$$

Et:t秒間に受ける振動エネルギー(J/L) :コンクリートの単位容積質量(kg/L)

t:振動時間(t), :加速度 ( m/s<sup>2</sup> ), f: 振動数(Hz)

今回使用するテーブルバイブレータが発生する加速 度を40m/s<sup>2</sup>,周波数46.6Hz,コンクリートの単位容積質 量を 2.3t/m<sup>3</sup>とすると単位秒あたりの振動エネルギーは (1)式から2.0J/Lとなる。既往の研究1)によると硬練りコ ンクリートの締固めに必要なエネルギーは10J/L以下で あるので,このテーブルバイブレータを用いて5秒間程 度の振動を与えれば十分に締固めができることが分かっ た。そこで振動時間は0,1,2,4,5,20秒で設定する こととした。

(2)コンクリートの調合

コンクリートは表 - 1 に示すようにスランプの異なる 6 種類のコンクリートとした。スランプの設定値は 8~ 21cm とし,練り混ぜ直後のスランプは設定スランプ± 2.5cmとした。空気量は4.5±1.5%とした。スランプ8, 12,15cmはAE減水剤を用いた。流動化コンクリートについて は,ベースコンクリートのスランプを18cmとし,増粘 成分を有する流動化剤を添加してスランプフローを 55 ±5 cmとした。練混ぜはセメント・骨材を投入後10秒 空練りを行い,水・化学混和剤を投入してから 90 秒間 練り混ぜた。練混ぜ後5分間静置した後に練り返しを行 ってから試験を行った。流動化する場合は,一旦コンク リートをミキサに戻し,流動化剤を添加してから 90 秒 間練り混ぜた。

### (3)試験方法

コンクリートを 100×200mm の供試体の天端まで締 固めを行わずに静かに流し込み,天端面ですり切った。 コンクリート供試体をテーブルバイブレータに固定し, 振動時間(0,1,2,4,5,20秒)をタイマーで設定し て振動を与えた。供試体は各振動時間に対して2個とし た。あわせてJISA1132「コンクリート強度試験用供試 体の作り方」(2層に分け,突き数8回とした)に基づい た供試体も採取した(以降,JIS採取という)。振動を 与えた直後にコンクリートの天端面の中央の沈降量を測 定した。また,脱型後の外観を観察し,標準水中養生を 行ってから材齢28日で単位容積質量,圧縮強度を測定 した。

表 - 1 コンクリートの調合

| スランプ  | W/C                                                                  | s/a                                                                                                                                | 単位量                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      | (kg/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (cm)  | (%)                                                                  | (%)                                                                                                                                | W                                                                                                                                                                                                                      | С                                                                                                                                                                                                                                                                    | S                                                                                                                                                                                                                                                                                                                   | G                                                                                                                                                                                                                                                                                                                                                                                         |
| 8     | 50                                                                   | 45.5                                                                                                                               | 165                                                                                                                                                                                                                    | 330                                                                                                                                                                                                                                                                  | 815                                                                                                                                                                                                                                                                                                                 | 989                                                                                                                                                                                                                                                                                                                                                                                       |
| 12    | 50                                                                   | 46.4                                                                                                                               | 165                                                                                                                                                                                                                    | 330                                                                                                                                                                                                                                                                  | 830                                                                                                                                                                                                                                                                                                                 | 974                                                                                                                                                                                                                                                                                                                                                                                       |
| 15    | 50                                                                   | 47.9                                                                                                                               | 170                                                                                                                                                                                                                    | 340                                                                                                                                                                                                                                                                  | 847                                                                                                                                                                                                                                                                                                                 | 935                                                                                                                                                                                                                                                                                                                                                                                       |
| 18    | 50                                                                   | 50.1                                                                                                                               | 170                                                                                                                                                                                                                    | 340                                                                                                                                                                                                                                                                  | 886                                                                                                                                                                                                                                                                                                                 | 896                                                                                                                                                                                                                                                                                                                                                                                       |
| 21    | 50                                                                   | 51.7                                                                                                                               | 175                                                                                                                                                                                                                    | 350                                                                                                                                                                                                                                                                  | 903                                                                                                                                                                                                                                                                                                                 | 857                                                                                                                                                                                                                                                                                                                                                                                       |
| 18→55 | 50                                                                   | 50.1                                                                                                                               | 170                                                                                                                                                                                                                    | 340                                                                                                                                                                                                                                                                  | 886                                                                                                                                                                                                                                                                                                                 | 896                                                                                                                                                                                                                                                                                                                                                                                       |
|       | <b>λ</b> 7) <b>7</b> °<br>(cm)<br>8<br>12<br>15<br>18<br>21<br>18→55 | X5>7°     W/C       (cm)     (%)       8     50       12     50       15     50       18     50       21     50       18→55     50 | \$\mathcal{J}\$7\$"     W/C     s/a       (cm)     (%)     (%)       8     50     45.5       12     50     46.4       15     50     47.9       18     50     50.1       21     50     51.7       18→55     50     50.1 | スランプ     W/C     s/a     単伯       (cm)     (%)     (%)     W       8     50     45.5     165       12     50     46.4     165       15     50     47.9     170       18     50     50.1     170       21     50     51.7     175       18→55     50     50.1     170 | スランプ     W/C     s/a     単位量       (cm)     (%)     W     C       8     50     45.5     165     330       12     50     46.4     165     330       15     50     47.9     170     340       18     50     50.1     170     340       21     50     51.7     175     350       18→55     50     50.1     170     340 | スランプ     W/C     s/a     単位量     (kg       (cm)     (%)     (%)     W     C     S       8     50     45.5     165     330     815       12     50     46.4     165     330     830       15     50     47.9     170     340     847       18     50     50.1     170     340     886       21     50     51.7     175     350     903       18→55     50     50.1     170     340     886 |

