論文 東北地方太平洋沖地震本震で得られた RC, SRC 造建物 34 棟の加速 度記録を用いた建物応答と継続時間に関する検討

森西 亨太^{*1}·塩原 等^{*2}

要旨:建築研究所の強震観測網が2014年から建物上部を含んだ加速度データの公開を始めたことを受け、東 北地方太平洋沖地震本震で得られた鉄筋コンクリート造および鉄筋コンクリート系低中層建物34棟の上階と 下階の加速度データを用いて基礎的な検討を行った。検討の結果、対象となる建物のほぼ全てにおいて、損 傷を与えるような上階と下階の相対変形が見られなかった。しかし中層建物を中心に、建物上階で10cm/sec を超える速度応答が下階に比べてさらに1分以上長い例が多いことを示し、地震時の床応答の継続時間に対 する考慮の必要性があると考えた。

キーワード:東北地方太平洋沖地震,地震観測記録,長周期成分,建物応答,継続時間

1. はじめに

1995年の兵庫県南部地震を契機にわが国では地震計 の設置が進み,強震観測が全国の多くの観測点で行われ るようになった。2011年の東北地方太平洋沖地震本震 (Mw = 9.0,以下 3.11本震)は,強震観測網の発達後に 観測された地震の中で規模が最も大きく,非常に多くの 地震観測記録が得られた。3.11本震で得られた記録に関 する報告は多数なされているが¹⁾,その多くはK-NET(防 災科研強震観測網)に代表される地表点で得られた記録 に関するものである。一方,建物に設置された地震計か ら得られた記録に関しては,建物利用者のプライバシー の問題等の関係で情報の入手が難しく,報告が少ないの が現状である。しかし2014年から,独立行政法人建築研 究所の強震観測網(以下建研観測網)において,建物上 部の記録を含めた数値データを個別申請の形で所外の研 究者が入手することが可能となった^{2),3)}。

また,3.11 本震において長時間揺れが続いたことで不 安感が増大したことが,建物利用者へのアンケートから 報告されている例⁴⁾がある。そこで本稿では,建研観測 網が観測記録を得ている建物のうち,3.11 本震で加速度 データが得られた鉄筋コンクリート造(以下 RC)および RC 系建物34 棟を対象とし,3.11 本震を受けた建物の応 答とその継続時間について基礎的な検討を行う。

2. 観測記録概要

2.1 地震概要

3.11 本震の概要を表—1 に示す。

2.2 観測建物概要

本稿で用いる加速度記録が得られた建物の概要を表 ---2 に示す。建物所在地,震央距離 d,計測震度 M,構 造形式・階数,強震計種類に併せて,本稿で用いる加速 度データを得た強震計の設置階,および平面2方向の最 大加速度 PGA を示す。本稿では,各建物において最も 上の階と下の階に設置された地震計の加速度データを使 用し,同一階に複数の強震計がある場合は PGA が最も 大きいものとする。

震央との距離は近いもので 200km 程度,遠いもので 700km 程度である。構造形式は RC 棟,鉄骨鉄筋コンク リート造(以下 SRC)棟,プレキャストコンクリート造 (以下 PC)棟の3種類が含まれるが,1次固有周期,減 衰定数と軒高の相関性に違いは見られない⁵⁾。**表-2 で** は、5層以下の低層(計10棟)と6-11層の中層(計24 棟)に分けて示した。また,軒高 *H*(m)が分かっている 建物については一次固有周期 *T*₁(秒)を式(1)⁵⁾で推定し, 示した。なお文献3)同様,建物の階数にペントハウスは 含めていない。

 $T_I = 0.015 \times H$

(1)

	区动品环网头
地震発生日時	3月11日14時46分
震央	三陸沖
震央北緯	38.10
震央東経	142.86
震源深さ(km)	24
マグニチュード Mw	9.0

表—1 地震動記録概要

3. 強震計の長周期分解能に関する検討

3.1 強震計の周波数範囲

加速度データを用いて建物応答における長周期成分 の影響を検討する場合,加速度を計測している地震計の

*1 東京大学 工学系研究科建築学専攻博士課程 修(工) (学生会員)*2 東京大学 工学系研究科建築学専攻教授 工博 (正会員)

