論文 AE 法による輪荷重走行を受けるバックルプレート床版の破壊機構に 関する検討

菊池 亮*1·大野 健太郎*2·宇治 公隆*3·関口 幹夫*4

要旨:本研究は清洲橋バックルプレート(BP)床版を対象に,将来の補修を想定した供試体に対し輪荷重走 行試験を行い,アコースティック・エミッション(AE)法を適用し,BP床版の疲労耐久性,破壊機構につい て検討を行ったものである。その結果,走行初期では,供試体底部に多数のAE源が位置標定され,コンクリ ートとBPの剥離が確認された。走行を重ねると,コンクリート上面にひび割れが発生し,BPが局部的に変 形するため生じるW型のたわみ分布が確認された。また,コンクリートの押し抜きせん断に伴うと推察され るAE源がせん断スパンに集中し,その後,供試体全体にAE源が拡大するBP床版の破壊形態の特徴を得た。 キーワード:BP床版,輪荷重走行試験,せん断ひび割れ,AE法,AE源位置標定,鋼板の剥離

1. はじめに

橋梁の老朽化対策は我が国の喫緊の課題であり,橋梁 の定期点検要領に従った点検,グレーディングが実施さ れ,維持管理計画が策定されている。東京都が管理する 清洲橋(図-1),永代橋,勝関橋は,国の重要文化財に 指定された橋梁であり,これらは目標年数を定めず,長 期保全・活用が望まれている。清洲橋や永代橋には,国 内の道路橋では数少ないバックルプレート(以下,BP) 床版が採用されている。BP床版の構造形式は,凹みのあ る鋼板(BP)の上に,コンクリートが直接打設された形 式であり,ずれ止めとしてのスタッドや形鋼が施されて いない非合成構造が特徴である。

既往の報告 ¹によると,清洲橋や永代橋では,供用か ら60年経過した昭和62年にBPの腐食進行が確認され, BP 全面で約 2mm 減耗していたものの,その後の補修か ら約 30 年経過した現状では,健全性に問題があるとは 考えられない。しかしながら, BP 床版の疲労耐久性およ び破壊機構については未解明な点が多いことから,東京 都は清洲橋 BP 床版と同形状かつ,将来の補修を想定し た供試体に対して輪荷重走行試験を実施している。

本研究では, BP 床版の破壊機構解明の一検討および今 後の維持管理を戦略的に実施するための基礎検討として, 非破壊検査手法のアコースティック・エミッション(以 下, AE)法を BP 床版の輪荷重走行試験時に適用した。

2. 実験概要

2.1 供試体概要

図-2に供試体の概要とAE センサ位置を示す。BPの 材質は一般構造用鋼材 SS400 で、板厚は将来の補修限界 相当の4.5mm である。表-1 にコンクリートの配合を示 す。結合材には普通ポルトランドセメント、粗・細骨材 には人工軽量骨材を用いた。設計基準強度は36N/mm²

図-1 清洲橋

*1	首都大学東京大学院	都市環境科学研究科	都市基盤環境学域 (学	生会員)	
*2	首都大学東京大学院	都市環境科学研究科	都市基盤環境学域助教	博士 (工学)	(正会員)
*3	首都大学東京大学院	都市環境科学研究科	都市基盤環境学域教授	博士 (工学)	(正会員)
*4	東京都土木技術支援·	人材育成センター 打	支術支援課 (非会員)		

粗骨材の	スランプ	水セメン	空気量	細骨材率	単位量 (kg/m ³)				
最大寸法		卜比			水	セメント	細骨材	粗骨材	混和剤
(mm)	(cm)	(%)	(%)	(%)	W	С	S	G	A
15	21	38.6	5.0	45.0	175	453	510	446	6.342

表-1 コンクリートの計画配合

表--2 AE 計測条件

	しきい値	増幅	バンドパスフィルタ	サンプリング周波数	1波形のサンプリング数
輪荷重走行試験	75dB	40.4D	10 - 400-11-		4096 個
静的載荷試験	40dB	4000	10 ⁷ ~400kHZ	TIVITIZ	1024 個

(将来の補修を想定した高強度タイプ)であり,28日封 繊養生での圧縮強度は 47.5N/mm²,弾性係数は 17.0kN/mm²である。コンクリートはBP上に直接打設し, 支持桁上のスタッド(φ16×100mm)で浮き上がりを防 止した。また、コンクリート床版内には、上面から 50mm の位置に、異形棒鋼 D6 を 150mm 間隔で配置した。

