論文 機械式定着工法を用いた RC ト形柱梁接合部の変形性能に直交梁が 及ぼす影響に関する実験的研究

中西崇^{*1}·清原 俊彦^{*2}·田才 晃^{*3}

要旨: 柱梁の曲げ終局耐力が近接している場合, 柱梁接合部降伏が生じ, 柱や梁の曲げ終局耐力が発揮され ないことが明らかとなってきている。本研究では, 既往の実験で接合部降伏が生じたと考えられるト形柱梁 接合部試験体に対し, 直交梁, 及び, スラブを取り付けた試験体 2 体について正負交番漸増載荷実験を実施 し, 機械式定着を用いた柱梁接合部降伏が生じる部分架構に対して, 直交梁やスラブが梁曲げ終局強度の上 昇に寄与し, 接合部変形を抑えることを明らかにした。

キーワード:ト形接合部,鉄筋コンクリート,機械式定着,柱梁接合部降伏,直交梁、スラブ

1. はじめに

柱と梁の曲げ終局耐力が近接した鉄筋コンクリート 造架構では、計算上梁曲げ降伏形が想定される場合であ っても、梁曲げ降伏以前に柱梁接合部降伏が生じ、架構 の最大耐力は梁曲げ降伏時耐力に達しないとされている ¹⁾。一方、機械式定着を用いた定着方法では、定着板か ら対角の接合部入隅に向かうせん断ひび割れが大きく開 き耐力低下を起こす場合があり、参考文献²⁾で公表され ている機械式定着を用いた試験体ではそれが顕著に表れ た。

一方で,直交梁が存在する場合,柱梁接合部のせん断 終局耐力が向上することが知られている³。しかし,梁 主筋に機械式定着を用い柱と梁の曲げ終局耐力が近接し た柱梁接合部の強度低下を,直交梁が存在する場合にお いてどう影響するのかを検証した実験は行われていない。 さらに,スラブを用いた場合,スラブ筋が曲げ抵抗に寄 与することで接合部への入力が増すことが想定されるた め,試験体のスラブの有無をパラメータとして接合部の 破壊性状の比較を行う。直交梁やスラブが,機械式定着 を用いた接合部の破壊形式の抑制に寄与し,従来の折り 曲げ定着と同等の耐力を発揮できるかが今回の実験の目

