論文 コンクリート中における粗骨材のひずみ挙動に関する一検討

熊野 知司^{*1}·檜田 篤志^{*2}·葉山 和則^{*3}

要旨: コンクリートの変形特性を記述する上で,粗骨材と周囲のコンクリートの付着特性を明らかにすることが重要である。本研究は,コンクリート中の粗骨材のひずみを測定することを目的に,小型の埋込み型ゲージに着目し,モルタル製疑似骨材を用いて適用性の検討を行った。さらに,ゲージを埋め込んだ粗骨材を コンクリート中に配置した供試体の圧縮載荷試験を行った。その結果,粗骨材のひずみは供試体ひずみと骨 材コアのひずみとの中間的な挙動となること,粗骨材体積比が大きくなるほど,水セメント比が小さくなる ほど,付着の程度は大きくなり,その結果,推定されるずれ剛性も大きくなることが明らかになった。 キーワード:応力~ひずみ関係,弾性係数,疑似骨材,粗骨材,埋込み型ゲージ,ずれ剛性

1. はじめに

コンクリートの弾性挙動やクリープ,収縮などの変形 特性を論じる際にはコンクリート中の粗骨材の役割を明 らかにする必要がある。このような観点での研究は、従 来から実施されてきた¹⁾。粗骨材の役割としては、変形 に対する剛性の高い材料としてのいわゆる増量効果とモ ルタルの変形に対する拘束効果として整理されている。

コンクリートの弾性挙動に対して, 粗骨材とモルタル マトリックスの二相系材料として取り扱う複合モデルが 古くから検討されてきた。最も古典的なモデルは、直列 モデルと並列モデルである2)。直列モデルは、先述した 増量効果に着目したモデルで、粗骨材とモルタルマトリ ックスの間に付着はない。一方, 並列モデルは拘束効果 にも着目したもので, 粗骨材とマトリックスは完全に付 着しているとするものである。Hashin-Hansen モデル²⁾ は、粗骨材粒子によって拘束されるモルタルマトリック スを球状モデルで表現したものでポアソン比を考慮した 実用性に優れたモデルである。このモデルも粗骨材とモ ルタルマトリックスの付着は完全であると仮定されてい る. これらのモデルに対して、Hirsch³⁾は、格子状に配置 した粗骨材とモルタルの界面の付着の影響で応力が正弦 状に変化するとして解析を行い、直列モデルと並列モデ ルの和に付着の影響を考慮する実験定数を掛け合わせた モデルを提案している。このように、コンクリートの弾 性挙動における複合モデルは多数提案されているが、モ デルの適用に際しては, 粗骨材とモルタルマトリックス の付着の状態を的確に把握することが重要になるといえ る。

粗骨材とモルタルとの付着についても,多くの研究が 行われてきた。福田⁴は,表面を平面に加工した種々の 岩石にセメントペーストを塗布し,建研式接着試験機に より付着強度を求めている。川上ら⁵は、厚さ 3mm に切 り出した岩石片を曲げ型枠内中央にセットし、両側にセ メントペーストを打ち込んだ供試体を用いて中央一点載 荷による曲げ試験を行い、得られた曲げ強度を付着強度 として評価している。二羽ら⁶は、高強度コンクリート の円柱供試体を骨材に見立て、半円形に切断して普通コ ンクリートを残りの半円に打ち継ぐ方法で人工的な界面 を形成し、割裂引張強度を付着強度としている。この他 にも報告があるが、ほとんどが付着強度に関する研究で あり、粗骨材とモルタル界面でのひずみ挙動に関する研 究が少ないのが現状である。しかし、先述したようにコ ンクリートの変形特性を論じる上では骨材とモルタル界 面の付着状態を把握しておく必要があり、その場合には、 付着強度だけでなくひずみ挙動の観察も重要であると考 えられる。

そこで、本研究は、コンクリート中での粗骨材のひず みを測定し、粗骨材界面での付着性状に考察を加えるこ とを目的に計画した。粗骨材のひずみの測定には、小型 のひずみゲージを骨材中に埋め込む方法の検討を行った。 さらに、水セメント比および粗骨材体積比を実験要因に とったコンクリート供試体の圧縮載荷試験を行い、界面 での付着性状を評価するとともに、界面での応力ひずみ 関係の推定を試みた。本論文は、一連の検討結果を報告 するものである。

