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ABSTRACT 
This paper presents the evaluation method for shear capacity of tapered RC beams without stirrups. 
The nonlinear FEM analysis was found to be appropriate to simulate the shear behavior of tapered RC 
beams without stirrups. The simple relationship between the slope of taper and the inclination of the 
compressive strut was also proposed through FEM simulations. By determining the location of the 
critical section, the shear capacity of tapered RC beams without stirrups can be calculated. The 
calculated value showed good correspondence with the experimental results. 
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1. INTRODUCTION 
 

Reinforced concrete (RC) members in which the 
depth of the cross section varies along its axis are 
frequently used in structural portal frames, cantilevers 
and bridge structures. These members can be designed 
according to the required resistance against external 
load. The cantilever or tapered RC beam in the Fig. 1 
has larger depth at the middle part to resist large 
flexural moment. Consequently, it can efficiently use 
the concrete and steel reinforcements, considerably 
reducing the structure’s weight, and contribute to an 
aesthetic design. However, it is insufficient of the 
experimental data to predict the shear behavior of 
tapered RC beams. Moreover, rational and economical 
design method for RC members with variable depth in 
the JSCE specifications for concrete [1] has not been 
completed. Engineers are using such beams based on 
the empirical background. Therefore, it is necessary to 
propose a convenient evaluation method with high 
accuracy and compatibility for tapered RC beams to 
ensure the reasonable design. 

 In some previous researches, Ishibashi et al. [2] 
and the authors (Iwanaga et al. [3]) reported that for 

deep tapered RC beams (a/d ratio from 0.33 to 1) and 
short tapered RC beams (a/d ratio from 1 to 2.5), the 
effect of taper is not influential to the shear capacity. 
The reason may be attributed to the occurrence of the 
arch action. Nevertheless, from the experimental results 
of Kakuta et al. [4] and MacLeod et al. [5], the shear 
capacity of tapered RC beams with a/d in range of 3.0 
to 4.0 can increase compared to the constant depth 
beams; even if the amount of concrete was reduced due 
to the tapered slope. However, they did not give a clear 
explanation about how the slope of taper affects the 
shear failure processes. According to the recent 
research of the authors (Iwanaga et al. [6]), the similar 
conclusion was obtained for tapered RC beams (a/d 
equals to 2.71) without stirrups. As the elongation of 
the previous research, the objective of this study is to 
propose an evaluation method for shear capacity of 
tapered RC beams without stirrups through experiments 
and FEM analysis. 
  
2. NONLINEAR FEM ANALYSIS 
 
2.1 Critical Section 

From the experimental observation on shear 
behavior of tested tapered RC beams in the previous 
paper [6], it was confirmed that the slope of the taper 
affects the shear capacity of tapered RC beams in which 
the main shear resistance mechanism is the beam action. 
Based on the experimental shear behavior [6], the 
modification with the concept of critical section from 
MacLeod et al. [5] and Stefanou [7] was conducted. 
The forces acting at the shear crack before the failure in 
the free body of tapered RC beams without stirrups is 
shown in Fig. 2. The shear capacity of tapered RC 
beams without stirrups can be calculated as the 
following equations: 
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Fig. 1 Tapered RC beam in the pier structure 
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hdc VVV +=                (1) 

   cchd NV αtαn'=              (2) 
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Where, V is the shear capacity of tapered RC 
beam without stirrups, Vc is the shear capacity of the 
critical section which uses the effective depth dc of 
critical section to calculate, Vhd is the vertical 
component of the compression force Nc, xc is the 
distance from support to the critical section, zc is the 
internal lever arm (=jdc) with j = 7/8, αc is the slope of 
the taper, and ds is the effective depth at the support. 
The Eq. (5) is obtained by substituting Eq. (2)-(4) into 
Eq. (1). However, how to accurately determine the 
position of the critical section where shear capacity 
should be evaluated is still uncertain as the crack 
patterns and stress flow of the test specimens were not 
carefully investigated. Therefore, in this paper, FEM 
analysis was carried out as the supplementary of the 
previous experimental research [6] to clarify the shear 
resistance mechanism and identify the critical section. 

