論文 日の字断面 CFT 柱の耐震性能に関する実験的研究

李 文聰*1

要旨:近年,海外では、450m以上の超高層建築物および建造物の高さ・規模・形は続々更新され、時代のニ ーズ・意匠設計に応じて、優れた耐震性能・耐風圧性能・耐テロ性能を有する新しい構造部材と構造形式が 要求されている。本研究では、新しい柱要素である日の字断面を有する CFT 柱を提案する。従来の SRC 柱と 巨大な芯筋がある RC 柱及び本研究で提案した日の字 CFT 柱について、一定軸圧縮力下(軸力比=0.3)の正 負繰返し水平力載荷実験を行った。その結果、日の字 CFT 柱は耐震性能が巨大な芯筋のある RC 柱より遥か に優れ、従来の SRC 柱より同等以上であり、超高層ビルの巨大柱に適用する可能性があると考えられる。 キーワード:日の字断面、CFT 柱、メガ柱、耐震性能、非線形挙動

1. 序

近年,海外では、450m 以上の超高層建築物および建 造物の高さ・規模・形は続々更新され,時代のニーズ・ 意匠設計に応じて,優れた耐震性能・耐風圧性能・耐テ ロ性能を有する新しい構造部材と構造形式が要求されて いる。超高層建築物の構造形式の中,巨大柱は重要な構 造部材である。その中,一本あたりの面積が約20平米の メガ SRC 柱も応用されている¹⁾⁻³⁾。応用されているメガ SRC 柱断面の一例を Fig. 1 に示す。この例のメガ SRC 柱 は箱型で,鉄骨比が5%で,建物の周辺に設置されてい る。本メガ SRC 柱に当該する超高層建築物の架構形式, 構造設計方針およびメガ SRC 柱に求められる性能につ いては文献2)と文献4)を参照されたい。一方,海外の 高層ビルの設計において,鉄骨比が30%を超える複数の 中空であるメガ SRC 柱も存在している⁵⁾。Chen ら⁶は複 数の中空がある鉄骨比の大きいメガ SRC 柱は優れた履

歴挙動を有していることを明らかにした。

しかし、応用されているメガ SRC 柱は配筋が複雑で、 施工も大変である。そこで、本研究では、Fig. 2 に示す ような新しい柱要素である日の字断面を有する CFT 柱 (以下,日の字CFT柱と呼ぶ)を提案する。日の字CFT 柱は従来のコンクリート充填鋼管柱より発展をしてきた ものであり, SRC 柱と比べて複雑な主筋とせん断補強筋 の配筋工事、コンクリート打設の為の型枠工事を省略で きるというメリットがある。日の字 CFT 部材の横断面は なるべく曲げモーメントを受ける方向に断面二次モーメ ントの大きい長方形にする。Fig. 2 に示すように、曲げ モーメントに最も貢献するフランジは他の鋼板より相対 的に厚くして、外側に配置する。また、断面の安定性を 維持する為に、フランジ同士は中央領域で鋼板(H形鋼 のウェブを機能するもの)と接合させて、H 形鋼になる ように製作して、H形鋼の機能を確保する。その後、側 面で型枠且つ外ウェブを機能する鋼板(サイドプレート) と接合させる。接合方法は母材と同じ耐力が期待できる 突合せ溶接接合を推奨する。続いて、接合された二つの スチールチューブにコンクリートを充填させ、日の字断 面形式の鋼・コンクリート合成部材になる。コンクリー トの充填に伴い、フランジとウェブの座屈を防ぎ、H形 鋼の機能を充分に発揮させる。即ち、充填されたコンク リートは H 形鋼を補剛するものになる。また,充填され たコンクリートはサイドプレートの局部座屈の抑制にも 期待できる。曲げモーメントを受ける方向にサイドプレ ートを取付けることによって、鋼板・コンクリートの一 体化による応力伝達機構は有利になる。日の字断面形式 の鋼・コンクリート合成部材を製作する際に、型枠工事 も省略できる。日の字断面部材は曲げ剛性, 軸剛性, 曲 げ耐力と軸耐力を期待できる構造材と考えられる。