2. 粗骨材のひずみ測定方法の検討

2.1 実験概要

粗骨材のひずみ測定には、検長 1mm (ベース寸法 5.6mm×1.4mm),抵抗素子は銅-ニッケル系の電気抵抗 線式ひずみゲージを使用した。図-1 にひずみゲージを 示す。このゲージは、工場設備等のボルトの締付けトル

*1 摂南大学 理工学部都市環境工学科教授 博(工) (正会員)

*3 (株) 東京測器研究所 大阪営業所所長

^{*2} 村本建設(株)営業統括部

図-1 埋込み型ひずみゲージ

ク管理用に開発されたゲージである。ゲージが小型であ るため、比較的大きな粗骨材であれば削孔・固定が可能 であると考えたものである。ただ、金属であるボルトよ りはるかに弾性係数が小さな材料への使用であること、 高 pH 環境下の使用となること、供試体作製から養生の 期間は高い湿度条件にさらされることなどが課題として 考えられた。このうち、湿度条件に関しては、樹脂の中 で固定されているゲージ本体部より、むしろ、被覆線と の結線部までのリード線部分の防湿が課題になると考え られた。そこで、ゲージ本体から被覆線までのリード線 を供試体作製の都合から 200mm とし、この部分に防水 加工した線を使用することにした。一方、弾性係数の違 いや高 pH 環境下での使用に関しては、モルタルを疑似 骨材とした供試体を作成し、載荷試験を行って確認する ことにした。

図-2 に疑似骨材(モルタル)の概要を示す。疑似骨 材用モルタルの配合は, W/C=50%, S/C=2とした。使 用材料を表-1に、配合を表-2に示す。疑似骨材(モル タル)は、φ50×100mmの供試体を使用し、最初、高さ 80mm まで打込んだ。翌日に脱型し、材齢 28 日まで水中 したボール盤を使用して疑似骨材に対して鉛直方向に削 孔し、高さ中央付近になるようにゲージを熱硬化性樹脂 を用いて固定した。樹脂の硬化時温度は、110℃を2時間 維持した。疑似骨材は再度、型枠に戻し、リード線を型 枠の継目から外部に垂らすようにセットした上で、高さ 100mmになるように上部のモルタルを打込んだ。以後の 養生は、封緘養生とし、20℃±2℃の恒温室で上部モルタ ル打込み後28日間養生した。再脱型後,供試体の側面2 カ所に検長 20mm のひずみゲージを貼付し、アムスラー 型耐圧試験機を用いて圧縮載荷試験を行った。

2.2 実験結果および考察

図-3 に圧縮載荷試験によって得られた埋込みひずみ と表面ひずみとの関係の一例を示す。ここで表面ひずみ

図-2 疑似骨材の概要

表-1 疑似骨材用モルタルの使用材料

材料	種類 ・ 主成 分等				
. 	普通ポルトランドセメント				
セメント	密度 3.15g/cm ³ ,比表面積3380cm ² /g				
	揖斐川産川砂				
細骨材	表乾密度 2.65g/cm ³ , 粗粒率2.59				
	吸水率 1.17%				

表-2 疑似骨材用モルタルの配合

水セメント比	単位量(kg/m³)					
<i>W/C</i>	水	セメント	細骨材			
(%)	W	С	S			
50	318	636	1272			

図-3 埋込みひずみと表面ひずみとの関係

は、2つのゲージの平均値を示したものである。図より、 疑似骨材に埋め込んだひずみゲージによる測定値は、表 面ひずみとほぼ同程度の値となっていることがわかる。 鋼材に比べて弾性係数が小さい材料に適用した場合、ゲ ージが大きなひずみに追随できずに埋込み型ゲージのひ ずみが極端に小さくなる等の不安定な挙動になると考え られる。本実験の結果では、埋込み型ゲージのひずみが 表面ひずみと同程度で安定していることから、埋込み型