AE 計測には, コンクリートに 12 個, 底面の BP に 4 個の 60kHz 共振型のプリアンプ内蔵型 AE センサを使用 した。表-2 に AE 計測条件を示す。後述する輪荷重走 行試験では, 試験機から発生するノイズが大きいため, しきい値を 75dB に設定した。

2.2 実験内容

図-3 に輪荷重走行試験状況を示す。載荷にはゴムタ イヤの自走式走行載荷装置(最大荷重 250kN)を用いた。 図-4 に実験フローを示す。実験は 3 ステップから構成 され,1)図-5 に示すように,10万回の走行ごとに段階 的に荷重レベルを上げ,床版支間中央に繰り返しタイヤ を走行(2~3km/h:24時間で 8000~9000回往復)させ る輪荷重走行試験,2)所定回数の走行終了後,試験機を 停止し,供試体底面にて,たたき検査によるコンクリー トと BP の剥離調査,目視検査によるコンクリート上面 のび割れ調査を実施,3)タイヤを床版中央に移動させ, 図-6 に示すように,輪荷重走行試験で載荷を行った荷 重まで,段階的に荷重レベルを上げて載荷を行い,BP床 版のたわみとひずみを計測する静的載荷試験である。た わみの計測は,供試体中央部にはリング型変位計(容量

10mm),他の4点には高感度変位計(容量25mm)を使 用し,0.001mmの精度所定の荷重時にデータロガーに記 録した。なお,輪荷重走行試験において累計40万回の走 行までは,各荷重レベルで1回,1万,5万,10万回ご と,40万回以降は5万回ごとに走行を停止し,各試験を 行った。輪荷重走行試験,静的載荷試験では,載荷中に AE計測を行った。なお,静的載荷試験では,最大荷重保 持時間内に発生するAE信号を検討の対象とし,荷重の 増減時に発生するAE信号については,本検討の範囲外 とした。また,46万回走行後に試験機のトラブルにより 試験が一端中断した(図-5中の×の時点)が,3ヵ月後 に試験を再開した。なお,50万回走行まで繰返し実験を 実施したが,供試体は破壊に至っていない。

- 3. 実験結果
- 3.1 力学的挙動
- (1) 剥離状況およびひび割れ状況

図-7 にコンクリートと BP の剥離状況, 図-8 にコン

リート上面のひび割れ状況を示す。ここで、コンクリー トと BP の剥離調査はテストハンマーによる BP 床版底 面の打音検査にて、剥離位置を特定した。載荷初期(1万 回、5万回走行時)では供試体の外側、11万回走行時で は底面中央からコンクリートと BP の剥離が生じ、走行 回数を重ねるにつれて剥離の進展が確認された。50万回 走行時には全面剥離となった。また、図-8 に示すよう に、30万回走行後、コンクリート上面にひび割れが確認 され、走行回数を重ねるにつれてひび割れが進展し、ひ び割れはタイヤの走行面に集中している。

(2) 静的載荷試験によるたわみ分布

図-9 に最大荷重保持時間内の活荷重たわみを示す。 荷重の増加,走行回数を重ねるにつれて,たわみが増加 することが分かる。30万回走行時には,走行直下よりも 中央両サイドでたわみが大きくなり,荷重レベルを上げ た30万1回走行時にはW型の分布となり,走行回数を 重ねるにつれて、W型の分布が顕著となっている。これ は、BPとコンクリートの付着切れが生じ、せん断ひび割 れ発生位置で BP が局部的に変形するため W 型のたわ み分布を示す¹⁾と報告されている内容と一致する。30万 回走行時には、コンクリート上面のひび割れやコンクリ ートと BP の剥離も確認されたことから、内部にはせん 断ひび割れが発生している可能性がある。また、50万回 走行時のたわみが 45万回走行時に比べ小さいが、3ヶ月 間の実験中断期間内で、コンクリート内部の開いていた ひび割れが時間の経過に伴い閉じ、剛性の大きな BP と 共にたわみが回復したためと考えられる。

3.2 輪荷重走行試験

(1) 検出 AE ヒット数

図-10 に輪荷重走行試験中(75dB以上)の検出 AE ヒット数, 図-11 に 85dB 以上の比較的振幅値の大きい AE 信号を対象とした振幅値別の検出 AE ヒット数を示す。