本研究の目的は、建物の周辺に設置されているメガ柱

Fig. 2 Proposed boxed I-shaped sectional CFT column

の低層部を対象にして、一定軸圧縮力下繰返し水平荷重 を受ける日の字 CFT 柱の弾塑性挙動を実験により明ら かにすることである。また、比較するため、日の字 CFT 柱と同様な鉄骨比を有する SRC 柱試験体、日の字 CFT 柱の鉄骨比に近似な芯筋比を有する RC 柱試験体もそれ ぞれ1体を用意した。鉄骨比が同じである場合、日の字 CFT 柱は SRC 柱より同等以上の耐震性能を有すれば、新 しい柱要素が生まれ、超高層ビルの設計に繋がるのでは ないかと予想される。

2. 実験計画

試験体は、日の字 CFT 柱を1体、SRC 柱を1体、RC

柱を1体の合計3体である。これらの力学的材料定数を Table1に,試験体一覧表をTable2に,各試験体の詳細 を Fig.3に示す。柱の形状は全試験体共通で柱断面は 180mm×90mm,内法高さは800mmである。但し,柱断 面のせいDと幅Bの比(D/B=2.0)は文献7)の柱の場合 の上限値(2.0)としている。

SRC 柱の鉄骨比は一般的に 3%~15%範囲内 8-15)であ るが、本研究では高い鉄骨比を対象として、柱部分の鉄 骨比は普通の SRC 柱の鉄骨比の範囲(3%~15%)を超 え, 日の字 CFT 柱試験体 14-CFT-0.3 と SRC 柱試験体 14-SRC-0.3 の柱部分の鉄骨比を 19.6%に設定している。 但し、14-CFT-0.3の柱の鉄骨部分には SS400の PL-3.2 と SN400B の PL-9 の鋼板で突合せ溶接をされているが, 14-SRC-0.3 の柱の鉄骨部分には SN400B の PL-12 の鋼板 で突合せ溶接をされている。試験体 14-SRC-0.3 の柱と RC 柱試験体 14-RC-0.3 の柱の主筋比 p。は文献 5)のメガ SRC柱と同様で2.63%に設定して,両柱の主筋はSD295A の D10 の異形鉄筋を6本使用している。せん断補強筋に は、ステンレス鋼材 SUS304 の 4¢を使用し、間隔は 32.7mm で、載荷方向のせん断補強筋比 pwは 0.85%であ る。14-RC-0.3 の中央に #65 の芯筋 (S25C の丸鋼) が設 置されている。芯筋比は 20.5% である。

Fig. 4 に示す建研式加力装置により、一定軸圧縮力下

Categories	<i>a</i> (mm ²)	f_y (MPa)	$\mathcal{E}_{y}\left(\% ight)$	E_s (GPa)	σ_u (MPa)	\mathcal{E}_{u} (%)
4ϕ	13	627		203	850	25.1
D10	71	378	0.181	208	540	24.4
<i>ф</i> 65	3317	323	0.140	230	522	28.7
PL-3.2		376	0.164	229	467	38.3
PL-9		335	0.144	233	496	44.9
PL-12		331	0.149	222	496	48.6

 Table 1
 Mechanical properties of reinforcement

Note : a = cross-sectional area, $f_y = \text{yield strength of steel}$, $\varepsilon_y = \text{yield strain of steel}$, $E_s = \text{modulus of elasticity}$, $\sigma_u = \text{ultimate strength}$, $\varepsilon_u = \text{ultimate strain.}$

Table 2Column specimens

Specimens	$\eta_0 = 0.3$	$\sigma_{\!B}({ m MPa})$	p_g (%)	$p_w(\%)$	p_{cs} (%)	$p_{s}(\%)$	Reinforcement	
14-CFT-0.3	$N/(A_{sp};f_{yp}+A_c;\sigma_B)$	66.3					Boxed I-shaped steel	
14-SRC-0.3	$N/(A_{sp} \cdot f_{yp} + A_c \cdot \sigma_B + A_{sl} \cdot f_{yl})$		2.64	0.85		19.6	Longitudinal reinforcement + hoops + encased H-shaped steel	
14-RC-0.3	$N/(A_{cs} f_{ycs} + A_c \cdot \sigma_B + A_{sl} \cdot f_{yl})$	66.6			20.5		Longitudinal reinforcement + hoops + core steel bar (ϕ 65)	