 
2.2 Nonlinear FEM Analysis Model 

The two dimensional nonlinear FEM analysis 
using DIANA system was conducted to simulate the 
shear behavior of RC beams. 6-node triangular and 
8-node quadrilateral isoparametric plane stress elements 
were used for all concrete elements. The embedded 

reinforcement elements which have perfect bond with 
concrete were selected for steel reinforcements. The 
mesh size was approximately 50 mm for the squared 
mesh. However, due to the specimen’s geometry, 
meshes may expect to have different sizes. In order to 
eliminate mesh size effect, concrete constitutive models 
which consider crack band width h was selected. And 
the crack bandwidth h was calculated equal to A , 
where A is the total area of the element.   

The total strain fixed smeared crack model was 
applied as the crack model in this analysis. It is 
developed along the lines of the Modified Compression 
Field Theory [8]. As shown in Fig. 3 (a) and (b), 
parabolic curve model considering compressive fracture 
energy GFc and Hordijk model considering tensile 
fracture energy GF were used for compressive and 
tensile behavior of concrete, respectively. The 
compressive fracture energy GFc was obtained from the 
equation proposed by Nakamura and Higai [9]. 

 
'8.8 cFc fG =    (N/m)        (6) 

 
The tensile fracture energy GF was obtained 

from JSCE specifications [1]: 
 

')(10 3/1
max

3/1
cF fdG =    (N/m)   (7) 

 
Where, dmax is the maximum aggregate size 

(mm), fc’ is compressive strength of concrete (N/mm2).  
For the shear model, the constant shear retention 

model with the value of shear retention factor β, equals 
to 0.1, was applied for all specimens. The steel plates at 
the loading point and support of the specimen were 
assumed to be elastic bodies, while the perfect 
elastic-plastic model was applied for steel rebars as 
shown (Fig. 3 (c)).  

Displacement control with Quasi-Newton 
method (also called “Secant method”) was adopted to 
solve equilibrium equations. In each step with 0.02 mm 
displacement increment, when the variation of internal 
energy has become less than 0.01% of the internal 
energy of the first iteration in the step, the iteration 
process was terminated to move to the next step. 
Figure 4 shows the finite element mesh of specimen 
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Fig. 2 Forces acting in tapered RC beams 
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V1 in the previous paper [6] as one example. 
 
2.3 Verification of the Model  

For the two RC beams without stirrups C1 and 
V1 in the authors’ previous paper (Iwanaga et al. [6]), 
FEM analysis was conducted. The load-deflection 
relationship of these two specimens obtained in the 
experiment and FEM analysis is shown in Fig. 5. 
Similar to the experimental results, in the FEM analysis, 
the shear capacity of the tapered RC beam without 
stirrups is larger than that of the RC beam with same 
constant depth. The distribution of the principal tensile 
strain just before and after the peak load is comparable 
with those obtained from experimental observation and 
image analysis (Fig. 6). According to such analytical 
results, especially the results until the peak that are 
more important in this study, the FEM model using 
DIANA system is supposed to be appropriate to 
simulate the shear behavior of tapered RC beams 
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Fig. 6 Crack patterns just before and after peak 
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Fig. 4 Finite element mesh of specimen V1 
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Fig. 5 Load-deflection curves  
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without stirrups. 
 
2.4 Inclination of Compressive Strut Flow 

In order to obtain an accurate method to 
determine the position of the critical section in tapered 
RC beams, the parametric study was conducted by 
changing the shear span and effective depth at the 
support and loading point in FEM analysis. 