C:普通ポルトランドセメント,W:水道水 S:陸砂,G:硬質砂岩砕石

2.2 実験結果

(1) フレッシュコンクリートの試験結果

各コンクリートのフレッシュコンクリートの試験結 果を表 - 2 に示す。各調合とも所要のスランプ,空気量 を満足することを確認した。

| No. | スランプ<br>(cm) | עלג גלאס געלג (cm) | 空気量<br>(%) | 単位容積<br>質量<br>(kg/m <sup>3</sup> ) | コンクリート<br>温度( ) |
|-----|--------------|--------------------|------------|------------------------------------|-----------------|
| 1   | 10.5         | 22.5 × 22.5        | 3.3        | 2, 347                             | 19              |
| 2   | 12.5         | 24.0×23.0          | 4.8        | 2, 317                             | 20              |
| 3   | 15.0         | $26.0 \times 24.5$ | 5.2        | 2, 300                             | 20              |
| 4   | 19.0         | 32.0×31.5          | 4.7        | 2, 310                             | 19              |
| 5   | 20.0         | 31.0×31.5          | 5.0        | 2, 307                             | 21              |
| 6   | 18.0         | 29.5 × 29.0        | 3.8        | 2, 335                             | 21              |
| 0   | 26.0         | 56.0 × 57.5        | 3.2        | 2, 370                             | 21              |

表 - 2 フレッシュコンクリートの試験結果

#### (2) 天端の沈降量と目視観察結果

テーブルバイブレータで振動を与えた後のコンクリ ート天端の沈降量の測定結果を図 - 2 に示す。供試体 2 個の平均値とした。スランプが小さいほど振動による沈 降量が大きくなる。スランプ8cmでは振動時間4秒以上, スランプ12cm以上のコンクリートについては振動時間 2 秒以上でコンクリートの沈降量は収束する傾向であっ た。コンクリートの脱型後の供試体の外観の一例として スランプ15cmの場合を写真 - 2 に示す。そのまま流し 込んだ場合と振動時間を1秒とした場合は豆板が見られ た。振動時間2秒以上で豆板は減少した。



写真 - 2 振動を与えた供試体の外観(スランプ15cm)

# (3) 硬化コンクリートの試験結果

振動時間とコンクリートの単位容積質量,圧縮強度の 関係を図-3および図-4に示す。振動無しの場合,ス ランプが小さいほど、単位容積質量と圧縮強度は小さく, スランプフロー55cmについては,スランプで管理される コンクリートに比べて単位容積質量,圧縮強度ともに大 きくなった。いずれのコンクリートも振動時間の増加に







応じて単位容積質量,圧縮強度は大きくなり,天端の沈 降量および供試体外観の目視観察結果と同様の傾向であ った。スランプが小さいほど振動に伴う圧縮強度および 単位容積質量の増加の割合は大きくなった。

# (4) 加速度の測定結果

ー例として,スランプ 15cm の場合の振動時間の設定 を2秒と5秒とした場合の加速度の測定結果を図-5に 示す。振動時間が短いと加速度の応答波形は,立ち上が りや終了時の揺動の影響が大きく,一定の状態が短くな る。4秒以上振動を継続すると,加速度はテーブルバイ プレータの仕様どおりの加速度(40m/s<sup>2</sup>)が得られた。



図 - 5 加速度の測定結果(スランプ15cm)

