論文 SD490 を主鉄筋に適用しかつ機械式継手を塑性ヒンジ部に同列配置 した壁部材の力学的性状について

後藤 隆臣*1 小倉 貴裕*2 平野 勝識*3 島 弘*4

要旨:壁部材を対象として,高強度鉄筋 SD490 を使用し,機械式継手を塑性ヒンジ部に同列配置した場合の 力学的性状について,実大規模の試験体を用いて検討した。その結果,本研究の範囲内で,塑性ヒンジ部に 継手を設けない試験体と比較して,高強度鉄筋 SD490 適用による主鉄筋比の低減かつ,樹脂グラウト材を充 填するねじ節鉄筋継手(A級性能)を塑性ヒンジ部に同列配置しても,ひび割れ性状,変形性状およびひず み分布に有意な差がないことがわかった。

キーワード:高強度鉄筋,機械式継手,同列配置,塑性ヒンジ部,力学的性状,実大壁試験体

1. はじめに

近年,鉄筋コンクリート造土木構造物については,耐 震性向上の観点から過密配筋となる構造物が多くなる傾 向である。このため,主鉄筋比を低減してコンクリート 打設時の充填性を確保する目的で高強度鉄筋を検討した 事例がある¹⁾²³⁾。また,高強度鉄筋の採用によって,部 材断面の縮小も図ることが可能となり,コスト面でのメ リットも期待されている。2012年には,道路橋示方書が 改訂され,高強度鉄筋 SD490 が新たに適用範囲に入った ことによって,今後もその事例の増加が予測される。

また,鉄筋工事の更なる施工合理化および施工品質向 上の一手段として,鉄筋継手には機械式継手を採用し, 継手位置を塑性ヒンジ部内に同列配置(同一断面配置) とする工法も検討されつつある。 しかしながら,土木構造物を対象として,A級性能を 有する機械式継手を塑性ヒンジ部で同列配置した場合の 力学的性状を検討した事例は少ない⁴⁾。

そこで、本実験は壁部材を対象とし、鉄筋の種類と本 数を耐力が同じになるように SD345 から SD490 に変更 し、かつ継手位置を塑性ヒンジ部で同一断面に設けた場 合の力学的性状を実大規模の試験体を用いて比較検討す ることを目的に行ったものである。

2. 試験体

2.1 試験体計画

本実験では,土かぶり 5m 程度を想定し,内法スパン 8~9m,内法高さ 7~8m,壁厚 0.9m 規模のボックスカル バートの壁部材を対象とした。軸力については,計画交

*1 東京鉄鋼株式会社 開発部製品開発課 (正会員)

*2 東京鉄鋼土木株式会社 技術部 (正会員)

*3 株式会社フジタ 技術センター 土木研究部 次長 (正会員)

*4 高知工科大学 大学院工学研究科 基盤工学専攻 教授 工博 (正会員)

		主鉄筋	せん断補強鉄筋		配力鉄筋		14 / 座	
試験体名	鋼種 本数-径	引張鉄筋比 <i>p</i> _t (%)	継手	鋼種 径	鉄筋比 <i>p_w(%)</i>	鋼種 径@間隔	コンクリートの 目標強度 f _c (N/mm ²)	セル函 スパン比 <i>a</i> /d
WN	SD345 10-D32	0.62	なし	SD345	0.25	SD345	24	2.5
WJH	SD490 9-D29	0.45	あり	D16	0.25	D19@250	24	2.5

表-1 試験体諸元

通量区分が N7 と最も重交通である道路の舗装厚 ⁵⁾と土 かぶり 5m を想定しても,約 0.1N/mm²と非常に小さな軸 力 ⁶⁾であることから載荷しなかった。試験体の形状は, 図-1 に示すようにボックスカルバートの一部を切り出 し,片持ち形式の壁試験体とした。壁部は幅 1,600mm, 厚さ 900mm,高さ 2,290mm,スタブは幅 2,500mm,奥行 き 2,500mm,高さ 1,200mm とした。