表-3 モルタルの使用材料

材料 種類・主成分等 セメント 普通ポルトランドセメント 密度 3.15g/cm ³ , 比表面積3380cm ² /g 描斐川産川砂 細骨材 表乾密度 2.65g/cm ³ , 粗粒率2.59 吸水率 1.17% 和骨材 茨木産砂岩砕石 粗骨材 医max 40mm, 表乾密度 2.68g/cm ³ 実積率 58.4% 吸水率 0.68% 混和剤 高性能AE減水剤標準型(ポリカルボン酸系)(SP) 消泡剤(ポリアルキレングリコール誘導体)		
セメント 普通ポルトランドセメント 密度 3.15g/cm ³ , 比表面積3380cm ² /g 揖斐川産川砂 細骨材 表乾密度 2.65g/cm ³ , 粗粒率2.59 吸水率 1.17% 和骨材 茨木産砂岩砕石 粗骨材 Gmax 40mm, 表乾密度 2.68g/cm ³ 実積率 58.4% 吸水率 0.68% 混和剤 高性能AE減水剤標準型(ポリカルボン酸系)(SP) 消泡剤(ポリアルキレングリコール誘導体)	材料	種類・主成分等
密度 3.15g/cm ³ , 比表面積3380cm ² /g 揖斐川産川砂 細骨材 表乾密度 2.65g/cm ³ , 粗粒率2.59 吸水率 1.17% 蒸木産砂岩砕石 粗骨材 Gmax 40mm, 表乾密度 2.68g/cm ³ 実積率 58.4% 吸水率 0.68% 混和剤 高性能AE減水剤標準型(ポリカルボン酸系)(SP) 消泡剤(ポリアルキレングリコール誘導体)	セイント	普通ポルトランドセメント
·	セメント	密度 3.15g/cm ³ ,比表面積3380cm ² /g
細骨材 表乾密度 2.65g/cm ³ , 粗粒率2.59 吸水率 1.17% 茨木産砂岩砕石 粗骨材 Gmax 40mm, 表乾密度 2.68g/cm ³ 実積率 58.4% 吸水率 0.68% 混和剤 高性能AE減水剤標準型(ポリカルボン酸系)(SP) 消泡剤 (ポリアルキレングリコール誘導体)		揖斐川産川砂
吸水率 1.17% 茨木産砂岩砕石 細骨材 Gmax 40mm,表乾密度 2.68g/cm ³ 実積率 58.4% 吸水率 0.68% 混和剤 高性能AE減水剤標準型(ポリカルボン酸系)(SP) 消泡剤 (ポリアルキレングリコール誘導体)	細骨材	表乾密度 2.65g/cm ³ , 粗粒率2.59
Ř木産砂岩砕石 Gmax 40mm,表乾密度 2.68g/cm ³ 実積率 58.4% 吸水率 0.68% 混和剤 高性能AE減水剤標準型(ポリカルボン酸系)(SP) 消泡剤(ポリアルキレングリコール誘導体)		吸水率 1.17%
粗骨材 Gmax 40mm, 表乾密度 2.68g/cm ³ 実積率 58.4% 吸水率 0.68% 混和剤 高性能AE減水剤標準型(ポリカルボン酸系)(SP) 消泡剤(ポリアルキレングリコール誘導体)		茨木産砂岩砕石
実積率 58.4% 吸水率 0.68% 高性能AE減水剤標準型(ポリカルボン酸系)(SP) 消泡剤(ポリアルキレングリコール誘導体)	粗骨材	Gmax 40mm, 表乾密度 2.68g/cm3
混和剤 高性能AE減水剤標準型(ポリカルボン酸系)(SP) 消泡剤(ポリアルキレングリコール誘導体)		実積率 58.4% 吸水率 0.68%
^(此711) 消泡剤(ポリアルキレングリコール誘導体)	泪和刘	高性能AE減水剤標準型(ポリカルボン酸系)(SP)
	此们们	消泡剤(ポリアルキレングリコール誘導体)

図-4 供試体の概要

[水セメント比	単	位量(kg/m³)	混和剤(C×%)		15打	空気量	圧縮強度	弾性係数
	<i>W/C</i>	水	セメント	細骨材			フロー			
	(%)	W	С	S	SP	消泡剤	mm×mm	(%)	(N/mm²)	(kN/mm²)
	30	318	1060	916	1.0	1.0 0.6 0.04	164×162	0.12	47.1	29.30
	40	318	795	1138	0.6		171×168	1.43	43.2	29.25
	50	318	636	1272	0.04	176×167	1.13	40.6	25.56	
	60	318	530	1360			192×183	1.12	30.6	24.12

表-4 モルタルの配合および諸物性

ゲージと疑似骨材の接着は良好で,ほぼ一体の挙動をし ていると判断できる。しかしながら,埋込みひずみと表 面ひずみの傾きが完全に1.00とはならなかったため,本 研究では,埋込み型ゲージの測定値に3体の実験結果に よる傾きの平均値1.016を校正係数として乗ずることに した。なお,ゲージのリード線が供試体の上部モルタル 打込み後,28日間高いpH環境に曝されることになった。 もし,リード線の防水加工に影響が出た場合には,ひず みの測定値が不安定になることが予想されたが,測定結 果は良好であり,pH環境による影響はないと判断された。