Based on the concept of compressive force path 
proposed by Kotsovos [10] and the experimental 
observation in this study, the critical section is assumed 
to be the location where the compressive force changes 
the direction (Fig. 7). Therefore, the inclination of the 
compressive strut flow became much significant in 
determining the position of the critical section. The 
tendency of the inclination of the compressive strut 
flow initiated from the support was investigated using 
ideas by Lertsamattiyakul [11]. Figure 8 shows the 
contour figures of principal stress σ2 of analytical 
resistance just before the peak load of the tapered RC 
beam V1. To estimate the slope of the concentrated 
stress flow, the values of principal stress σ2 at each 
Gauss’s point was considered. The solid circles indicate 
the location where the value of principal compressive 
stress at the Gauss’s point was the maximum in the 
horizontal layer. As shown in Fig. 8, the points having 
the maximum principal compressive stress tended to be 
positioned in liner line. Therefore, liner approximation 
was conducted to find the angle of the compression 
strut flow. 

Figure 9 shows some cases simulated in FEM 
analysis which indicates that, as the slope of the taper 
increases, the inclination of the compressive strut also 
increases. Table 1 shows all the simulated cases’ 
information and the corresponding angles of the 
compression struts, including the five specimens in Fig. 

9. In order to obtain a simple relation between the slope 
of the taper and the inclination of the compressive strut, 
the method of tracing a linear regression curve was 
used. Since the slope of the taper has more direct effect 
on the angle of the compressive strut than the other 
factors such as shear span or a/d ratio when the tapered 
RC beam without stirrups is belonging to slender beams 
region (2.5<a/d<5.0), the linear regression relationship 
was fitted only between the slope of the taper and the 
inclination of the compressive strut. Finally, by tracing 
a linear regression curve (Fig. 10) the equation was 
derived as: 

 
409.0tan75.0tan += cstrut aθ         (8) 

 
Once the inclination of the compressive strut 

was determined, the location of the critical section can 
be obtained.  

 
strutcc zx θtan/=              (9) 

 
By substituting Eq. (8) and Eq. (9) into Eq. (4), 

the following equation can be obtained: 
 

)tan875.0/(tantan/ cstrutstrutsc dd aθθ −=   (10) 
)tan27.3/()27.3tan6(/ ccsc dd aa −+=    (11) 

 
With Eq. (11), the effective depth dc of critical 
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Fig. 9 Compressive struts in FEM cases 
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Table 1 Cases simulated in FEM analysis 

a 
(mm) 

ds 
(mm) 

d 
(mm) a/d αc 

(Degree) 

θstrut 
(Degree) 

650 190 240 
2.71 

4.8 25.2 
650 130 240 10.4 28.9 
650 100 240 13.1 30.3 
750 130 200 3.75 5.7 25.7 
750 130 260 2.88 8.9 27.5 
750 130 280 2.68 12.1 29.5 
825 130 240 3.44 8.1 27.2 
900 130 240 3.75 7.4 27.1 

1250 100 250 5 7.1 26.8 
a: shear span; ds: effective depth at the support; d: 
effective depth at the loading point; αc: slope of the 
taper; θstrut: inclination of the compressive strut. 
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Fig. 10 Relationship between slope of taper 
and inclination of compressive strut 

 

No. αc 
(°) 

fc’ 
(N/mm2) 

a 
(mm) 

ds 
(mm) 

d 
(mm) a/d dc 

(mm) 
As 

(mm2) 
bw 

(mm) 
Vc 

(kN) 
Vcalc 
(kN) 

V’cal 
(kN) 

Vexp 
(kN) 