Note : η_0 = axial force ratio, σ_B = compressive strength of concrete cylinder, $p_g =$ longitudinal reinforcement ratio, p_w = transverse reinforcement ratio, p_{cs} = core steel bar ratio, p_s = steel plate ratio, N = axial load oncolumn, A_{sp} = area of steel plate in cross-section, A_c = area of concrete in cross-section, A_{sl} = area of longitudinal reinforcement in cross-section, A_{cs} = cross-sectional area of core steel bar, f_{yp} = yield strength of f_{vl} = yield strength of longitudinal reinforcement, steel plate, f_{vcs} = yield strength of core steel bar.

Fig. 3 Reinforcement details of specimens

Fig. 4 Details of test setup

Fig. 5 Loading program

の正負繰り返し水平加力実験を行った。但し,文献 2)の メガ SRC 柱の設計用限界軸力が部材断面の圧縮強度の 0.3 倍程度であることから軸力比 no は 0.3 とした。Fig. 5 に載荷プログラムを示している。載荷プログラムは,部 材角 R は 0.25%から 0.5%まで 0.25%の増分で,0.5%から 3.0%まで 0.5%の増分で 3 回ずつ繰り返しの強制変形を 与え,それでも靱性能が期待できる場合は R=4.0%と 6.0%を1回ずつ正負繰り返した。

3. 実験結果及び検討

Fig. 6に水平荷重 *Q*と部材角 *R*の関係および材軸方向 の平均ひずみ*ε*, と *R*の関係を示す。*R*は柱部材の両端を 結んだ直線が鉛直線となす角度であるが,*ε*, は柱の材軸

Fig. 6 Measured *Q*-*R* and ε_{v} -*R* relationships

方向の平均変位を柱高さで除した値である。但し、変位 計の測定容量により,ε,は 5.0%以降の測定を中止した。 Fig. 6の Q-R 関係図に破線で示した直線は、鋼材の降伏 点強度及びコンクリートのシリンダー強度に基づく曲げ 終局強度(略算値)によるせん断力である。いずれの試 験体とも、 Fig.7 に示すような仮定のストレスブロック に基づいて,軸力の釣合い条件により中立軸を決めた後, 曲げ終局時のせん断力を計算した。試験体 14-CFT-0.3 と 14-SRC-0.3の最大耐力実験値は曲げ終局時のせん断力計 算値を超えたが、試験体 14-RC-0.3 の最大耐力実験値は 曲げ終局時のせん断力計算値を大きく下回っている。 14-RC-0.3 の場合,太径の芯筋を有し,一般的ではない特 殊な断面である。このような特殊な断面について、信頼 できる簡略強度計算式がない。芯筋による曲げモーメン ト負担分が存在するが、現段階で芯筋とコンクリートの 間の付着性状、芯筋による軸力負担分および芯筋による 曲げモーメント負担分を定量的に評価することは困難で ある。本研究では、参考のため、芯筋とコンクリート間 に付着が全く無い場合, 軸圧縮ひずみの進行を抑制でき る芯筋は軸力を負担すると仮定し、芯筋による曲げ耐力 を無視し,主筋 D10 のみの曲げ終局時のせん断力も計算 した。計算結果は実線として Fig. 6 に示す。Fig. 8 に実 験終了後の各試験体の破壊状況を示す。

