論文 補強工法の違いによる RC 造灯台の振動特性

日高 みなみ*1・青木 孝義*2

要旨:航路標識として海の安全を守る重要施設である灯台は、台風や地震などの自然災害時においても機能 し続けなければならないため、その耐震性が確保されていない場合には、耐震補強あるいは建て替えが必要 となる。耐震診断時、あるいは耐震補強前には灯台の現状把握のための調査が行われているが、耐震補強後 の検証が行われた例はない。そこで本稿では、鋼板による巻き立て工法が採用された灯台と補強されていな い灯台の振動計測を実施することにより、振動性状の変化を推定した。その結果、補強工法の違いにより 2 次モードおよび 3 次モードの振動特性に変化が確認された。

キーワード:灯台,固有振動数,振動モード,補強工法,鋼板巻き立て

1. はじめに

航路標識として海の安全を守る重要施設である灯台は, 台風や地震などの自然災害時においても機能し続けなけ ればならない。その耐震性が確保されていない場合には, 耐震補強あるいは建て替えが必要となる。過去に採用さ れた灯台の補強工法の例を表-1に示す。表-1に示した 灯台のほとんどは明治・大正期に建設されており,歴史 的な価値が高いことから,補修・補強にあたっては外観 を変えないように,全周を他材料で巻き立てる工法が選 定され,耐力や靱性の向上を図っている。このように, 灯台の耐震補強工法としては,炭素繊維あるいは鉄筋コ ンクリート・鋼板などによる巻き立て工法が採用される ことが多い。また,灯台が転倒する恐れがある場合には, 基礎の拡幅を実施している¹⁾。

これらの巻き立て工法を採用した場合,図-1に示し たように、巻き方の種類として①全高さを巻き立て範囲 とする方法、②下部のみ巻き立て範囲とする方法、③等 間隔に帯状に巻き立てる方法、の3通りが挙げられる。 しかしながら、特に鉄筋コンクリートや鋼板による補強 において②が採用された場合、灯台の管理を行う吏員の 宿舎や設備機器室などの付属舎が併設された灯台と同様 に、灯塔中腹部で剛性が急激に変化するため、地震時に 応力が集中しやすくなることが懸念される。東日本大震 災時においても、陸前江島灯台の灯塔の損傷は付属舎高 さ付近に集中していた³。耐震診断時、あるいは耐震補 強前には灯台の現状把握のための調査が行われているが、 耐震補強後の検証が行われた例はない。

以上を背景として、本稿では、RC 造灯台を対象とし、 耐震補強工法の違いが振動特性(固有振動数や振動モー ドなど)に与える影響を把握することを目的とした。鋼 板による巻き立て工法が採用された清水灯台(図-1②) と勝浦灯台(図-1③)の振動特性を耐震補強されていな

*1 株式会社コンステック 技術研究所 (正会員)

*2 名古屋市立大学大学院 芸術工学研究科教授 工博 (正会員)

い宇品灯台³⁾と比較することにより、振動特性の変化を 推定する。ただし、前者2基とも耐震診断時に固有周期 の実測がなされていないため、耐震補強前の実際の固有 周期は不明である。

表-1 灯台の耐震補強工法選定例¹⁾

構造	採用された工法	灯台例					
RC 造	鋼板巻き立て	清水灯台(②)					
		勝浦灯台(③)					
	炭素繊維巻き立て	観音埼灯台(③)					
		塩屋埼灯台 (②)					
	鉄筋コンクリート	舳倉島灯台(②)					
	巻き立て	松前小島灯台 (①)					
煉瓦造	PC 鋼棒巻き立て	御前埼灯台					
	PC 巻き立て	犬吠埼灯台(①)					
	炭素繊維強化プラスチック成形板	尻屋埼灯台(①)					
	及び炭素繊維巻き立て						
石造	アラミド繊維	潮岬灯台(①)					
	巻き立て						
	炭素繊維巻き立て	神子元島灯台(①)					
	目地材取替	出雲日御碕灯台					
		美保関灯台					
		角島灯台					
	目地樹脂注入	江埼灯台					
	※括弧内の数字は図-1参照のこと						
4	\rightarrow \rightarrow						

2. 対象灯台の詳細

2.1 宇品灯台

宇品灯台は,1971年(昭和46年)に建設された RC 造の灯台である。2007年(平成19年)に耐震性確保の ため灯塔下部と付属舎が EXP.J で分離された。躯体高さ 17.00m,下端外径 2.70m,下端壁厚は 0.25m である。

