論文 試験時の応力増加速度並びに供試体の形状および寸法がポリマーセ メントモルタルの圧縮強さに及ぼす影響

西田 電^{*1}·齋藤 俊克^{*2}·出村 克宣^{*3}·掛川 勝^{*4}

要旨:本研究では,試験時の応力増加速度を 0.25, 0.5 および 1.5MPa/s,供試体の形状および寸法を 40×40×80mm (載荷面は□40×40mm), φ50×100mm およびφ100×200mm とした場合のポリマーセメントモルタルの圧縮強さに及ぼす影響について検討している。その結果,ポリマーセメントモルタルの圧縮強さは,応力増加速度の増加に伴い増大し,同一応力増加速度においては,φ100×200mm<φ50×100mm<40×40×80mm の供試体形状および寸法の順で大きな値を与える。一方,適用規格ごとに比較すれば,ポリマーセメントモルタルの圧縮強さは,JISA 1108<JSCE-G 505-2013<JISA 1171<JISR 5201の順に大きい傾向にある。 キーワード:ポリマーセメントモルタル,圧縮強さ,応力増加速度,供試体形状,JISA 1171

1. はじめに

ポリマーセメントモルタル(以下, PCM)の試験規格 である JIS A 1171(ポリマーセメントモルタルの試験方 法)が 2016年に改正された¹⁾。しかし,同規格の解説に は,「圧縮強さ試験を JIS R 5201と整合させることを検討 したが,速度の違いによる実験データがないことから旧 規格どおりの規定とすることとした」,および「寸法 φ 50 ×100mmの供試体でも圧縮強さ試験が実施できるよう, 当該供試体を規定に加えてほしい旨の意見もあった」と 改正時の懸案事項が述べられている。

一方, PCM は広範囲な用途に使用されており,各用途 に関連する規格等において, PCM の圧縮強さ試験方法が JIS A 1171 と同一でないものもある。圧縮強さはこの種 の材料の基本性能であることから,材料試験の効率化の 観点からの試験方法の統一や,関連規格間の相違を明確 にすることが重要であると考える。

以上のことに鑑み,筆者らは,寸法 40×40×160mm および φ 50×100mmの供試体を用い,荷重速度 400,800 および 2400N/sとして,JIS A 1171,JIS R 5201(セメン トの物理試験方法)および JSCE-G 505-2013 [円柱供試 体を用いたモルタルまたはセメントペーストの圧縮強度 試験方法(案)]に準拠した試験を行い,PCMの圧縮強 さに及ぼす供試体形状および荷重速度の影響について検 討している²⁾。その結果をもとに,本研究においては, 上述の供試体並びに寸法 φ 100×200mmの供試体を用い て,応力増加速度(時間当たりの応力の増分)を 0.25, 0.5 および 1.5MPa/sとして圧縮強さ試験を行い,試験時 の応力増加速度並びに供試体の形状および寸法が PCM の圧縮強さに及ぼす影響について検討している。

2. 使用材料

2.1 セメント

セメントとしては, JIS R 5210(ポルトランドセメント) に規定する普通ポルトランドセメントを使用した。その 性質を Table 1 に示す。

 Table 1 Physical Properties and Chemical Compositions of Ordinary Portland Cement.

Density	Blain Speci	ne Setting ific (h-r	Setting Time (h-min)		Compressive Strength of Mortar (MPa)		
(g/cm)	(cm^2)	/g) Initial Set	Final Set	3d	7d	28d	
3.16	331	0 2-08	3-24	30.8	47.0	63.5	
Chamical Compositions (9/)							
			npositioi	15 (70)			
Mao	50	:. 1	Tatal	A 11- a 1:	Chlo	oride	
MgO	503	ig. loss	Total A	чкап	Ic	on	
1.60	2.02	1.72	0.5	0.54)22	

2.2 細骨材

細骨材としては、阿武隈川産川砂を使用した。その性 質を Table 2 に示す。

Table 2 Properties of Fine Aggregate.					
Size	Density [*]	Water Absorption			
(mm)	(g/cm^3)	(%)			
≦2.5	2.64	2.55			

Note,*: Saturated and surface dried condition.

2.3 練混ぜ水

練混ぜ水としては、上水道水を使用した。

- 2.4 セメント混和用ポリマー
 - セメント混和用ポリマーとしては、アクリル酸エステ

*1 日本大学大学院 工学研究科建築学専攻(学生会員)
*2 日本大学 工学部建築学科専任講師 博士(工学)(正会員)
*3 日本大学 工学部建築学科教授 工博(正会員)
*4 太平洋マテリアル(株) 営業本部機能性材料営業部 博士(工学)(正会員)

ル・メタクリル酸共重合体エマルション(AME)および エチレン酢酸ビニル共重合樹脂エマルション(EVA)を 使用した。その性質を **Table 3** に示す。

 Table 3 Properties of Polymer Dispersions for Cement Modifier.