# (5) 振動エネルギーと硬化性状

波形処理プログラムを用いて各振動時間における加 速度の応答波形について,周期毎の加速度のピーク値を 平均化した。これを(1)式における加速度としてエネルギ ーを算定した。周波数は加速度の応答波形の周波数を用 い,密度はフレッシュコンクリート試験結果を用いた。 振動時間と振動エネルギーの関係を図 - 6に示す。テー ブルバイブレータにより,いずれのコンクリートについ てもほぼ同様の振動エネルギーを与えることができた。 振動時間 1 秒では振動エネルギーは 1J/L 未満となり,振 動時間 4 秒でほぼ 10J/L となった。

ここで各コンクリートについて,JIS 採取の単位容積 質量および圧縮強度を 1.0 とし,これに対するそれぞれ の比率と振動エネルギーの関係を図 - 7 に示す。振動エ ネルギーの増加に伴って単位容積質量と圧縮強度の JIS 採取に対する比率は 1.0 に近づく。スランプが小さいほ ど締固めには大きな振動エネルギーが必要であり,単位 容積質量の比率が0.99 になる場合の振動エネルギーを図 から求めると,スランプ 8cm では 5J/L,12cm では 3J/L, 15cm では 2J/L となり,スランプ 18cm 以上では 1J/L 以 下となった。0.99 倍としたのは既往の研究<sup>1)</sup>を参考とし, 今回の実験結果から実用上ほぼ十分に締め固まっている 状態と判断したものである。なお,単位容積質量の比率 0.99 は圧縮強度の比率 0.95 に相当した。



図 - 6 振動時間と振動エネルギーの関係



図 - 7 振動エネルギーと JIS 採取に対する単位容積質 量と圧縮強度の比率

3. コンクリート中の振動エネルギーの伝播状況

コンクリート中の振動エネルギーの伝播状況を確認 するため、2章と同様のコンクリートを型枠内に流し込 み、内部振動機による振動を与えて加速度を測定した。 さらに振動機が発生する振動エネルギーの断面方向の伝 播状況を確認するため、マスブロック型枠内にコンクリ ートを流し込み、内部振動機による振動を与えて加速度 を測定した。加速度は、いずれの場合も振動体の方向(水 平成分)を対象とした。

### 3.1 実験概要

(1)小型型枠を用いた実験

ここではスランプの異なるコンクリートについて,コ ンクリート中の振動エネルギーの伝播状況を確認した。 コンクリートの使用材料および調合は2章と同様とした。 実験の状況を写真-3に示す。型枠は幅400×長さ1,000 ×高さ300mmとし,加速度計を高さ150mmの位置にバ イブレータから100mm間隔で6ヶ所設置した。バイブ レータは40mmの内部振動機を用い,コンクリート (120L)を型枠中に締固めを行わずに流し込んだ後に, 振動を与えて加速度を測定した。バイブレータは固定し た状態で25秒間加振した。



写真-3 小型型枠を用いた実験

# (2)マスブロックを用いた実験

実験の状況を写真 - 4 に示す。型枠は 1,000 × 高さ 700mm のマスブロックとし,スランプ 15cm のコンクリ ートを高さ 600mm まで流し込んでから加速度計を複数 取り付けた測定棒をコンクリート中に挿入し,加速度を 測定した。コンクリートはレディーミクストコンクリー ト工場から出荷した呼び強度 30,スランプ 15cm のコン クリート(W/C=49.5%, AE 減水剤)とした。バイブレ ータは 43mm のものを用いた。バイブレータはマスブ ロックの中心に固定し,測定棒をバイブレータから 100mm 離れた場所に挿入し,水平方向に 100mm 移動し て盛り替えながら,各所で 10 秒間加振して加速度を測定 した。



写真-4 マスブロックを用いた実験

### 3.2 実験結果

(1)小型型枠を用いた実験

加速度の測定結果の一例としてスランプ 15cm の場合 について図 - 8 に示す。加速度はバイブレータからの距 離が長くなるにしたがって減衰した。振動時間が長くな っても加速度の大きさはほとんど変化なく,振動時間の 長さによる影響は小さかった。加速度の測定結果を基に 算定した振動エネルギーの分布状況を図 - 9 に示す。振 動時間の増加に伴って振動エネルギーは増加した。ここ でスランプ 15cm のコンクリートの締固めが十分となる 振動エネルギーは,2章において検討した結果から2J/L 以上であったので,これを基に締固めが可能となる範囲 (バイブレータからの距離)を図から求めると振動時間 5 秒で 250mm, 10 秒で 280mm となる。同様の方法で他 のスランプの振動時間 10 秒で締固めが可能となる範囲 を求めると スランプ 8cm では約 200mm スランプ 21cm では約 500mm であった。スランプが大きいほど,締め 固めされる範囲が大きくなる傾向を把握できた。なお, バイブレータを一定の高さに設置した状態での結果であ り,実際は使用するバイブレータの仕様が異なることや 上下に移動しながらかけるので,上記の範囲はあくまで 目安となる。