計算値一覧 FT-3P FT-6PO FT-7POS 梁曲げ終局強度 ^{※1} (kN) 278.4 273.3 293.4 上柱曲げ終局強度 ^{※1} (kN) 366.8 384.0 385.8 下柱曲げ終局強度(正側) ^{※1} (kN) 444.0 460.6 468.5 下柱曲げ終局強度(正側) ^{※1} (kN) 287.8 305.9 301.7 桂梁接合部せん断終局耐力 ^{※2} (kN) 329.7 434.4 457.9 側面刺離破壞時終局耐力 ^{※2} (kN) 307.7 322.0 328.1 値は材料試験値を用いて計算したものであり、層せん断力に変換して表示している *** *** ※1 e関数法を用いて計算した値を用いている *** *** ※2 ALJ靱性指針による接合部せん断耐力算定値 ³ *** ***										
梁曲げ終局強度 ^{※1} (kN) 278.4 273.3 293.4 上柱曲げ終局強度 ^{※1} (kN) 366.8 384.0 385.8 下柱曲げ終局強度(正側) ^{※1} (kN) 444.0 460.6 468.5 下柱曲げ終局強度(互側) ^{※1} (kN) 287.8 305.9 301.7 柱梁接合部せん断終局耐力 ^{※2} (kN) 329.7 434.4 457.9 側面刺離破壞時終局耐力 ^{※2} (kN) 307.7 322.0 328.1 値は材料試験値を用いて計算したものであり、層せん断方に変換して表示している *** *** ※1 e関数法を用いて精算した値を用いている *** *** ※3 ブレートナット工法設計施工指針による定差耐力算定値 ⁴⁾ ***	計算値一覧	FT-3P	FT-6PO	FT-7POS						
上柱曲げ終局強度 ^{※1} (kN) 366.8 384.0 385.8 下柱曲げ終局強度(正側) ^{※1} (kN) 444.0 460.6 468.5 下柱曲げ終局強度(負側) ^{※1} (kN) 287.8 305.9 301.7 柱梁接合部せん断終局耐力 ^{※2} (kN) 329.7 434.4 457.9 側面剥離破壞時終局耐力 ^{※3} (kN) 307.7 322.0 328.1 値は材料試験値を用いて計算したものであり、層せん断力に変換して表示している ※1 e関数法を用いて計算した値を用いている ※3 ブレートナット工法設計施工指針による定着耐力算定値 ⁴⁾	梁曲げ終局強度 ^{※1} (kN)	278.4	273.3	293.4						
下柱曲げ終局強度(正側) ^{※1} (kN) 444.0 460.6 468.5 下柱曲げ終局強度(負側) ^{※1} (kN) 287.8 305.9 301.7 柱梁接合部せん断終局耐力 ^{※2} (kN) 329.7 434.4 457.9 側面剥離破壞時終局耐力 ^{※3} (kN) 307.7 322.0 328.1 値は材料試験値を用いて計算したものであり、層せん断力に変換して表示している。 **** **** ※1 e関数法を用いて計算した値を用いている **** **** ※3 ブレートナット工法設計施工指針による定差耐力算定値 ⁴⁾ **** ****	上柱曲げ終局強度 ^{※1} (kN)	366.8	384.0	385.8						
下柱曲げ終局強度(負側) ^{※1} (kN) 287.8 305.9 301.7 柱梁接合部せん断終局耐力 ^{※2} (kN) 329.7 434.4 457.9 側面剥離破壊時終局耐力 ^{※3} (kN) 307.7 322.0 328.1 値は材料試験値を用いて計算したものであり、層せん断力に変換して表示している。 ※1 e関数法を用いて計算した値を用いている ※2 ALJ靱性指針による接合部せん断耐力算定値 ³ ※3 ブレートナット工法設計施工指針による定着耐力算定値 ⁴⁾ ※2 ALJ靱性指針による使き部なん断耐力算定値 ⁴⁾ ※3 ブレートナット工法設計施工指針による定着耐力算定値 ⁴⁾	下柱曲げ終局強度(正側) ^{※1} (kN)	444.0	460.6	468.5						
柱梁接合部せん断終局耐力 ^{※2} (kN) 329.7 434.4 457.9 側面剥離破壊時終局耐力 ^{※3} (kN) 307.7 322.0 328.1 値は材料試験値を用いて計算したものであり、層せん断力に変換して表示している。 ※1 e関数法を用いて精算した値を用いている ※2 ALJ靱性指針による接合部せん断耐力算定値 ³ ※3 ブレートナット工法設計施工指針による定着耐力算定値 ⁴⁾ ※3 ブレートナット工法設計施工指針による定着耐力算定値 ⁴⁾ ※3 ブレートナット工法設計施工指針による生活動力算定値 ⁴⁾	下柱曲げ終局強度(負側) ^{※1} (kN)	287.8	305.9	301.7						
側面剥離破壊時終局耐力 ^{※3} (kN) 307.7 322.0 328.1 値は材料試験値を用いて計算したものであり、層せん断力に変換して表示している。 ※1 e関数法を用いて精算した値を用いている ※2 AIJ靱性指針による接合部せん断耐力算定値 ³ ※3 ブレートナット工法設計施工指針による定着耐力算定値 ⁴⁾ ※3 ブレートナット工法設計施工指針による定着耐力算定値 ⁴⁾ ※3 ブレートナット工法設計施工指針による定着耐力算定値 ⁴⁾	柱梁接合部せん断終局耐力 ^{※2} (kN)	329.7	434.4	457.9						
値は材料試験値を用いて計算したものであり、層せん断力に変換して表示している。 ※1 e関数法を用いて精算した値を用いている ※2 AIJ靱性指針による接合部せん断耐力算定値 ³ ※3 プレートナット工法設計施工指針による定着耐力算定値 ⁴⁾	側面剥離破壊時終局耐力 ^{※3} (kN) 307.7 322.0 328.1									
 ※1 e関数法を用いて精算した値を用いている ※2 ALJ靱性指針による接合部せん断耐力算定値³ ※3 プレートナット工法設計施工指針による定着耐力算定値⁴⁾ 	値は材料試験値を用いて計算したものであり、層せん断力に変換して表示している。									
※2 ALJ靱性指針による接合部せん断耐力算定値 ³ ※3 プレートナット工法設計施工指針による定着耐力算定値 ⁴⁾	※1 e関数法を用いて精算した値を用いている									
※3 プレートナット工法設計施工指針による定着耐力算定値40	※2 AIJ靱性指針による接合部せん断耐力算定値 ³⁾									
	※3 プレートナット工法設計施工指針による定着耐力算定値4)									