表-1 に示すように、コンクリートの目標強度は、
 24N/mm²とした。また、地震時と常時の荷重を組み合わせた曲げモーメントの反曲点を考慮して、せん断スパン
 a が 2,000mm、有効高さ *d* が 800mm で、せん断スパン比(*a/d*)を 2.5 とした。

WN は主鉄筋に SD345 を使用した試験体, WJH は SD490 を使用した試験体とした。 $\boxtimes -2$ に示すように WJH の配筋は, WN と $M - \phi$ 曲線がほぼ同等となるよう にした。なお,終局曲げモーメント M_u は,道路橋示方 書・同解説 耐震設計編⁷⁰のコンクリートの応力ーひずみ 関係式および軸方向鉄筋の応力ーひずみ関係式を用いた 断面解析により算出した。これより,WN の主鉄筋は SD345 の D32 を片側に 10 本配筋し,WJH の主鉄筋は SD490 の D29 を片側に 9 本配筋した。また,WJH の試 験体には機械式継手を採用し,塑性ヒンジ部に同列配置 した。継手位置は、実施工を想定しスタブから 100mm の高さとした。

配力鉄筋は, WN および WJH とも SD345 の D19 を使 用し, 250mm 間隔で配筋した。また, せん断補強鉄筋は,

SD345 の D16 を使用し、片側を半円形フック、もう一方 を直角フックとして、1 段あたり 5 本配筋した。

スタブ部の高さは、主鉄筋の基本定着長を満足するように設定した。なお、大変形まで加力することから、端部の折り曲げ定着の代替として、主鉄筋にはスタブ上面より 25d(d は鉄筋径)の位置に定着プレートを配置した。 2.2 機械式継手

2.2 愤慨式嵇于

鉄筋継手は,機械式継手とし,土木学会の「鉄筋定着・ 継手指針【2007 年度版】」⁸⁾に示されている継手性能判定 基準の A 級を満足するものを使用した。機械式継手は, 樹脂グラウト注入タイプのねじ節鉄筋継手を使用した。 また,その寸法は,長さ 155mm,外径 47.3mm である。 ここで,本実験で主鉄筋に使用したねじ節鉄筋継手にて, 継手性能判定基準に示された弾性域・塑性域正負繰返し 性能試験および高応力繰り返し性能試験を実施した。こ れらにより,得られた応力-ひずみ曲線を図-3 に示す。

3. 試験体

3.1 加力方法

加力状況を写真-1 に示す。加力は、写真-1 に示す 加力装置にて、変位制御による正負交番載荷とした。水 平力は、油圧ジャッキを2基使用して載荷した。また、 油圧ジャッキの自重によって試験体に作用する曲げモー メントをキャンセルするため、定荷重装置を設けた。定 荷重装置は不動点から吊り下げる形式をとり、軸変位の 伸び出しに追随してキャンセルできる機構とした。

加力サイクルは、**図**-4 に示すように、ひび割れ発生 時で1回、主鉄筋のひずみが 1,000 μ 時(SD345 の降伏 ひずみの半分程度)で1回繰り返し載荷を行った。1,000 μ 時の加力終了後、WN の主鉄筋が、引張試験にて確認 した降伏ひずみに達した変位量を δ_y と定め、 $\delta_y \sim 4\delta_y$ ま で3回繰り返し載荷を行い、5 δ_y 以降は1回繰り返し載荷 とした。なお、WJH の δ_y は、WN で計測した δ_y (水平変 位 10.0mm)と同じとした。

写真-1 加力状況

3.2 測定方法

測定項目は、荷重、壁部水平変位、主鉄筋ひずみおよ びひび割れ幅とした。荷重の測定には、ロードセル(ひ ずみ変換型)を用いた。また、ひび割れ幅の測定にはク ラックスケールを用いた。 荷重および変位測定位置を図-5 に示す。また,ひず み測定位置を図-6 に示す。水平変位の測定位置は,ス タブ上面より 2,000mm の高さおよび部材幅と同じ高さ の 900mm とした。ひずみゲージは、WN の北面より 3 本目,5本目,8本目,WJH の北面より3本目,5本目, 7本目の主鉄筋の表裏に貼り付けた。