3. コンクリート中の粗骨材の挙動に関する実験 3.1 実験概要

実験要因には粗骨材体積比 *V_g*と水セメント比 *W/C* を とり、*V_g*は、0.1、0.2、0.3m³/m³の3水準を、*W/C*は、 30%、40%、50%、60%の4水準とした。**表**-3にモルタ ルの使用材料の一覧を示す。粗骨材は最大寸法40mmの 砂岩(大阪府茨木産)とした。なお、同じ砕石工場で採 取された砂岩の拳大の岩塊からコアドリルを用いて 20mm×約40mmのコアを3個採取し、弾性係数*E_g*の測 定を行った。骨材コアの弾性係数*E_g*の平均値は、 62.9kN/mm²である。

本実験では、粗骨材体積比 V_sを実験要因にとっている ため、供試体中の粗骨材量を厳密にする必要がある。そ こで、1 供試体ごとに所定量のモルタルをモルタルミキ サーを用いて練り混ぜ、別途計量した粗骨材を混ぜ込み、 コンクリートとすることにした。表-4 にモルタルの配 合および諸物性の一覧を示す。W/C=50%、S/C=2 を基準 の配合として、単位水量 Wを一定とした。15 打フローの目標値は、180±20mm として W/C=30%および 40%の場合にはポリカルボン酸系の高性能 AE 減水剤 (SP)を使用して調整した。

図-4 に供試体の概要を示す。供試体は ϕ 150×300mm の円柱供試体とした。ひずみゲージを埋め込む粗骨材は, 30mm ふるいを通過し、20mm ふるいに残留するものの 中から選定し、1供試体に2個とした。粗骨材上は上端 か約 100mm, 粗骨材下は, 上端から約 200mm の位置に 設置した。粗骨材中へのひずみゲージの埋込み方法は, 2.1 で示したのと同様である。疑似骨材と異なり、不定形 であるため粗骨材を万力で固定してボール盤で削孔した 孔に熱硬化性樹脂で固定した。粗骨材表面にはひずみゲ ージの設置方向とそれに直交する十字線を引き、型枠内 に設置する際に埋め込んだひずみゲージが鉛直にするた めの目印にした。供試体表面には、検長 120mm のひず みゲージを2枚貼付した。 圧縮載荷試験は, 容量 1000kN のアムスラー型耐圧試験機で行い、荷重計、粗骨材ひず みおよび供試体ひずみは静ひずみ測定器(データーロガ ー)により計測した。

3.2 実験結果および考察

本実験において,ひずみゲージを埋め込んだ粗骨材の 供試体中への設置は,ゲージが鉛直方向になるように粗 骨材表面に記した十字線を目印に行った。しかし,供試 体の締固め作業や型枠の移動など,硬化するまでの振動 や衝撃の影響で,粗骨材の向きが鉛直からずれてしまう ことが予想された。そこで,圧縮載荷試験が終了した供 試体を割裂してひずみゲージを埋め込んだ粗骨材を露出

図-5 測定ひずみの補正

させ、図-5に示すように、粗骨材に記された十字線と コンクリートの鉛直線の差から式(1)および式(2)を用い て測定されたひずみ ε_c *の補正を行った。

$$\theta = \tan^{-1}(a/b) \tag{1}$$

 $\varepsilon_c = \varepsilon_c^* / \cos \theta$ (2)

なお、本実験における粗骨材に埋め込んだひずみゲージの鉛直方向との角度は最大でも10°以下であり、ひずみの補正は測定値に対してわずか1.5%程度である。

図-6および図-7に、本実験において得られた供試体 の応力と各ひずみとの関係の一例を示す。図中には、砂 岩骨材コアの弾性係数の直線も併せて示している。また, 粗骨材に埋め込んだゲージによるひずみも示しているが, このひずみはあくまでも供試体の応力が任意の値のとき に観測された粗骨材のひずみであり、粗骨材の応力~ひ ずみ曲線が描かれているわけではない。なお、これらの 図において、粗骨材のひずみが供試体のひずみと一致す る場合は、ゲージを埋め込んだ粗骨材が周囲のコンクリ ートと完全に付着した挙動となっており、粗骨材のひず みが粗骨材の弾性係数の直線と一致すれば付着が全くな い状態と考えられる。図-6および図-7より、比較的応 力が小さい範囲では, 粗骨材のひずみと供試体のひずみ に大差がないが、応力が大きくなるにつれて粗骨材のひ ずみと供試体のひずみの差が大きくなる傾向がみられた。 ただし、粗骨材のひずみは、骨材コアの弾性係数のひず みよりも大きめであり、供試体ひずみとの中間的な挙動 となった。Hirsch³⁾の直列モデルと並列モデルの重ね合わ せという考えは、このような中間的な挙動を表現してい るものと考えられる。