表-1 各種計算值一覧

的の一つである。

このため本研究では、梁主筋に機械式定着を用いた場 合の柱梁接合部降伏が生じる可能性のある架構において、 直交梁とスラブが柱梁接合部に及ぼす効果を知ることを 目的として、柱梁曲げ耐力比が 1.5 程度であり、かつ、

	試験体名	FT-3P ^{×1}	FT-6PO	FT-7POS			
想知	定破壊モード	梁曲げ破壊					
F	c(N/mm ²)	45					
	スパン(mm) ^{※2}	1850					
洂	幅×せい(mm)		450×550				
木	主筋	5	-D25(SD49	0)			
	せん断補強筋	3-D10(SD295)@100					
	スパン(mm) ^{※3}		2700				
	幅×せい(mm)		500×500				
柱	主筋	12	2-D22(SD34	45)			
	せん断補強筋	2-D	10(SD295)	@100			
			0				
接合部	横補強筋	2	-D10(SD29	5)			
	横補強筋比(%)		0.0025				
	スパン(mm) ^{※4}	\backslash	980				
直交梁	寸法	\backslash	350 × 550				
	主筋	\setminus	4-D25(SD490)				
	スタラップ		4-D10(SE	0295)@100			
	厚さ	\setminus	\backslash	90			
スラブ	スラブ筋	\setminus		2-D6			
		\setminus		(SD295)			
· · · · · · · · · · · · · · · · · · ·							
采土肋止 着部	定着方法		機械式定着	Ī			
定	E着長(mm)	375					
定疗	着長/柱せい	0.75					
柱梁曲げ 耐力比	正側加力時	1.46	1.55	1.46			
*5,*6	負側加力時	1.18	1.26	1.26			
接合部も	せん断余裕度 ^{※5,※7}	1.18	1.59	1.56			
※1 FT-3Pは2013年度の平面試験体 ²⁾ 、※2 接合部芯から梁端部ピン							
位置までの距離, ※3 柱反曲点位置, ※4 接合部芯から梁端部までの距離,							
※5 値は材料	試験値を用いて計算したも	の,※6 後述(の(1)式による,				
※7 梁曲げ終	局強度精算値に対するAI	J靱性指針によ	る				
接合部せん断	i耐力算定値 ³⁾ の比,						

表-2 試験体諸元一覧

*1 横浜国立大学 大学院 都市イノベーション学府 建築都市文化専攻 (正会員)

*2 堀江建築工学研究所 (正会員)

*3 横浜国立大学 大学院 都市イノベーション研究院 建築都市文化専攻 教授 博士 (正会員)

図-1 試験体配筋図と歪ゲージ位置

梁曲げ破壊が起こるように設計し,直交梁とスラブと機 械式定着を用いた試験体の静的加力実験を計画した。直 交梁のついたRCト型架構の試験体を一体,直交梁とスラ ブのついたRCト型架構の試験体を一体,計二体の実験を 計画し,参考文献²⁾で公表されている直交梁の無い平面 試験体と比較することで検証を行う。

2. 実験計画

2.1 試験体概要

各種計算値耐力を表-1 に,試験体諸元を表-2 に,試 験体配筋図と歪ゲージ位置を図-1 に示す。試験体は柱と 梁の寸法,反曲点距離,柱と梁の主筋の径と強度と量, コンクリート強度,定着方法と定着長を全試験体共通と した。全試験体で定着方法は機械式定着を用い,コンク リート強度はF_c=45N/mm²を用いている。