4. 試験結果

4.1 材料特性

試験時のコンクリートの圧縮強度および鉄筋の引張 試験結果を表-3,表-4 に示す。試験時の圧縮強度は, 目標強度が 24N/mm²に対して,WN が 26.5N/mm²,WJH が 30.3N/mm²であった。

表-3 コンクリートの圧縮強度試験結果

	コンク		壁部	スタブ		
試験体 名	リートの 目標強度 (N/mm ²)	材齢 (日)	圧縮強度 (N/mm ²)	材齢 (日)	压縮強度 (N/mm ²)	
WN	24	36	26.5	49	27.3	
WJH	24	54	30.3	67	30.8	

鉄筋	鋼種	鉄筋 径	降伏点 (N/mm ²)	引張強さ (N/mm²)	弾性係数 (kN/mm ²)	降伏ひずみ (µ)	伸び (%)
十姓位	SD345	D32	379	569	197	2,062	21
工政加	SD490	D29	514	699	203	2,778	19
せん断補強鉄筋	SD345	D16	387	572	202	2,100	25
配力鉄筋	SD345	D19	366	529	202	1,904	20

表-4 鉄筋の引張試験結果

表-5 実強度を用いた計算値

			鉄	筋				
	有効 せん断 せい スパン		主鉄筋	せん断 補強鉄筋	コンクリートの 圧縮強度	曲げ耐力時	せん断	せん断
 訊 駛 仲 名			降伏強度 降伏強度	降伏強度		せん断力	耐力	余裕度
	$\begin{array}{c cc} d & a & f_y \\ (mm) & (mm) & (N/mr) \end{array}$		f_y (N/mm ²)	f_{wy} (N/mm ²)	$\frac{f_c}{(\text{N/mm}^2)}$	M_u/a (kN)	V_y (kN)	$V_y / (M_u/a)$
WN	800	2 000	379	366	26.5	1,173	1,700	1.45
WJH	000	2,000	514	300	30.3	1,175	1,659	1.41

表-6 試験結果一覧

試験体名	加力	曲げひ 発生	び割れ E時	水平変位 10mm 時 荷重	主 降伏ひ 到道	▶ずみ ≧時	最大花 実懸	苛重時 検値	最大荷重時 計算値	実験値	計算値
	>31.1	P _{cr} (kN)	δ_{cr} (mm)	P'y (kN)	P _y (kN)	δ _y (mm)	P _{max} (kN)	δ _{max} (mm)	$\begin{array}{c} P=M_u/a \\ (kN) \end{array}$	正	負
WN	正	297	0.7	1,160	1,160	10.0	1,290	17.2	1 1 7 3	1 10	1.08
VV I N	負	-297	-0.7	-1,147	-1,062	-8.6	-1,266	-48.9	1,175	1.10	1.00
WILL	正	271	0.7	954	1,056	12.6	1,218	20.1	1 175	1.04	1.00
WJH	負	-265	-0.7	-975	-1,066	-13.2	-1,283	-69.1	1,175	1.04	1.09

4.2 実強度を用いた設計値

コンクリートおよび鉄筋の実強度を用いたせん断耐 力を 2012 年度制定 コンクリート標準示方書 設計編⁹⁾ に基づき計算した。計算結果を**表**-5 に示す。なお,計 算においては,安全係数を全て 1.0 とした。また,終局 曲げモーメント M_u は,図-2 に示す断面解析により算出 した。これより,せん断余裕度は,WN が 1.45,WJH が 1.41 であった。

4.3 荷重および水平変位

試験結果一覧を**表**-6 に示す。WN の主鉄筋の降伏ひ ずみ到達時の水平変位は 10.0mm であった。WJH は、ひ び割れ状況および変形性状を比較するため、主鉄筋の降 伏変位 (δ_y)をWN に合わせ交番載荷を実施した。なお、 WJH の主鉄筋の降伏ひずみ到達時の水平変位は、12.6mm であった。最大荷重は、WN が正側載荷で 1,290kN、負 側載荷で 1,266kN であったのに対し、WJH は正側載荷で 1,218kN、負側載荷で 1,283kN であった。

次に,実験値と計算値との比較した結果,WNが正側 載荷で 1.10,負側載荷で 1.08 であったのに対し,WJH は正側載荷で 1.04,負側載荷で 1.09 であり,ほぼ同等の 値であった。これより,高強度鉄筋適用による主鉄筋比 の低減かつねじ節鉄筋継手を塑性ヒンジ部に同一断面に 設けた場合においても,降伏変位は異なるが,最大荷重 は継手を設けない部材とほぼ同等であることがわかった。

4.4 ひび割れ性状および破壊性状

ひび割れ性状として、ひび割れ発生状況およびひび割れ幅を比較した.ひび割れ幅については、4.5 で述べる.