14-CFT-0.3 は、初期段階で、部材角の増大と共に水平 耐力が増大し、履歴ループがほぼ重なっている。部材角 *R*が0.25%から0.5%に移行する途中、柱頭と柱脚部のフ ランジの外側が降伏ひずみ度₆に到達した。部材角が2% 以降に柱頭と柱脚のサイドプレートに局部座屈が生じ始 め、柱の軸縮みが顕著になり、水平耐力は徐々に低下し て来た。但し、本試験体は4%前までに安定した履歴曲 線を示している。部材角が4%から6%に移行する途中、 柱脚のフランジとサイドプレートの溶接部付近に亀裂 (Fig. 8 d)参照)が見られた後、水平部材角の測定も不 可になるため、実験を中止した。

一方,14-SRC-0.3 は,初期段階で,14-CFT-0.3 と同様 に部材角の増大と共に水平耐力が増大し,履歴ループが ほぼ重なっている。部材角 *R*=0.25%前後で柱脚部の主筋 が降伏し,フランジの外側にも降伏ひずみ度*ε*,に到達し た。部材角 *R*=1.0%の際,H 形鋼のフランジとコンクリー トの接触面に沿って生じた付着ひび割れが目立った。部

where, *B* is the cross-section width, *D* is the cross-section depth, *Y* is the distance between the neutral axis and axis of symmetry, f_{yf} is the yield strength of flange, f_{yw} is the yield strength of web or side plate, σ_B is the compressive strength of concrete cylinder, f_{yl} is the yield strength of longitudinal reinforcement, A_{sl} is the area of longitudinal reinforcement in cross-section, and f_{ycs} is the yield strength of core steel bar.

Fig. 7 Assumption of rectangular stress blocks for ultimate moment

Fig. 8 Photographs of specimens after tests

材角 R が 1.5%以降に生じた付着ひび割れ付近でコンク リートの剥離が見られ始め,主筋も見えてきた。続いて, R=2.0%で帯筋における面内変形が観察され, R=2.5%で 柱頭と柱脚で帯筋における面外への膨らみが生じ, R=3.0%前後で柱脚付近主筋の座屈と帯筋の破断と柱の せん断破壊が観察された。しかし,内蔵されている H 形 鋼により, 14-SRC-0.3 の耐力の低下が見られなかった。 次いで,柱脚でフランジの局部座屈も観察された。その 結果,部材角 R が 4%から 6%に移行する途中,14-SRC-0.3 の耐力が徐々に低下してきた。その後,除荷する際,本 試験体は突然面外方向に座屈し (Fig. 8 b)参照),不安定 現象が生じた。本試験体の水平耐力は 14-CFT-0.3 より低 いが, ε,-R 曲線における軸縮みの進展は 14-CFT-0.3 より 遅い。

14-RC-0.3 は,部材角 *R*=0.5%前後で柱の中央領域付近, 芯筋とコンクリートの接触面に沿った付着ひび割れが生 じ始めたが,柱頭と柱脚の主筋(D10)が降伏し,最大 耐力の 62kN に至った。その後,部材角の増大と共に, 生じた付着ひび割れ付近でコンクリートの剥離が発生し, その結果水平耐力が徐々に低下してきた。コンクリート の剥離の進行に伴い,柱は芯筋と芯筋左の部分と芯筋右 の部分に分けて,三つの長柱となって挙動している(Fig. 8 c)参照)。部材角 *R* が 4%から 6%に移行する途中,柱脚 付近で,主筋(D10)の座屈と帯筋の破断と柱のせん断 破壊が順次観測された。但し,芯筋の座屈が見られなか った。14-RC-0.3 の水平耐力が最も低いが, ε,-*R* 曲線にお ける軸縮みの進展は14-CFT-0.3 と 14-SRC-0.3 より改善さ れている。

実験結果により,鉄骨が一番外側に設置している日の 字CFT柱試験体14-CFT-0.3の水平耐力は鉄量の割合の大 きい従来のSRC柱試験体14-SRC-0.3より上昇している。 水平耐力実験値および水平耐力計算値に着目して,日の 字 CFT 柱の耐力は,従来のSRC柱より同等以上である ことが解った。また,巨大な芯筋を有するRC柱試験体 14-RC-0.3の水平耐力は,14-CFT-0.3の約26%程度であっ た。