2013 年度に実験を行った, 柱梁曲げ耐力比 1.5 程度で 梁主筋を機械式定着した梁曲げ降伏型の平面接合部試験

表-3 材料試験結果一覧(コンクリート)

試験体	Fc N/mm ²	$\sigma_{\rm B}$ ヤング係数 N/mm ² × 10 ⁴ N/mm ²		割裂引張応力度 N/mm ²	
FT-3P		55.6	3.25	3.35	
FT-6PO	45	65.4	3.35	3.90	
FT-7POS		70.5	3.44	3.72	

表-4 材料試験結果一覧(鉄筋)

鉄筋種			使用部位	降伏強度 N/mm ²	引張強度 N/mm ²	降伏歪 %	ヤング係数 ×10 ⁴ N/mm ²
2013年度	D25	SD490	梁主筋 (FT-3P)	537	732	0.300	19.4
	D22	SD345	柱主筋 (FT-3P)	386	576	0.220	19.0
	D10	SD295	補強筋 (FT−3P)	352	472	0.213	18.8
2014年度	D25	SD490	梁主筋 (FT-6PO, 7POS)	524	700	0.296	19.6
	D22	SD345	柱主筋 (FT-6PO, 7POS)	401	514	0.230	18.5
	D10	SD295	補強筋 (FT-6PO, 7POS)	350	472	0.223	17.5
	D6	SD295	スラブ筋 (ET-7POS)	352	472	0.213	18.8

体 FT-3P を基準とし、直交梁を有する試験体を FT-6PO, 直交梁とスラブを有する試験体を FT-7POS としている。

柱梁曲げ耐力比は, e 関数法を用いて精算した, 節点 位置における柱及び梁の曲げ終局モーメント Muの比と し,以下の式(1)によって定義している。下柱には梁せん 断力に相当する変動軸力が生じている。

(柱梁曲げ耐力比) =
$$\frac{L \oplus M_u + _{\mathrm{F} \oplus} M_u}{_{_{\mathrm{R}}} M_u}$$
 (1)

2.2 材料特性

表-3 にコンクリート,表-4 に鉄筋の材料試験結果を 示す。なお、コンクリートは粗骨材最大径 13mmを用い た。 σ_B は実験時材齢での試験結果である。

2.3 加力方法

図-2 に加力装置を示す。上柱反曲点位置と梁端反曲点 位置をピンローラー支持,下柱反曲点位置をピン支持と した。2 本の鉛直ジャッキにより上柱に作用する軸力が 0kN,加力ビームの回転が0になるよう制御し,1000kN の水平ジャッキにより正負交番繰り返し載加を行った。 上柱と梁が開く方向を正加力,閉じる方向を負加力とし た。加力履歴は初めに試験体 FT-3P が層間変形角 R=± 1/800rad.を1サイクル,試験体 FT-6PO,7POS が層せん断 力 Q=±50kN を1サイクル加力した。その後,全試験体 共通で R=±1/400rad.を1サイクル,R=±1/200,1/100, 1/50,1/33rad.を各2サイクル,R=±1/25rad.を1サイク ル加力し,最後に R=+1/15rad.まで載加した。測定項目 は,全体層間変形角,上下柱及び梁の部分変形角,柱及 び梁主筋の歪,柱及び梁せん断補強筋の歪,接合部横補

強筋の歪である。それに加え FT-3P 試験体は接合部のせん断変形角を,FT-6PO は直交梁の主筋と補強筋の歪を, FT-7POS は直交梁の主筋と補強筋の歪,スラブ筋の歪を 計測した。

3. 実験結果

3.1 破壊経過

各試験体の R=±1/25rad.加力時破壊状況を写真-1,2 に, 図-3 に各ピーク時変形成分を示す。試験体 FT-3P では接 合部変位を計測する際変位計を用いたが,試験体 FT-6PO, 7POS は直交梁の部位の関係で変位計が設置できなかっ たため,全体の層間変形角から上下柱と梁の部分変形角 を引いたものを接合部変形角として扱っている。