ゲージを埋め込んだ粗骨材と周囲のコンクリートとの 付着状態を定量的に評価することを目的に、供試体応力 と個々の粗骨材のひずみの関係の傾き *A_g*と供試体の弾 性係数 *E_c*との比を *R_c*と定義した。

 $R_c=A_g/E_c$ (3) A_g の算定においては、弾性係数の算定と同様に供試体

図-6 供試体応力~ひずみ関係の一例

図-8 $V_{g} \geq R_{g} \geq 0$ 関係

の強度の 1/3 の応力に対応する個々の粗骨材ひずみと原 点との割線の傾きとした。式(3)において *R*_cが1になると 完全に付着していることを示し, *R*_cが大きくなるほど付 着が小さくなることを示している。なお,供試体の弾性 係数にもよるが *R*_cがおおむね3以上になると付着が全く ない状態と考えられる。

図-8に、粗骨材体積比と R_c との関係を示す。図より、 R_c の値にはばらつきが大きいが、粗骨材体積比 V_g が大き くなると R_c が小さくなり、すなわち、付着の程度が大き くなる傾向にあることがわかる。また、 R_c のばらつきも 比較的小さくなる傾向があり、 $V_g=0.3\text{m}^3\text{/m}^3$ の場合には、

 $R_c=1.0\sim1.8$ の範囲となった。粗骨材の体積が増加することで粗骨材の表面積が増加し、付着に寄与する面積も増加すること、粗骨材が増えることによって骨材どうしの接触の機会が増え応力伝達がされやすくなること等が関係していると思われる。

図-9に水セメント比 W/C と R_c との関係を示す。図よ り, V_g=0.1m³/m³の場合には, ばらつきが大きく, W/C と R_c との間に明確な関係は見られないが、 $V_g=0.2 \text{m}^3/\text{m}^3$ と $0.3 \text{m}^3/\text{m}^3$ の場合には、 W/Cが小さいほど R_c は小さくな る傾向が見られた。一般的なコンクリートの V。は 0.3 m³/m³~0.4m³/m³である。最も近い V_g=0.3 m³/m³の場合を 見ると、W/C=30%で Rcは、1.0 近傍となり、ほぼ完全に 付着した状態となっているといえる。一方, W/C が 40% 以上の場合には、 Rcは大きくなり、1.3~1.7 程度の値と なっていることがわかる。川上⁷⁾は,粗骨材とマトリッ クスの付着が完全であることを仮定した Hashin-Hansen モデルの適用にあたって W/C が 30%より大きくなるに したがって、モデルによる弾性係数の推定値より小さく なることを見出し、補正係数を提案しているが、本実験 で得られた W/C が 40%以上の場合に R_cが大きく, すな わち、付着の程度が小さくなることに関係していると推 察される。

4. 付着面におけるずれ応力とずれひずみ関係の推定

図-6 および図-7 に示した供試体応力~ひずみ関係 において,任意の応力値に対する供試体ひずみε_cと粗骨 材のひずみε_gとの差は粗骨材と周囲のコンクリートが付 着面ではく離が生じた結果,観察されたものである。そ こで,ここでは二相系複合モデル等における界面での付 着を考える場合の情報を得ることを目的に,付着面での 応力~ひずみの関係の推定を試みた。本研究では,軸方 向のひずみのみを測定しているため,単純な一軸圧縮応 力状態を仮定して考察することにした。図-10 に示すよ うに供試体に垂直応力σ_cが作用しているとき,粗骨材と

図-11 ずれ応力とずれひずみの関係の一例

周囲のコンクリートの鉛直方向と角度 φ をなす付着面に 発生する応力をずれ応力 τ_c と定義すると、 τ_c は式(4)によ り推定される。

 $\tau_c = (\sigma_c \sin 2\varphi)/2$ (4) 一方,供試体ひずみ ε_c と粗骨材のひずみ ε_g の差が粗骨 材と周囲のコンクリートとの付着面に生じたずれひずみ の軸方向成分であると仮定すると,ずれひずみ γ_c は式(5) で推定される。

$$\gamma_c = (\varepsilon_c - \varepsilon_g) \sin \varphi \tag{5}$$

図-13 W/C とずれ剛性の推定値 G_cとの関係

式(4)において、 φ =45° でずれ応力は最大になる。実際 にどのような角度をもつ付着面からはく離が始まるのか は不明であるが、本研究では、ずれ応力が最大となる φ =45° の付着面がはく離の起点になると仮定して検討 を行うことにした。