なお、各走行回数が異なるため、1 万回走行あたりに検 出した AE ヒット数で比較を行っている。図-10 より、 1 万回、5 万回走行時では、比較的多くの、特に BP 側か ら多くの AE 信号が得られた。また、図-11 (b) より、 BP 側では96dB 以上の AE 信号が卓越している。これは、 コンクリート内部の微細なひび割れの形成や、走行初期 に発生したコンクリートと BP の剥離に伴い発生した振 幅値の大きい AE 信号を検出したと考えられる。

21 万回,25 万回走行時には98dBのAE信号が再び増加し,31 万回走行時以降,徐々にAEヒット数が増加している。これは, 30 万回走行後,コンクリート上面にひび割れが確認されたことから,それ以前にコンクリート内部においてひび割れの発生や進展が生じ,振幅値の大きいAE信号を検出したと考えられ,後述するAE源位置標定結果においてこれらの詳細が明らかとなっている。45 万回,46 万回 走行時には,再び98dBのAE信号が卓越し,コンクリートに貼付したセンサにおいて多くのAE信号が検出されていることから,内部のひび割れが急激に進展したと考えられる。50 万回走行時には,75~83dBのAE信号が増加したことから,コンクリート内部の既存ひび割れの擦れによる影響と考えられる。既存ひび割れの滑動については,静的載荷試験結果にて後述する。

(2) AE 源位置標定結果

図-12に輪荷重走行試験における振幅値別AE源位置 標定結果を示す。載荷初期では、床版全域に多数のAE源 が発生しているが、75~84dBのAE源は比較的全面に広 がっているのに対し、85dB以上のAE源は局所的に集中 していることが分かる。特に95dB以上のAE源が供試

(e) 40~50 万回走行時 図-12 AE 源位置標定結果

12.0

体底面に集中している。載荷初期の振幅値が大きい現象 として、コンクリートと BP の剥離が考えられ、走行初 期に床版外側で剥離が生じたことと対応している。

10~30 万回走行時には、走行初期ほど AE 源は発生し ていないが、供試体底面中央部で AE 源が集中する領域 (図-12 (b) 中の〇の部分) がある。これは、走行初期 にコンクリートと BP の付着切れが生じたため、両者の 一体性が失われ、供試体底面に曲げひび割れが形成され たと考えられる。これは、BP 床版に静的載荷試験を実施 した際のひずみ分布 ¹⁾と対応している。また、底面のせ ん断スパンから上面中央に向かって斜めに進展する AE 源も確認でき(図-12 (b, c) 中の-の部分)、この時点 で主要なせん断ひび割れが形成され始めたと考えられる。

コンクリート上面にひび割れが確認できた 30 万回走 行以降,コンクリート上面から発生する AE 源(75~84dB) も多くなり,40~50 万回走行時は,再びコンクリート内 部から発生する比較的振幅値の大きい AE 源も多くなる。 既往の研究 ¹⁾によると,橋軸方向のひび割れの断面は図 -13 に示すように,いくつかのコンクリート塊に細分化 することが分かっており,これらを形成するひび割れの

進展が 40~50 万回走行のうちに急激に進展したと考え られる。

輪荷重走行試験の結果から、図-14 に示すような BP 床版の破壊形態が考えられる。はじめに、輪荷重走行に より微細なひび割れがコンクリート内部に発生、蓄積す ると共に、コンクリートと BP 間に剥離が生じ、床版の 一部で一体性が失われる。ここで、剥離状況(図-7(a): 30万回走行まで)から分かるように、剥離は先に床版の 外側と中央部から発生し、その後、せん断スパンで生じ、 全面剥離に至る。コンクリート内部のひび割れは中央部 の剥離発生後、供試体底面に曲げひび割れが発生し、走 行を重ねるにつれてせん断ひび割れが発生し始める。そ の後,床版底面で発生したひび割れは上面に進展すると 共に、コンクリート内部にブロック化したひび割れが形 成される。最終的にはコンクリートの押し抜きせん断破 壊を呈すると考えられる。また、本研究の AE 法による BP 床版の破壊形態の検討は,既往の研究¹)による三次元 FEM 解析による BP 床版の破壊形態と類似している。