試験体 FT-3P は R=±1/200rad.に向かうサイクルの途中 で接合部せん断ひび割れ(c)が生じた。その後も接合部せ ん断ひび割れのひび割れ幅はサイクルごとに広がってい き,成分変形も接合部変位の値がサイクルごとに大きく なっている。

R=+1/200rad. に向かうサイクルの途中で試験体

写真-2 -1/25rad. 加力時破壊状況

図-3 各ピーク時変形成分

FT-7POS のスラブのひび割れが入りはじめ,負側加力時 にはひび割れは入らなかった。 $R=\pm 1/100rad.$ に向かうサ イクルの途中で試験体 FT-6PO,7POS の直交梁にひび割 れが入った。試験体 FT-6PO,7POS では $R=\pm 1/50$ rad.に向 かうサイクルの途中で柱危険断面のひび割れ(b)が大き く開いた。試験体 FT-6PO では同時に梁危険断面のひび 割れ(d)も大きく開いたが,試験体 FT-7POS は開かなかっ た。 $R=\pm 1/33rad.$ に向かうサイクルの途中で FT-6PO,7POS 直交梁のひび割れが大きく開いた。 $R=\pm 1/33rad.から 1/25rad.にかけて試験体 FT-3P では接合$ 部斜めひび割れから柱引張主筋に沿って伸びて行く写真 -1,2(a)のひび割れが特に大きく開くと共に耐力が低下 した。試験体 FT-6PO,7POS では,R=±1/25rad.に向かう サイクルの途中で写真-1,2(a)のひび割れが大きく開い たが,試験体 FT-3Pと違い大きな耐力低下は及ぼさなか った。試験体 FT-6POの正側加力時には柱危険断面と梁 危険断面の二つのひび割れは R=±1/50rad.から大きく開 いていったのだが,負側加力時の R=-1/33rad.から-1/25rad. にかけて二つのひび割れは閉じていった。試験体 FT-7POS では,柱危険断面のひび割れ(b)が R=±1/50rad.

				正力	加力		負加力		巾力		l
	試験体	破壊形式	最大耐力 ^{※5}	計算値 ^{※6}	最大耐力 /計算値	最大耐力 時変形角	最大耐力 ^{※:}	計算值 ^{※6}	最大耐力 /計算値	最大耐力 時変形角	1
			Qmax(kN)	Qu(kN)	Qmax/Qu	(×10 ³ rad)	Qmax(kN)	Qu(kN)	Qmax/Qu	(×10 ³ rad)	l
	FT-3P		226.7	278.4	0.81	18.6	-199.6	-278.4	0.72	-18.3	I
	FT-6PO	接合部破壊	266.2	273.3	0.97	21.2	-236.9	-273.3	0.87	-20.0	I
	FT-7POS		296.7	293.4	1.01	29.7	-243.5	-274.2	0.89	-20.9	I
	※5;層せん	ん断力で表示	、※6;梁曲	げ降伏時	層せん断力	コで表示					I
FT-3P 300 Q(kN) 278.4kN 300 Q(kN) 278.4kN 世梁曲げ耐力比 正倒:1.46 負倒:1.18 100 181.3kN FT-6PO (kN) 200 202 Z 273.3kN FT-7POS (kN) Q (kN) Z Z						20 40 △ +Qma ○ -Qma	293.3kN 274.1kN 237.3kN 60 80 R(× 10 ³ rad.) x=296.7kN x=-243.5kN				
		 _∆ +Qm	梁曲げ終局 ax 〇 -Q	計算値 max 🛛 🔿	±0 > 梁主筋降(.8Qmax 犬 □柱主	スラ E筋降伏	ラブ付梁曲げ - ひ スラブ筋	終局計算 降伏		

表-5 正負の最大耐力及び最大耐力時変形一覧

図-4 層せん断力 Q-層間変形角 R 関係

の後も大きく開き続け,梁危険断面は閉じたままであった。

成分変形は試験体 FT-6PO,7POS の二つの試験体に共 通して,正側で柱と梁の変形の値が大きくなり接合部の 変形は大きくならないが,負側では接合部の変形が大き くなり梁の変形は大きくならない。試験体 FT-7POS では 梁の変形が R=-1/33rad.から減少している。正側と負側で の接合部の変位の差が起きる現象として柱梁曲げ耐力比 の違いが原因であると推測する。