水平変位 10mm 到達時および載荷終了時(水平変位 100mm)のひび割れ発生状況を図-7 に示す。図中のひ び割れは,正側載荷時によるものを青線,負側載荷時に よるものを赤線で表示した。

WNは、荷重 297kN時に曲げひび割れが発生した。その後、水平変位 10.0mm(荷重 1,160kN)時に主鉄筋が降 伏した。水平変位 60→70mmでは、西面中腹部のかぶり コンクリートが剥落した。また、せん断補強鉄筋の直角 フックの曲げ戻しと荷重の低下が始まった。水平変位 70 →80mmでは、西面のかぶりコンクリートが剥落した。 さらに、水平変位 90→100mmでは、かぶりコンクリー ト剥落範囲が拡大し、それに伴い直角フックの曲げ戻し が生じたせん断補強鉄筋の本数も増加した。 WJH は、荷重 271kN 時に曲げひび割れ発生した。そ の後、水平変位 12.6mm (荷重 1,056kN)時に主鉄筋が降 伏した。水平変位が 80→90mm で荷重低下が始まり、水 平変位が 90→100mm では、更にかぶりコンクリートが 剥落し、それに伴い直角フックの曲げ戻しが生じたせん 断補強鉄筋の本数も増加した。ここで、直角フックの曲 げ戻し状況を写真-2 に示す。

WN と WJH では,水平変位 10mm 到達時のひび割れ 性状に大きな違いはなかった。載荷終了時では,WJHの 方が斜めひび割れが多く見られた。

写真-2 直角フック曲げ戻し状況(左:WN, 右:WJH)

4.5 ひび割れ幅

主鉄筋ひずみ 1,000µ 到達時および+ δ_y (水平変位 10.0mm)時のスタブ上面から 200mm の位置のひび割れ 幅の測定結果を表-9 に示す。主鉄筋のひずみが 1,000µ 時は, WN および WJH ともに 0.20mm,水平変位 10.0mm 時は, WN が 0.60mm, WJH が 0.55mm でほぼ同等であ ることを確認した。これより,弾性範囲内については, 主鉄筋の高強度化による鉄筋比の低減かつねじ節鉄筋継 手を同列配置してもひび割れ幅に影響はないことがわか った。

|--|

試験体名	1,000µ時	水平変位 10.0mm 時
	(mm)	(mm)
WN	0.20	0.60
WJH	0.20	0.55

4.6 履歴曲線

両試験体の履歴曲線を図-8 に示す。WN は,水平変 位 20mm 前後で最大荷重を示し,水平変位 60→70mm の 載荷で主鉄筋のかぶりコンクリートが剥離し,荷重が大 きく低下した。これに対し,WJH は,水平変位 20mm 前 後で最大荷重を示し,水平変位 80→90mm の載荷で主鉄 筋のかぶりコンクリートが剥離し,荷重が低下した。水 平変位 90→100mm の載荷時にかぶりコンクリートが大 きく剥落し,主鉄筋が露出した。これにより,主鉄筋の 座屈が肉眼でも観察できる状態となり,荷重が更に低下 した。載荷試験終了後,WN および WJH のせん断補強鉄 筋の直角フックが曲げ戻されているのを確認した。