			震央距離	計測震度		強震計	地震計	PGA	(上階)	PGA(下階)	固有周期
	番 地名		d(km)	м	構造形式·階数	種類	設置階	(cm/sec ²)		(cm/sec ²)		<i>T</i> ,(秒)
	号							1	2	1	2	
	1	千葉県市川市	375	5.2	RC/5F	А	5F, 1F	239.8	300.2	164.2	163.3	0.36
	2	東京都渋谷区	389	4.9	RC/4F+B1F	А	4F, 1F	369.6	216.7	237	179.3	0.38
低層	3	東京都足立区	377	4.8	RC/5F+B1F	А	4F,1F	265.9	146.3	118	102.6	0.32
	4	東京都江戸川区	377	4.8	SRC/5F+B1F	А	5F, 1F	256.3	298.8	111.9	112.4	0.31
	5	東京都中野区	390	4.8	RC/5F	А	6F, 1F	172	375.4	125.7	158.2	0.34
	6	東京都台東区	382	4.8	RC/3F+B1F	В	4F, B1F	100.1	76.5	99.7	79.2	0.17
	7	東京都小平市	401	4.6	RC/3F	А	3F, 1F	128.7	328.6	109.6	135.9	0.25
	8	山形県鶴岡市	275	3.9	RC/4F+B1F	В	4F, 1F	36.7	38.6	34.2	35.9	0.33
	9	長野県木曽郡	524	2.6	RC/5F+B1F	А	6F, B1F	31.9	30.5	9.5	10.2	0.44
	10	石川県金沢市	574	2	RC/4F+B2F	Е	5F, B2F	5.7	4.2	4.6	4.1	
	11	宮城県仙台市	177	5.6	SRC/9F	Е	9F, 1F	908.3	728.4	332.6	329.8	
	12	茨城県つくば市	330	5.3	SRC/8F+B1F	С	8F, B1F	696.2	600.2	204	187.9	0.53
	13	福島県いわき市	209	5.3	SRC/8F+B1F	E	9F, B1F	578.5	448.9	174.6	176.1	
	14	千葉県八千代市	361	5.3	RC/6F+B1F	А	7F, B1F	359.3	485.9	134.9	140.3	0.3
	15	青森県八戸市	292	5.2	SRC/10F+B1F	В	10F, B1F	119.6	122.7	100.3	104.4	0.64
	16	茨城県つくば市	334	5.2	PC/7F	D	6F, B1F	125.7	90.9	326.9	232.6	
	17	埼玉県戸田市	380	5	SRC/8F+B1F	А	8F, B1F	531.1	424.7	172.9	139.8	0.52
	18	東京都品川区	390	5	SRC/7F	А	7F, 1F	315.8	223.2	173.6	169	
	19	千葉県千葉市	369	4.9	SRC/8F+B1F	А	8F, B1F	374.9	283.5	151.9	122.2	0.47
	20	埼玉県三郷市	367	4.9	SRC/7F+B1F	А	7F, 1F	219.2	189.6	72.3	103.9	0.45
	21	岩手県宮古市	188	4.8	RC/7F	В	7F, 1F	246.1	197.4	138.1	122.4	0.37
中	22	千葉県船橋市	368	4.7	RC/8F	А	8F, 1F	359.1	338.9	144.2	146.6	
層	23	東京都文京区	383	4.7	SRC/9F	А	7F, 1F	200.6	359.6	73.4	150.7	0.48
	24	東京都北区	380	4.6	SRC/7F+B2F	А	6F, B1F	179.8	249.6	85.3	139.2	0.48
	25	青森県八戸市	292	4.6	RC/6F+B1F	Е	6F, B1F	347.7	335.2	96.5	110	0.37
	26	東京都千代田区	386	4.5	SRC/11F+B2F	В	8F, B2F	94.3	81.6	104.3	91.2	0.85
	27	秋田県秋田市	298	4.3	RC/6F+B1F	Е	8F, 1F	175	192.2	50.3	46.9	0.39
	28	静岡県静岡市	520	4.2	SRC/6F	В	6F, 1F	80.7	56.2	27.7	40.6	0.35
	29	新潟県新潟市	335	4	RC/6F+B1F	Е	6F,B 1F	38.8	55.5	27.2	40	
	30	山梨県甲府市	468	4	RC/8F+B1F	А	8F, B1F	40.6	51.3	46.5	39.3	0.56
	31	愛知県名古屋市	623	3.1	SRC/11F+B2F	В	12F, B2F	25	45.8	8.5	14.5	0.65
	32	長野県長野市	444	2.7	SRC/10F+B1F	А	11F, B1F	34.6	26.9	7.9	7.3	0.69
	33	北海道釧路市	558	2.6	SRC/9F+B1F	В	9F, B1F	15.9	19	8.4	11.6	0.66
	34	三重県松阪市	688	2.3	SRC/6F	Е	7F, 1F	16.2	7.6	6.3	5.5	0.44