3.2 復元力特性

各試験体の層せん断力 Q-層間変形角 R 関係を図-4に, 最大耐力及び最大耐力時変形の一覧を表-5に示す。試験 体 FT-7POS の梁曲げ時層せん断力は両側 50cm のスラブ 上端筋を考慮に入れて計算している。

始めに試験体FT-7POSのR=+1/200rad.一回目加力時の 途中でスラブ筋が降伏した。そして,R=±1/50rad.に向 かうサイクルの途中で試験体FT-3P,6POの柱主筋と梁主 筋がほぼ同時に降伏し,最大耐力を計測した。試験体 FT-6POは試験体FT-3Pと比べ,最大耐力の改善がなされ ていて,試験体FT-3Pの117%程を記録した。最大耐力と 計算値耐力の比について,試験体FT-3Pの正側加力時では 81%に留まり,負側加力時には72%に留まった。試験体 FT-6POの正側加力時では97%程であり,負側加力時には 87%程であった。試験体FT-7POSではR=±1/50rad.に向か うサイクルの途中で柱主筋が降伏した。そして負側加力 時であるR=-1/50rad.のピーク時に最大耐力を計測し,最 大耐力と計算値耐力の比については83%であった。R=±

1/33rad.に向かうサイクルの途中で試験体FT-7POSの梁 主筋が降伏し,正側加力時であるR=+1/33rad.のピーク時 に最大耐力を計測した。最大耐力を試験体FT-3Pと比較す ると131%程を記録し,最大耐力と計算値耐力の比につい ては101%であり,実験値が計算値耐力を上回った。試験 体FT-6PO,7POSの両試験体において,試験体FT-3Pと比較 して大変形時の耐力低下が改善されている。R=±1/25rad. 加力時の最大耐力と全体の最大耐力との比が,試験体 FT-3Pでは正負共に80%程を記録し耐力低下が起こって いるのに対し,試験体FT-6POの正側で99%程,負側で90% であり,試験体FT-7POSの正側で92%程,負側で88%程と なっている。

3.3 直交梁とスラブが柱梁接合部に与える影響

各試験体の梁主筋の歪を図-5に、柱梁接合部の横補強筋の歪を図-6に、試験体FT-7POSのスラブ筋の歪を図-7に示す。梁主筋の歪は試験体FT-3Pの正側加力時のもの と試験体FT-6PO,7POSの正負両方の加力時のものを示 している。図-5のA-Jは図-1に示す位置の鉄筋のデー タであることを表し、図-1に示す位置の歪ゲージの値を 使用している。柱梁接合部の横補強筋の歪は試験体 FT-3Pの正側加力時のものと試験体FT-6PO,7POSの正負 両方の加力時のものを示している。図-6,7の歪ゲージ位 置と名称は図-1による。図-7のスラブ筋の歪ゲージは直 交梁の端に並列するように貼り付けたスラブの上端筋の 値を使用している。歪ゲージの計測不備により、試験体 FT-6PO,7POSの梁主筋の歪ゲージ位置2,鉄筋種類Iを 記載していない。

試験体 FT-3P は, R=+1/50rad.で最大耐力を迎えており (図−4), その時に梁主筋と柱主筋は降伏歪に達している (図−4,図−5)。しかし,最大耐力は曲げ耐力計算値に至 っていない(表−5,図−4)。接合部斜めひび割れが生じる R=+1/100rad.に向かうサイクルの途中,一部の接合部横 補強筋が降伏し(図−6),接合部斜めひび割れ(写真 −1,2(a))も大きく進展した。R=±1/50rad.を境に柱梁接合 部の変形が急増し,梁変形は頭打ちとなる(図−3)。この ため,柱梁接合部降伏が生じたものと推定出来る。