4. 結論

従来のSRC柱と巨大な芯筋があるRC柱及び本研究で 提案した日の字CFT柱について,一定軸圧縮力下(軸力 比=0.3)の正負繰返し水平力載荷実験を行った結果,以 下の事が解った。

(1)本研究で提案した日の字 CFT 柱は耐震性能が従 来の SRC 柱より同等以上であり,超高層ビルの巨大柱に 適用する可能性があると考えられる。

(2) 巨大な芯筋がある RC 柱の水平耐力は日の字CFT 柱の約 26%程度であった。

謝辞:実験にあたっては、卒論を担当した福岡大学学部 学生北河将太朗氏ほか、李研究室の学生の協力を得た。 加力装置の組み立てにあたっては、福岡大学工学部建築 学科技術職員平國久雄氏にお世話になった。ここに、謝 意を表します。

参考文献

- Xu S. and Ren Y. : The Structrual Design of Shanghai Universal Financial Center, Progress in Steel Building Structures, Vol. 5, No. 4, pp. 14-20, 2003 (in Chinese)
- Ding J., Chao S., Zhao X. and Wu H. : Critical Issues of Structural Analysis for the Shanghai Center Project, Journal of Building Structures, Vol. 31, No. 6, pp. 122-131, 2011 (in Chinese)
- Fu X., Wu G., Huang Y., Yang X., Yu W. and Jiang H. : Research on Structural Design of Pingan Financial Centre, Building Structures, Vol. 42, No. 4, pp. 21-27, 2012 (in Chinese)
- 李文聰:高層建築物に用いるメガ SRC 柱および構造 形式に関する中国の研究事例、コンクリート工学、 Vol.54, No.2, pp.195-202, 2016.2
- 5) Wang D., Jiang W., Bao L., Zhang F., Wang J., Sun Z., Tong J., Huang Y. and Liu Z. : Design and Study of New CCTV Building, Journal of Building Structures, Vol. 29, No. 3, pp. 1-9, 2008 (in Chinese)
- 6) Chen Y., Wang H., Zhao X., Hu J., Wang D., Jiang W. and Bao L. : Experimental study on hysteretic behavior of SRC columns with high ratio of core steel, Journal of Building Structures, Vol. 29, No. 3, pp. 31-39, 2008 (in Chinese)
- Construction Engineering Industrial Standard of China (JGJ 138-2010 & J130-2010) : Technical Specification for Composite Structures (Exposure Draft), (in Chinese)
- 8) Construction Engineering Industrial Standard of China (JGJ 138-2001) : Technical Specification for Steel Reinforced Concrete Composite Structures, 2001 (in Chinese)
- 9) Ferrous Metallurgy Industrial Standard of China (YB9082-97) : Specification for Design of Steel Reinforced Concrete Structure, 1997 (in Chinese)
- Ricles J. M. and Paboojian S. D. : Seismic Performance of Steel-Eencased Composite Columns, Journal of Structural Engineering, ASCE, Vol.120, No.8, pp.2474-2494, 1994
- Chen Z., Zhang Y. and Li X. : Reasonable steel content for steel reinforced high strength concrete columns, Building Structure, Vol.29, No.7, pp.14-16, 1999 (in Chinese)
- 12) El-Tawil S. and Deierlein G. G. : Strength and Ductility of Concrete Encased Composite Columns, Journal of Structural Engineering, ASCE, Vol.125, No.9, pp.1009-1019, 1999
- 13) 堺純一・松井千秋:鉄骨鉄筋コンクリート柱部材の 復元力特性に関する研究(単一 H 形鋼を内蔵した SRC 柱の骨格曲線の定式化),日本建築学会構造系 論文集,No.534, pp.183-190, 2000.8
- 14) Mirza S. A. and Lacroix E. A. : Comparative Strength Analyses of Concrete-Encased Steel Composite Columns, Journal of Structural Engineering, ASCE, Vol.130, No.12, pp.1941-1953, 2004
- 15) 福原実苗・藤井英希・南宏一:新形式の鉄骨コンク リート柱の開発研究、構造工学論文集、Vol.54B, pp.471-478, 2008