WN および WJH の包絡線を図-9に示す。初期剛性は, WN と WJH で同じである。載荷が進むことで WJH の剛 性は,WN の主鉄筋比が 0.62%に対し,WJH の主鉄筋比 が 0.45%と主鉄筋比の差より,WN の剛性よりが幾分小 さくなっている。それ以降はかぶりコンクリートの剥落 などにより,WN は荷重が低下するが,WJH は水平変位 80mm まで荷重が低下していないことがわかる。これよ り,地中構造物を対象とした場合,主鉄筋の高強度化に よる鉄筋比の低減かつねじ節鉄筋継手を同列配置しても 変形性状には影響がないことがわかった。

図-8 履歴曲線

図-9 包絡線

4.7 主鉄筋のひずみ分布

WN および WJH において, 断線など測定に際し有害な 影響が見られなかった 4δ_y までの主鉄筋のひずみ分布を 図-10 に示す。図中のひずみは引張力が作用した時の値 を示す。壁部材の主鉄筋のひずみ分布は, 主鉄筋が降伏 するまではほぼ同じである。3δ_y以降は, ひび割れ発生位 置などの影響を受けるため, 多少傾向が異なるが, 大き な差ではない。また, スタブ内のひずみ分布においては, 明確な差は見られなかった。

4.8 等価粘性減衰定数

WN および WJH のエネルギー吸収性能を等価粘性減 数定数 heq で表した。これを図-11 に示す。なお,等価 粘性減衰定数は,両試験体とも繰り返し1回目のループ の面積を用いて算出した。これより,WJH は WN よりエ ネルギー吸収性能が低い結果となった。これは,WJH で SD490 を使用することで鉄筋径を細くし本数を減らした ため,履歴曲線の面積が小さくなったことによるものと 考えられる。

5. まとめ

本研究の結果、以下の結論を得た。

- (1) ひび割れは、水平変位 10mm 到達時では大きな違い はなかったが、載荷終了時では WN に比べて WJH の方が斜めひび割れが多く見られた。
- (2) ひび割れ幅は、WN および WJH ともに弾性範囲内 において、SD490 を使用して主鉄筋比を低減かつ、 A 級性能を有するねじ節鉄筋継手を同列配置して も影響がなかった。
- (3) 荷重は、WN が水平変位 60mm から 70mm までの過
 程で低下し、WJH が水平変位 80mm から 90mm ま
 での過程で低下した。
- (4) 主鉄筋のひずみ分布は、WN および WJH ともに降 伏するまでほぼ同じであった。
- (5) WJH では SD490 を使用し主鉄筋比を低減したため, 履歴曲線の面積が小さくなり, WN よりも等価粘性 減衰定数は小さくなった。

以上より,本研究の範囲内で,高強度鉄筋 SD490 を使 用し主鉄筋比を低減し,かつ塑性ヒンジ部にねじ節鉄筋 継手を同列配置した場合においても,エネルギー吸収性 能は小さくなるものの,ひび割れ性状,変形性状および ひずみ分布には有意な差が見られなかった。

参考文献

- 村岡史朗,小松正貴,長尾千瑛:橋梁下部工における高強度鉄筋の適用に関する検討,土木学会第66 回年次学術講演会,CS7-009, pp.17-18, 2011.9
- 浅井洋,春日昭夫,飯田字朗: SD490 鉄筋を軸方向 鉄筋に用いた RC 橋脚の実用化に関する研究,土木 学会論文集,760 号,V-63,pp.91-108,2004.5
- 村田裕志,渡辺典男,水谷正樹: SD490 を用いた高 鉄筋比の RC 橋脚の耐震性能に関する実験的研究, 構造工学論文集, Vol.56A, pp.928-937, 2010.3
- 後藤隆臣,睦好宏史,佐々木文雄:形状の異なる機 械式継手を用いた鉄筋コンクリート部材の力学的性 状に関する研究,土木学会第67回年次学術講演会, V-228, pp.455-456, 2012.9
- 5) 日本道路協会: 舗装設計施工指針(平成18年度版)
- 6) 日本道路協会:道路土工 カルバート工指針(平成 21年度版)
- 7) 日本道路協会:道路橋示方書・同解説 耐震設計編 (平成 24 年度版)
- 8) 土木学会:コンクリートライブラリー128 鉄筋定着・継手指針[2007年度版]
- 9) 土木学会:コンクリート標準示方書 設計編 [2012 年制定]