試験体 FT-6PO は、正加力について、R=+1/50rad で最 大耐力を迎え、R=+1/15rad.までほぼ最大耐力を維持して いる(図-4)。最大耐力時に梁主筋と柱主筋は降伏歪に達 しており(図-4,図-5),最大耐力は曲げ耐力計算値とほ ぼ同等であり,試験体 FT-3P よりも明らかに大きい(図 -4,表-5)。最大耐力時の横補強筋の歪は,試験体 FT-3P よりも小さい傾向にあった(図-6)。最大耐力後も梁変形 は増加し,試験体 FT-3P のような柱梁接合部変形の急増 は見られない(図-3)。このことから,正加力側は,梁降 伏に近い性状であると思われるが,復元力特性はスリッ プ形である(図-4)。負加力側では柱梁接合部変形の急増 が見られ(図-3),接合部降伏が生じているものと思われ る。

試験体FT-7POSは、試験体FT-6POと概ね同様の性状で あるが、梁主筋の降伏がR=±1/33程度と遅く、柱主筋の 降伏が梁主筋の降伏に先行した。図-7により、試験体 FT-7POSのスラブ筋はスラブにひび割れが入りはじめる R=+1/200rad.から歪の値が上昇し始めR=+1/100rad.で降 伏した。その後も歪の値は上がり続けた。試験体FT-7POS の梁主筋の降伏が他の二つの試験体と違いR=±1/33rad. であったこと(図-4)と、大変形時の梁部分変位の値が試 験体FT-6POよりも小さかったこと(図-3)は、スラブの協 力効果の為であると推定される。

試験体FT-6PO,7POSの接合部横補強筋の歪は試験体 FT-3Pと比べると値が小さいので直交梁の接合部拘束効 果が上昇していることが分かる。直交梁あるいはスラブ がある場合の接合部成分変形の値を正負で比較すると

(図-3),接合部の拘束効果は大変形時に正負で違うこと が分かった。なお,直交梁の主筋は試験体FT-6PO,7POS の両方とも降伏しなかった。

4. まとめ

梁主筋に機械式定着を用いた柱梁接合部降伏の可能性 があるト形部分架構試験体における,直交梁とスラブの 接合部補強効果を検証するための試験2体の静的載荷実 験及び検討と,昨年の試験体との比較の結果,以下の知 見を得た。

- (1) 直交梁が付く場合は、直交梁が無い場合と比べると 最大耐力の改善と大変形時の耐力低下を抑えるこ とができた。直交梁に加え、スラブが付いた場合は その改善効果はさらに大きかった。
- (2) 直交梁付の試験体において柱梁曲げ耐力比が 1.5 近 傍の正加力側では,直交梁なしの試験体で見られた 大変形時の柱梁接合部変形の急増が見られなかっ た。柱梁耐力比が 1.2 近傍と小さい負加力側では, 柱梁接合部変形が大変形時には正加力側より大き かったが,直交梁の無い場合よりは明らかに小さか った。
- (3) スラブ付の試験体はスラブの無い試験体と比べ,ス ラブ引張時に梁主筋の降伏が遅れ、大変形時の梁変 位が小さかった。

謝辞

本研究は(財)日本建築防災協会に設置された機械式定 着工法研究委員会(委員長; 岡田恒男 東京大学名誉教授) の研究プロジェクトの一環として行われたものである。 また,鉄筋などの材料を東京鐵鋼(株)より提供いただい た。本研究に関わった多くの先生方及び研究生の諸兄の 皆様,関係者各位に深く感謝の意を申し上げます。

参考文献

- 塩原等・楠原文雄他:鉄筋コンクリート造外部柱梁 接合部の耐震性能におよぼす設計因子の影響に関す る実験,その1,その2,その3,その4,その5, 日本建築学会大会学術講演梗概集,C-2分冊, pp391-400,2010.9
- 2) 西村英一郎・清原俊彦・田才晃・楠浩一:機械式 定着を用いた柱梁接合部降伏が生じる可能性の ある RC ト形柱梁接合部に関する実験的研究,コ ンクリート工学年次論文集, vol.36, No.2, 2014
- 日本建築学会:鉄筋コンクリート造建物の靭性保証 型設計指針・同解説,pp241-273,2011.9
- 日本建築センター一般評定:プレートナット工法設 計施工指針, pp34-35, 2009.6