図 - 8 加速度の分布 (スランプ 15cm)



図 - 9 振動エネルギーの分布 (スランプ 15cm)

### (2)マスブロックを用いた実験

加速度の測定結果として水平方向の分布を図 - 10 に, 鉛直方向の分布を図 - 11 に示す。水平方向については, 前述の(1)と同様にバイブレータからの距離が長くなる にしたがって減衰する。鉛直方向については,振動体の 中心部付近の加速度が大きくなる傾向を示した。使用し たバイブレータは振動体の下部に振動軸があるため,下 部の方が加速度は大きくなるものと考えられたが,振動 機から 200mm 以上離れると,振動体下部よりも中心部 の方が大きくなる傾向であった。水平および鉛直方向の 加速度の分布から算定した振動エネルギーの分布状況を 図 - 12 に示す。振動時間が 5 秒と 10 秒の場合を示した が,振動時間に伴って振動エネルギーが伝播している状 況が分かる。



### 4. 振動エネルギーによる締固め状況の可視化

これまでの検討結果を基に,振動エネルギーによる締 固め状況の可視化を試みた。打込み範囲を単位ブロック に分割し,バイブレータの位置を設定する。バイブレー タからは図 - 12 に示したような振動エネルギーが発生 するものとし,単位秒あたりに発生する振動エネルギー が振動時間に応じて各ブロック内に累積するとすれば、 この累積した振動エネルギーをブロックごとに表示する ことで 締固め状況を判定できる。図 - 13 は長さ 1700mm, 幅 300mm,高さ 800mmの壁状試験体で,1層目として 高さ 400mm までコンクリートを流し込み,バイブレー タを 600mm 間隔, 振動時間2秒と設定して,「締固め不 足」となる状況を模擬したものである。ブロックを 50mm 角とし,ブロック毎の累積した振動エネルギーを色分け して表示したもので、青色は「締固め十分」、その他は「不 十分」となる範囲を示している。締固めに必要なエネル ギーに応じて色分けすることで締固めの過不足を可視化 できる。これにより,締固め状況の可視化シミュレーシ ョンが可能となり,初期欠陥の防止や効率的な施工計画 の立案に活用できる。



図 - 13 締固め状況の可視化シミュレーション

### 5. まとめ

本研究ではスランプの異なるコンクリートを対象とし

て振動エネルギーと硬化性状の関係を把握した。次に, 型枠内のコンクリート中の振動機が発生する振動エネル ギーの分布状況を把握し,これらの結果を基にコンクリ ート中の振動エネルギーの可視化を試みた。その結果, 以下のことが分かった。

(1) テーブルバイブレータの振動時間の増加に伴い,全 てのコンクリートについて単位容積質量,圧縮強度は大 きくなり,スランプが小さいほどその増加の割合が大き くなった。振動無しとした場合,スランプフロー55cmの コンクリートの単位容積質量と圧縮強度は,スランプで 管理されるコンクリートよりも大きくなった。

(2) 単位容積質量が,JISA 1132 にしたがって採取した供
試体の 0.99 倍となるのに必要な振動エネルギーは,スランプが小さい方が大きくなり,スランプ 8cm で 5J/L,
12cm で 3J/L, 15cm で 2J/L となり,スランプ 18cm 以上
については 1J/L 以下であった。

(3) コンクリート中の加速度はバイブレータからの距離 に応じて減衰し,振動時間を長くしても加速度の大きさ はほとんど変化しなかった。

(4) 同じ振動時間であれば,スランプが大きいほど,締 固め可能となる範囲が大きくなる。

(5)打込み範囲をブロック分割し,ブロック内に累積する 振動エネルギーを表示することで,締固めの可視化シミ ュレーションが可能となる。

### 参考文献

- 梁 俊,國府 勝郎,宇治 公隆,上野 敦:フレッシュコンクリートの締固め性試験法に関する研究, 土木学会論文集 62(2),pp. 416-427, 2006
- 小河俊博,齋藤賢,神代泰道,一瀬賢一:増粘型流 動化剤を用いた流動化コンクリートの各種性状,コンクリートエ学年次論文集,Vol.36,No.1, pp.1426-1431,2014
- 3) 村田二郎,國府勝郎ら:コンクリート施工設計学序 説,技報堂出版,pp.142-145,2004