図-11 および図-12 に、一般的なコンクリートに近い V_g =0.3m³/m³の場合の推定したずれ応力 τ_s とずれひずみ γ_s との関係の一例を示す。図-11 より、W/C=50%の場合の ずれ応力とずれひずみの関係は、上に凸な曲線となり、応力が大きくなるにつれて付着面でのずれひずみが加速 度的に大きくなっている。一方、図-12 より、W/C=30% では、実験上の誤差の影響からか、載荷初期のずれひず みが負の値で推定されている部分もあるが、全体的には ひずみが小さく傾きが大きな曲線となっている。本研究 では、推定したずれ応力とずれひずみ関係の最大応力の 1/3 の割線の傾きをずれ剛性の推定値 G_c と定義すること にした。

図-13に W/C とずれ剛性の推定値 G_c との関係を示す。 一般的なコンクリートの範囲に近い V_g =0.3m³/m³ に注目 すると、W/C =40~60%では、W/C が小さくなるにつれ て G_c は徐々に大きくなる傾向にあり、W/C=30%の場合 になると、 G_c は極端に大きな値となっている。骨材と周 囲のコンクリートとの付着が完全であるならば、理論的 には G_c は、無限大になる。極端に大きなずれ剛性は、付 着が完全な状態に近いことを示しており、図-9 におい て、 V_g =0.3m³/m³、W/C=30%で R_c が1 近傍、すなわち、 ほぼ完全に付着している状態であったことを反映してい るものと考えられる。二相系複合モデル等でマトリック スと骨材界面の付着を考慮する場合には、W/C による付 着状態の変化を考えに入れる必要があるといえる。

5. まとめ

本研究は、コンクリート中での粗骨材のひずみ挙動を 測定し、粗骨材界面での付着性状に考察を加えることを 目的に実施したものである。本研究を通して得られた成 果を以下に列挙する。

- (1) モルタル製の疑似骨材の表面ひずみと埋込み型ゲージのひずみはほぼ一致し、埋込み型ゲージを使用してコンクリート中の粗骨材のひずみ測定が可能であると判断できた。
- (2)供試体応力とひずみとの関係より、粗骨材のひずみは、供試体ひずみと骨材コアのひずみとの中間的な 挙動となった。
- (3) V_g が大きくなるほど、W/Cが小さくなるほど、付着の程度は大きくなり、特に、 $V_g=0.3$ m³/m³、W/C=30%では、ほぼ完全に付着していると考えられた。
- (4) ずれ剛性 G_cは, W/C が小さくなるほど大きくなり, W/C=30%では極端に大きな値となり,ほぼ完全に付 着している状態を反映していると考えられた。

参考文献

- 1) 趙力采,小林一輔:コンクリートの弾性係数における複合特性,コンクリート・ジャーナル, Vol.12, No.7, pp.27-34, 1974.7
- Hansen, T. C. : Influence of Aggregate and Voids on Modulus of Elasticity of Concrete, Cement Mortar, and Cement Paste, Journal of the American Concrete Institute, No.62, pp.193-216, Feb.1965
- Hirsch, T. J. : Modulus of Elasticity of Concrete Affected by Elastic Moduli of Cement Paste Matrix and Aggregate, Journal of the American Concrete Institute, No.59, pp.427-451, Mar.1962
- 4) 福田禮一郎:コンクリート用骨材とセメントペーストとの付着に関する実験的研究,日本建築学会論文報告集,第140号,No.7, pp.7-16, 1967.10
- 5) 川上英男,岡田徳一:骨材岩質が付着強度及びモル タル強度に及ぼす影響,福井大学研究報告,第32
 巻,第1号, pp. 35-46, 1984.3
- ご羽淳一郎,松尾豊史,岡本亨久,田邊忠顕:セメントの種類とコンクリートの破壊力学特性値に関する実験的研究,土木学会論文集,No.550/V-33, pp. 43-52, 1996.11
- 川上英男:コンクリートの弾性係数推定試案,コン クリート工学年次論文集, Vol.26, No.1, pp.417-422, 2004.7