表---2 建物概要一覧(軒高が不明な建物の固有周期は空欄とした)

長周期分解能の正確性について考慮する必要がある。表 いる。 -3 に各強震計の周波数範囲²⁾および使用している棟数 を示す。強震計の種類を示す記号は**表—2** と対応してい る。長周期(低周波数)領域に関しては,種類 A-D は DC となっており, 種類 E は 0.02Hz と限界値が記されて

3.2 建物と上階と下階の相対変形に含まれる周期成分

各建物の上階と下階の相対加速度をフーリエスペクト ルで図示する。種類 A の強震計で得られた記録のうち, 番号1,2,14,17の建物における相対加速度フーリエスペ クトルを図-1 に、種類 B-E の強震計で得られた記録の うち、番号 6, 10, 12, 16 による相対加速度フーリエスペク トルを図-2 にそれぞれ示す。フーリエスペクトルを求 める際は、幅0.05HzのParzen窓⁶⁾で平滑化を行っている。 なお、図-1、図-2 に使用する加速度データは全て方向 1 のみとする。

図-1,2ともに、0.3-1.0秒近辺で大きなピークが見られ、これは各建物の3.11本震時の一次固有周期を表している。しかし、図-1は図-2と比較して、建物の一次固有周期よりも明らかに長い部分、具体的には周期5秒以上で10-100倍の大きな値となっており、種類Aの強震計を使用する他の建物の記録からも同様の傾向を確認した。このことから、加速度データに含まれる、5秒を超えるとても長い周期の成分を評価する際、現在使用されている強震計では難しい場合があることが示された。

表---3 各強震計の周波数範囲

強震計	周波数範囲
A	DC~40Hz
В	DC~30Hz
С	DC~30Hz
D	DC~100Hz
E	0.02~30Hz

4. 各建物の応答に関する検討

3.より,周期が5秒を超える成分の信頼性が低い強震 計があることが分かった。そこで、本章にて各強震計の 速度および変位の導出の際は、ローカットフィルタで周 期が5秒より長い成分を除去することとした。なお、速 度と変位の計算は周波数領域で加速度を積分して求めた。

4.1 上階と下階の相対変位

表—4 に各建物の平面 2 方向の相対変位の最大値と階 数差を示し、その結果をプロットしたものが図—3 であ

る。表—4より, 建物 11,12,13 における相対変位の大き さが目立つ。特に, 最大変形角(最大相対変位を階数差 相当の高さで除したもの)が 1/100を超えた建物 11 は耐 震壁が大破するなどの被害が生じたと報告されてる⁷⁾。 計測震度 M は他の建物と大きく変わらないが, いずれも 震央に比較的近い建物であることから, 短周期成分が他 の観測点に比べて減衰せずに伝わってきたためと考えら れる。

番号	方向 1(cm)	方向 2(cm)	階数差
1	1.11	1.52	4
2	0.50	0.58	3
3	0.92	0.31	3
4	0.90	0.91	4
5	0.72	0.95	5
6	3.77	3.91	4
7	0.41	0.62	2
8	0.05	0.06	3
9	0.10	0.07	6
10	0.03	0.02	6
11	31.01	17.85	6
12	12.62	11.31	8
13	10.66	4.15	8
14	1.72	3.32	10
15	2.71	2.68	8
16	5.10	5.37	7
17	5.21	5.67	6
18	1.88	0.46	10
19	4.15	1.84	9
20	1.73	0.92	9
21	1.28	1.51	6
22	2.60	2.08	6
23	1.44	3.11	6
24	0.67	0.96	11
25	1.36	1.64	13
26	5.70	2.78	6
27	1.28	1.90	5
28	0.54	0.25	8
29	0.18	0.43	8
30	1.29	1.63	6
31	0.45	0.94	6
32	0.65	0.34	6
33	0.55	0.55	7
34	0.07	0.02	8

表—4 各建物の平面2方向の 相対変位の最大値と階数差

階数差の関係

一方,大部分の建物の上階と下階の相対変形は 10cm 以下である。変形角に直すと 1/300 以下であり,建物の 構造に損傷が生じるような変形ではなかった ⁵⁾と言える。