塔内部は,鉄骨階段と RC 造の踊り場・鋼製の塔芯に より構成されている。概要を図-2(a)に示す。

2.2 清水灯台

清水灯台は,1912 年(明治 45 年)に建設された RC 造の灯台である。1994 年(平成 6 年)に灯塔保存のため, 基礎拡幅と鋼板接着補強が実施された。また,転倒防止 のため基礎の改良として杭が新設されている。躯体高さ 14.10m のうち GL+5.64m まで厚さ 6mm の鋼板が施工さ れている。下端外径は 2.66m,下端壁厚は 0.66m である。

塔内部は,鉄骨階段と木製の踊場・鋼製の塔芯により 構成されている。概要を図-2(b)に示す。

2.3 勝浦灯台

勝浦灯台は,1917年(大正6年)に建設されたRC造の灯台である。1986年(昭和61年)に地震によって生じたひび割れへの樹脂注入と灯塔への鋼板接着補強が実施された。躯体高さ15.85mのうちGL+1.80m,2.70m,3.90m,5.70m,7.80mの位置にそれぞれ幅400mm,厚さ4mmの鋼板が施工されている。下端外径は4.59m,下端壁厚は約1.10mである。

塔内部は, GL+9.68m までは RC 造の螺旋階段・塔芯, それ以上は鉄骨階段と RC 造の踊場により構成されてい る。概要を図-2(c)に示す。

3. 実験概要

3.1 実験方法

地盤の常時微動計測には小型換振器(S 社製:動電型 速度計,水平2成分,上下1成分,測定周波数:1.4~30Hz) を用いた。灯台の躯体高さ以上離れ,周辺施設の影響を 考慮した位置に設置した。サンプリング周波数は 100Hz とした。

次に、灯台の基本的な振動特性である固有振動数と振動モードを把握するため、加速度センサを用いた常時微動計測を実施した。灯台の振動特性把握における常時微動計測の有用性については、すでに起振器による強制振動実験の結果から確認できている⁴。

常時微動計測は、2 種類の方式で実施した。三軸加速 度センサ(K社製,計測範囲:±2,940gal,周波数応答: DC~1kHz,分解能:4µm/s²)7台(K1~K7)を使用し た無線方式と、一軸加速度センサ(S社製,計測範囲: ±2,942gal,周波数応答:DC~400Hz,分解能: 0.000049m/s²rms以下)32台とアナログ入力モジュール

(NI 社製,分解能: 24bit)による有線方式である。宇品
 灯台においては3軸に組み合わせた9台(S1~S7,S10,S11)と2軸に組み合わせた2台(S8,S9)を,他の2

基においては 3 軸に組み合わせた 10 台 (S1~S10) と 2 軸に組み合わせた 1 台 (S11) を使用した。

全てのセンサは,開口部を有する軸に対して直交方向 を X 軸,平行方向を Y 軸,上下方向を Z 軸として設置 した。サンプリング周波数は 200Hz とした。

3.2 計測位置

それぞれのセンサの設置位置を図-2に示す。また,4 章の解析に使用するセンサ番号と高さレベル○FLの関 係を表-2に示す。

4. 実験結果

4.1 地盤の振動特性

常時微動には様々な周期の波が含まれており,計測さ れた波形を周期ごとの波の強さに分解し表したものをフ ーリエスペクトルという。常時微動の水平動と上下動の スペクトル比(H/Vスペクトル比)が表層地盤の増幅倍 率や卓越振動数を示すことは広く知られており,簡易的 に地震動の増幅特性の推定を行うことができる⁵⁾。

各灯台の地盤の振動特性である H/V スペクトル比を図 -3 に示す。ここでは、計測波形を 2048 点ずつに分割し、 それぞれのデータを独立したデータと考えて平均(以下、 アンサンブル平均という)して H/V スペクトル比を求め た。なお、ハニング窓によるデータ補正を行い、スペク トルの平滑化にはバンド幅 0.5Hz の Parzen ウィンドウを 用いた。解析対象としたデータは 1 時間分 (360,000 点) とし、50%ずつオーバーラップさせた。

これより,常時微動計測により推定される地盤種別^の は,それぞれ航路標識構造物設計基準^のにおいて以下の 通りであると考えられる。

a) 宇品灯台:第二種地盤(卓越振動数 3.76Hz)

b) 清水灯台: 第二種地盤(卓越振動数 4.64Hz)

c) 勝浦灯台:第一種地盤(卓越振動数 7.18Hz)