3.3 静的載荷試験結果

(1) 検出 AE ヒット数

図-15に静的載荷試験における検出AEヒット数を示 す。なお,最大荷重保持時間内に発生したAE信号を検 討の対象とした。走行の初期では,検出したAE信号は 少ないが,コンクリート上面にひび割れが確認できた30 万回以降,AEヒット数が多くなっており,40万回以降 BPでのAEヒット数が顕著に多くなっている。静的載荷 試験における検出AEヒット数の推移からも床版の劣化 進行状況が推定できると考えられる。

(2) RA 値と平均周波数の関係

図-16 に示すように, AE パラメータの RA 値(立ち 上がり時間/最大振幅値)と平均周波数(AE カウント数/ 信号継続時間)の関係から、検出した AE が新たなひび 割れの形成に伴って発生する引張型か、既存のひび割れ の滑動に伴って発生するせん断型かの判定を行うことが 可能である²⁾。図-17に静的載荷試験における最大荷重 保持時間内に検出した AE 信号の RA 値と平均周波数の 関係を示す。走行初期の静的載荷試験では、引張型に分 類される AE 信号の割合が多く、10 万回走行時にはせん 断型のAE信号を検出している。40,50万回走行時では, せん断型に分類される AE 信号も多いことが分かる。走 行初期においては、微細なひび割れの形成に伴い発生し た引張型の AE 信号を検出し、走行回数を重ねるにつれ て、コンクリート内部のひび割れが増加し、既存のひび 割れの滑動に伴って発生するせん断型の AE 信号を検出 したと考えられる。

4. まとめ

本研究では輪荷重走行を受ける BP 床版の破壊形態お よび AE 特性について検討を行った。その結果,得られ た知見を以下に示す。

(1) 輪荷重走行試験において,走行初期からコンクリー トと BP 間の剥離が発現し,走行を重ねるにつれて 剥離の進展が確認された。その後,BP 床版がせん 断ひび割れ発生位置で局部的に変形する W 型のた わみ分布となり,コンクリート上面にひび割れが確 認された。また,BP 床版が破壊に至る前に,全面

剥離となった。

- (2) 輪荷重走行試験に AE 法を適用した結果,走行初期には、微細ひび割れを形成する 75~84dBの AE 源が供試体全面から検出され、コンクリートと BPの剥離に伴って発生する 85dB 以上の AE 源が供試体底面から検出された。走行を重ねるにつれて、曲げひび割れ、せん断ひび割れの形成に伴って発生する比較的振幅値の大きい AE 源が検出され、その後、供試体内部全域にわたって AE 源を検出したことから、内部のひび割れが急激に進展したと考えられる。輪荷重走行中の BP 床版に AE 法を適用することで、コンクリートと BP の剥離の有無、コンクリート内部のひび割れの発生、進展といった破壊過程がモニタリング可能である。
- (3) 静的載荷試験に AE 法を適用した結果,走行を重ねるにつれて,検出 AE ヒット数が増加した。また,走行初期では引張型の AE 信号が検出され,走行を重ねるにつれて,せん断型の AE 信号が増加する傾向が確認された。特にコンクリート上面にひび割れが確認された 30 万回および BP 床版のたわみが W型を呈した30万1回走行以降でAE 信号が急増し,せん断型の AE 信号が増加したことから,静的載荷試験時に AE 法を実施することで,BP 床版内のコンクリートの疲労劣化を推定することが可能と考

えられる。

(4) BP 床版の破壊形態は、走行初期にコンクリート内部に微細なひび割れが形成されると共に、コンクリートと BP の剥離が生じ、一体性が失われる。次に、微細ひび割れの蓄積によって、走行面直下に曲げひび割れ、せん断スパンに斜めひび割れが発生する。その後、コンクリート内部のひび割れは進展し、橋軸方向にブロック化したひび割れを形成し、最終的にはコンクリート部の押し抜きせん断破壊を呈すると考えられる。

謝辞

本研究の遂行にあたり,首都大学東京の上野敦准教授 には,多数の助言をいただいた。ここに記し,謝意を表 します。

参考文献

- 関口幹夫,大石雅登,内山博文,藤山知加子,真部 洋大:バックルプレート床版の静的破壊機構と疲労 耐久性に関する実験的検討,都土木技術支援・人材 育成センター年報,pp.121-136, 2013.
- 社団法人日本建材産業協会:コンクリートの非破壊 検査法,技報堂出版, p47-64, 2003.