4.2 床の速度応答の継続時間

4.1 にて、本稿で対象としている観測建物の中で損傷 を与えるような地震動の入力があった例はほぼゼロであ ったことを示した。しかし、3.11 本震では建物の構造に 損傷がなくとも、揺れ自体が長時間続いた例は建物・地 表面に関わらず多数報告されている¹⁾。本項では、各建 物の上部と下部の速度応答の継続時間について基礎的な 検討を行う。まず、上部と下部の速度応答の一例として、 建物12の方向1の上部と下部の速度波形を図-4に示す。 上部の最大速度応答が下部に比べて大きいうえに、長時 間続く振動も大きいことが分かる。

各建物の上階と下階の平面2方向の絶対速度の波形に おいて、1cm/sec を超えていた(振動自体が続いた)時 間長さを図—5に、10cm/sec を超えていた(人間が充分 感知できる程度の揺れが続いた)時間長さを図—6にそ れぞれ示す。本稿では、速度の絶対値が1cm/sec あるい は 10cm/sec を最初に超えた時刻から最後に超えた時刻 までの長さを時間長さとしている。

図-5より,ほとんどの建物において3分以上の継続 時間となっている。また,同一建物の上階と下階におい て継続時間に明瞭な差が見られる建物が少ない。これは, 3.11本震において上階・下階ともに,揺れが収まるのに 非常に長い時間を要したことを示している。

図—6より,速度が10cm/secを超える速度応答はグラフ2段目以降の中層建物で多く見られる。そして中層建物の多くは、上階の継続時間が下階に比べ1分以上長くなっており、階数の大きな建物の上階で速度応答の増幅があったと言える。

床の速度応答は,強震時の人間の行動難度や不安感を 表す指標⁸⁾などに用いられる。10cm/sec という値は,人

図-4 建物 11 (方向 1) の上階と下階の速度の時刻歴

間が行動不能になるような大きなものではないが。長時 間検討対象にはなかったが,高層・超高層建物では揺れ がより長時間続くと考えられるため,継続時間による影 響については今後も注意して見ていく必要がある。

5. まとめ

3.11 本震において RC 系低中層建物 34 棟の上階と下階 で得られた加速度データを用いて検討を行い,以下の知 見を得た。

図—6 各建物の上階と下階の 10cm/sec を超えていた時間

- 上階と下階の相対変位を求めた結果,構造に損傷が あったと考えられる変形を示した建物は,検討対象 の中では震央に近い宮城県の1棟だけであった。
- 2) 上階と下階の絶対速度波形から応答の継続時間を 求めた結果,揺れ自体が収まるのに要した時間は上 階・下階で大きく変わらなかった。一方,ある程度 大きな振幅の揺れの継続時間は、中層建物において 上階が下階より1分以上長くなる傾向が見られた。

今後は、2)で公開されている鉄骨造(以下S造)建物 の記録の計算結果も用いてのRC造とS造の建物の応答 性状の比較検討,強震時の床応答の継続時間の定量的評 価と振動の継続時間長さによる建物利用者の心理的影響 について分析していく予定である。

謝辞

本稿で用いた加速度データは独立行政法人建築研究所の 強震観測網で得られたものです。またデータの使用に際 して,建築研究所の鹿嶋俊英様に多くのご助言をいただ きました。ここに記して感謝の意を表します。

参考文献

- 東日本大震災合同調査報告書編集委員会:東日本大 震災合同調査報告(共通編 1),日本地震工学会, 2014.3
- 2) 建築研究所の強震観測: http://smo.kenken.go.jp/ja
- ・鹿嶋俊英,小山信,大川出:平成23年(2011年)東 北地方太平洋沖地震における建物の強震観測記録, 建築研究資料 No.135,独立行政法人建築研究所, 2012
- 4) 長周期地震動に関する情報のあり方検討会:長周期 地震動に関する情報のあり方報告書,気象庁地震火 山部,2012
- 5) 日本建築学会:建築物の減衰,2000
- た崎順彦:新・地震動のスペクトル解析入門,鹿島 出版会,1994.5
- 7) 日本建築学会:鉄筋コンクリート造建物の耐震性能 評価指針(案)・同解説,2004
- 高橋徹ら:長周期地震動を考慮した人間の避難行動 限界曲線の提案,日本建築学会大会梗概集,B2,pp. 497-498,2007.8