4.2 灯台の振動特性

各点で計測されたデータを 4096 点ずつに分割し,アン サンブル平均したフーリエスペクトルを求める。なお, ハニング窓によるデータ補正を行い,スペクトルの平滑 化にはバンド幅 0.5Hz の Parzen ウィンドウを用いた。解

図-3 各地盤の H/V スペクトル比

析対象としたデータはそれぞれ1時間分(720,000 点 とし, 50%ずつオーバーラップさせた。

(1) フーリエスペクトル

各灯台のフーリエスペクトルを図-4 に示す。図-4 より推定される地盤-建物連成系の固有振動数を表-3 にまとめる。

(2) 伝達関数

1FLのフーリエスペクトルに対する灯室のフーリエス ペクトルの比(以下,伝達関数という)を図-5に示し, 推定されるスウェイ固定系の固有振動数を表-3に示す。 各灯台のスウェイ固定系の1次固有振動数は,地盤一建 物連成系の1次固有振動数と比較して高い値を示してい る。この差は,地盤のスウェイ変形の影響であると考え られ,これによる固有振動数の低下率は,宇品灯台:1.55 ~4.66%,清水灯台:12.00~17.76%,勝浦灯台:2.63~ 4.48%である。低下率の計算には式(1)を用いた。一方,2 次,3次固有振動数においては,スウェイ固定系と地盤 一建物連成系の差が小さく,スウェイ変形の影響は小さ いと考えられる。

低下率(%) =
$$\frac{f_s - f_g}{f_s}$$
 (1)

ここで、*f_s*:スウェイ固定系の固有振動数(Hz)*f_g*:地盤-建物連成系の固有振動数(Hz)

さらに,表-3及び図-4と図-5を比較すると,それ ぞれ以下に示すような特徴が見られた。

a) 宇品灯台

X,Y方向ともに1~3次固有振動数においてピークが

	宇品灯台	清水灯台	勝浦灯台
1FL	K7	K1	K1
2FL	K6	K3	K2
3FL	K5	K4	K3
4FL	K4	K5	K4
5FL	_	_	K5
灯室	K3	K6	K6

表-2 高さレベルに対応するセンサ番号

図-4 各灯台のフーリエスペクトル

明確に分かれており、非常に単純な振動をしていると考 えられる。

Z 方向の各ピークは X, Y 方向の各次固有振動数と一 致しており、その大きさは高次になるにしたがって大き くなっている。これは、高次モードになるにしたがって 曲げ変形の影響が大きくなっていることを示していると 考えられる^{8),9)}。ただし、曲げ変形がどの程度影響して いるかについては明らかになっていないため、今後さら に検討すべき事項である。

b) 清水灯台

図-4 中において X, Y 方向の1 次固有振動数と考え られるピークは 5~40Hz まで広い裾を持っており、その 中でもピークが乱立している。Z 方向のスペクトルも同 様の傾向を示しており、また、スウェイ変形による1次 固有振動数の低下率が12.00~17.76%と大きいことから, 清水灯台においては地盤の影響を大きく受けているもの

と考えられる。このため、地盤の影響を考慮しない図-5では、2次、3次固有振動数を分離することができてい る。

また、図-4のスペクトルの形に注目し、特徴別に分 類すると以下の3通りに分けることができる。

・1FL, 2FL (鋼板接着工法施工高さ以下)

- ・3FL (鋼板接着工法施工高さ付近)
- ・4FL, 灯室(鋼板接着工法施工高さ以上)

このスペクトルの形の変化は、宇品灯台および勝浦灯 台では確認されなかった。鋼板接着工法施工高さ付近で 振動性状が変化しているものと考えられるため, 地震時 に施工高さ付近において灯塔外周にひび割れが発生する 可能性がある。この点については、数値解析との比較に より、今後詳細に検討する予定である。さらに、同様の 補強がなされた灯台の被災履歴情報を収集し、数値解析 結果と照合し、補強工法の妥当性について検証したい。

Z 方向の各ピークは X, Y 方向の各次固有振動数とは 一致しておらず,曲げ変形による影響は小さいものと推 測される。

c) 勝浦灯台

X・Y 方向ともに 2 次以上の固有振動数でピークが乱 立しており,固有振動数を特定することができなかった。 この点に関しては今後数値解析とあわせて検討を行う予 定である。 Z 方向の各ピークは X, Y 方向の各次固有振動数とは 一致しておらず,曲げ変形による影響は小さいものと推 測される。