Vexp 
/Vcalc 

Kakuta et al. [4] 
D-1 0 

33.0 

700 
170 

170 

4.12 
170 

397.2 100 

24.6 24.6 24.6 28.6 1.16 
D-2 4.40 120 140 21.4 25.6 19.3 28.6 1.12 
D-3 8.75 70 94 16.6 23.5 13.9 27.4 1.17 
E-1 0 

550 
170 

3.24 
170 26.7 26.7 26.7 30.3 1.13 

E-2 5.71 120 146 23.8 30.0 20.6 30.8 1.03 
E-3 11.31 70 102 18.4 28.6 14.5 30.8 1.08 
F-1 0 

850 
270 

270 3.15 
270 32.6 32.6 32.6 32.3 0.99 

F-2 5.36 195 235 29.4 36.6 25.6 36.3 0.99 
F-3 10.62 120 171 23.3 35.4 18.5 36.8 1.04 
G-1 0 1150 370 370 3.11 370 37.4 37.4 37.4 37.7 1.01 
G-3 10.30 170 240 27.1 40.6 21.6 42.0 1.03 
H-1 0 

1450 
470 

470 3.09 
470 41.4 41.4 41.4 42.0 1.01 

H-2 5.10 345 413 37.5 46.2 32.8 46.9 1.02 
H-3 10.12 220 309 30.3 45.1 24.1 46.9 1.04 

MacLeod et al. [5] 
B3 0 38.0 960 220 220 4.36 220 741.0 150 45.4 45.4 45.4 43.5 0.96 
B4 6.34 33.5 1050 170 270 3.89 212 41.3 53.3 35.7 50.6 0.95 

This study [6] 
C1 0 38.8 650 240 240 2.71 240 774.2 200 69.0 69.0 69.0 68.8 1.00 
V1 10.39 34.4 130 184 53.7 80.8 41.7 75.8 0.94 

As: cross section area of tensile reinforcement bars; bw: width of the beam; Vcalc: calculated shear capacity with 
proposed method in this study; V’cal: calculated shear capacity with current JSCE method and minimum effective 
depth ds; Vexp: shear capacity from the experiments. 
 

Table 2 Summary of calculations with proposed method 

section can be calculated. By substituting the value of 
dc into the equations by Niwa et al. [12] (Eq. (12) and 
Eq. (13)) which was slightly modified by JSCE and 
adopted in the standard specifications for design shear 
capacity of linear members without shear reinforcing 
steel, the shear capacity Vc of the critical section can be 
calculated. 

 

db
d

pfαV wwcc

4
1

3
1

3
1' 1000







=       (12) 







 +=

da
α

/
4.175.020.0         (13) 

 
By substituting the values of dc and Vc into Eq. 

(5), the shear capacity V of the tapered RC beam 
without stirrups can be obtained. Since the equation of 
V will be same as the Vc when the slope of taper is zero, 
it has a perfect compatibility with the current equation. 

 
2.5 Verification of the proposed method in RC 
tapered beams without stirrups 
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In this section, the proposed methodology to 
identify the location of the critical section and calculate 
shear capacity is verified against the experimental 
results. A total of 18 experimental data conducted by 
Kakuta et al. [4] and MacLeod et al. [5] including this 
study [6] were collected. The summary of the 
calculations is tabulated in Table 2. The obtained 
results show a reasonable agreement with the 
experimental results. Comparing with the conservative 
shear capacity calculated with the minimum effective 
depth ds, the proposed method shows much more 
accuracy. The ratio of the shear capacity obtained in the 
experiment and calculation is also plotted against the 
slope of taper and a/d ratio in Fig. 11. The average 
values and accuracies for tapered RC beams and 
constant depth beams are almost same. It shows the 
high accuracy and compatibility of the proposed 
method. However, when stirrups are used in tapered RC 
beams, more researches are needed to modify the 
proposed method and verify the validity. 
 
3. CONCLUSIONS 
  
(1) The inclination of the compressive strut increases 

as the slope of taper increases. The simple linear 
relationship between slope of the taper and 
inclination of the compressive strut for tapered 
RC beams without shear reinforcements was 
proposed (2.5<a/d<5.0). 

(2) Using the proposed method, the location of 

critical section can be determined easily, and the 
calculated shear capacity showed a reasonable 
agreement with the experimental results. 
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