(3) 振動モード

(2)伝達関数により得られた1階(K7 あるいはK1 セン サ)に対する各階(K3~K6 あるいはK2~K6 センサ) の加速度応答倍率と位相情報を利用して1~3 次固有振

		固有振動数(Hz)								
		X 方向			Y 方向					
		1次	2 次	3次	1次	2 次	3 次			
宇品灯台	地盤-建物連成系	3.22	22.17	51.27	3.22	23.29	54.44			
	スウェイ固定系(K3/K7)	3.27	22.17	51.32	3.37	23.24	54.44			
清水灯台 -	地盤-建物連成系	6.45	23.97	57.52	6.10	33.84	57.03			
	スウェイ固定系(K6/K1)	7.32	28.17	57.47	7.42	33.84	57.03			
勝浦灯台	地盤-建物連成系	3.13	23.39	37.50**	3.61	28.32	37.55**			
	スウェイ固定系(K6/K1)	3.27	23.34	37.50**	3.71	28.32	37.55 [*]			

表-3 各灯台の固有振動数

図-5 各灯台の 1FL に対する各階の伝達関数

図-6 各灯台のY方向の振動モード図

動モードを描く。高さは灯室位置を1として無次元化し、 加速度応答倍率は各モードにおいて最大値を1として無 次元化した。得られたY方向の各次振動モード図を図-6に示す。X方向の振動モード図は、応答の大きさは異 なるがモード形状の傾向はほぼ同様であったため、ここ では省略する。

図-6より、1次振動モードにおいては、各灯台共に ほぼ同様の形となっており、鋼板補強による1次モード への影響は少ないものと考えられる。一方、2次、3次モ ードでは未補強の宇品灯台と比べ、清水灯台と勝浦灯台 では補強された灯台下部の応答倍率が低減し、かつ、2 次より3次モードの低減率が大きくなっており、補強に より振動が抑制されていることが分かる。

5. まとめ

補強工法の異なる3基の灯台の常時微動計測によって 得られた知見は、灯塔への補強が実施されていない場合 は、各次固有振動モードはそれぞれ分離しているが、鋼 板による巻き立て工法が採用された場合は、2次・3次固 有振動モードが複雑になり、固有振動数の特定が困難と なった点である。

今後は、数値解析との比較・検証を行うことで、2次・ 3 次固有振動数の特定が困難になった要因とそれが地震 時の挙動にどう影響してくるかについて検討を行う予定 である。

謝辞

本研究は、公益財団法人大幸財団の平成26年度第24 回自然科学系学術研究助成により進められた研究成果の 一部である。また、灯台の調査にあたり、海上保安庁、 第六管区海上保安本部、第三管区海上保安本部、広島海 上保安部,清水海上保安部,勝浦海上保安署の方々に便 宜を図っていただきました。ここに厚く御礼申し上げま す。

参考文献

- 灯台施設調査委員会,灯台施設保全委員会編:明治 期灯台の保全,財団法人日本航路標識協会,2001.3
- 五十嵐耕:東日本大震災による航行援助施設の被害 と復旧,電波航法研究会,平成24年度第1回研究 会,2012.5
- 日高みなみ,佐藤大輔,青木孝義,高瀬剛:RC 造 灯台の振動特性,コンクリート工学年次論文集, Vol.36, No.2, pp.805-810, 2014.7
- 4) 日髙みなみ,青木孝義:常時微動測定による灯台の 振動特性推定,日本建築学会技術報告集,第21巻, 第47号,pp.71-76,2015.2
- 5) 中村豊: H/V スペクトル比の基本構造,物理探査学 会地震防災シンポジウム,2008.1
- 国土交通省住宅局建築指導課,日本建築主事会議, 日本建築センター:5.5 地震力,2007 年版建築物 の構造関係技術基準解説書,日本建築センター, pp.260-271,2007
- 7) 海上保安庁:航路標識構造物設計基準,保灯工第30 号,1997.3
- 佐武直紀,中島秀雄:水平・上下動同時測定による 高層建物の振動特性評価,日本建築学会関東支部研 究報告集,66巻,pp.61-64,1996.3
- 9) 護雅史,神原浩:鉄骨高層建物の上下方向振動性状
 に関する検討,日本建築学会技術報告集,第5号, pp.52-56,1997.12