Type of	Viscosity	Non Volatile	Type of
Polymer	(mPa • s)	Matter (%)	Charge
AME	300	45	Non-ion
EVA	1000	45	Non-ion

3. 試験方法

3.1 供試体の作製

JISA 6203 (セメント混和用ポリマーディスパージョン および再乳化形粉末樹脂) に準拠して,セメント:細骨 材=1:3 (質量比),ポリマーセメント比を 0,5,10, 15 および 20%とし,フロー値が 170±5 となるように練 混ぜ水量を調整した調合の供試 PCM を練混ぜた。なお, 最大練混ぜ容量 10L の練混ぜ機を用いて,練混ぜ容量 6L として機械練りし,練混ぜ後に JISA 1171 に従い空気量 試験を行った。その後,供試 PCM を寸法 40×40×160mm, ϕ 50×100mm および ϕ 100×200mm に成形した。なお, 寸法 ϕ 50×100mm の供試体については, JSCE-F 506-2010

(モルタルまたはセメントペーストの圧縮強度試験用円 柱供試体の作り方)に、φ100×200mmの供試体につい ては、JIS A 1132 (コンクリート強度試験用供試体の作り 方)に従って成形した。成形後、2d 湿空 [20±2℃, 80% 以上(RH)]+5d 水中(20℃)+21d 乾燥 [20±2℃, 65 ±10%(RH)] 養生を行って供試体を作製した。

3.2 曲げ強さ試験

寸法 40×40×160mmの供試体について、JIS A 1171 に
 従って曲げ強さ試験を行った。

3.3 圧縮強さ試験

寸法 40×40×80mm (載荷面は□40×40mm)の曲げ強 さ試験後の供試体, φ50×100mm およびφ100×200mm の供試体を用いて, JSCE-G 505-2013, JIS A 1171, JIS R 5201 および JIS A 1108 (コンクリートの圧縮強度試験方 法) に従って, 応力増加速度を 0.25, 0.5 および 1.5MPa/s として圧縮強さ試験を行った。なお, Table 4 には, 適用 規格の試験条件と本試験に用いた応力増加速度を示す。 JSCE-G 505-2013 および JIS A 1108 は, 荷重速度が応力増 加速度で示されている。しかし, JIS A 1171 および JIS R 5201 では, 荷重速度をそれぞれ 800±50 および 2400± 200N/s としており, 中央値を応力増加速度に換算すると, それぞれ 0.5 および 1.5MPa/s となることから, 応力増加 速度を上述のように設定した。

4. 試験結果および考察

Table 5には、PCM のフレッシュ性状および曲げ強さ を示す。ポリマーの種類にかかわらず、PCM の水セメン ト比は、ポリマーセメント比の増加に伴い減少する傾向 にある。一般に、PCM においては、セメント混和用ポリ マーの持つ界面活性効果やポリマー微粒子のボールベア リング効果によってワーカビリティーが改善される。本 研究では、フロー値が 170±5 一定の調合としているため、 ポリマーセメント比が増加すれば、そのようなポリマー の混入効果が発揮されて単位水量が減少し、水セメント 比が減少するものと推察される。なお、ポリマーの種類 にかかわらず、ポリマー未混入モルタル(ポリマーセメ ント比 0%)に比べて、PCM の空気量は若干大きく、ポ リマーセメント比が大きくなるとわずかに増大する傾向 にある。これは、セメント混和用ポリマーが空気連行性 を有するためと考える。

一方, PCM の曲げ強さは、ポリマーセメント比の増加 に伴い増大する傾向にある。これは、曲げ荷重の載荷に よって生じるひび割れに対して、硬化後の PCM 中に形 成されるポリマー連続相が橋かけすることによりその進 展を防止する曲げ補強効果によるものと考える。なお、 ポリマーセメント比の増加に伴う PCM の曲げ強さの増 大はポリマーの種類にかかわらず同程度である。

Fig.1には, PCM の圧縮強さとポリマーセメント比の 関係を示す。ポリマーの種類,応力増加速度および供試

 Table 4 Standardized Conditions for Compressive Strength Test of Cementitious Materials and Applied Stress Rate in This Study.

Standardized Condition for Compressive Strength Test					Applied Stress
Standard No.	Cementitious Material to be Tested	Shape of Specimen	Specimen Size (mm)	Loading Rate	Rate in This Study (MPa/s)
JSCE-G 505-2013	Cement Mortar or Cement Past	Cylinder	ϕ 50×100	0.2~0.3 MPa/s	0.25
JIS A 1171	Polymer Cement Mortar	Prism	$40\! imes\!40\! imes\!80^*$	800 ± 50 N/s	0.5
ЛS R 5201	Cement Mortar	Prism	$40 \times 40 \times 80^*$	2400 ± 200 N/s	1.5
JIS A 1108	Cement Concrete	Cylinder	$\phi 100 \times 200, \ \phi 125 \times 250$ or $\phi 150 \times 300$	0.6±0.4 MPa/s	0.5

Note,^{*}:Compressive load is applied to loading area of 40×40mm as a prismatic specimen.

	PCM.			
Tuno of	Polymer-	Water-	Air	Flexural
Polymor	Cement	Cement	Content	Strength
rorymen	Ratio (%)	Ratio (%)	(%)	(MPa)
	0	55	3.3	6.9
	5	51	3.7	8.9
AME	10	46	3.9	10.4
	15	38	4.3	11.4
	20	36	4.6	11.7
	5	51	4.8	8.9
EVA	10	46	5.2	10.2
	15	38	5.4	11.6
	20	36	6.2	12.0

 Table 5 Fresh Properties and Flexural Strength of PCM.

体形状にかかわらず,ポリマーセメント比の増加に伴っ て、PCMの圧縮強さは減少する傾向にある。これは,ポ リマーセメント比の増加に伴って,他の構成相に比べて 弾性係数が小さいポリマー連続相が増大することおよび 空気量が増加することによるものと推察される。なお, 本研究では、PCMのフロー値を170±5となるように水 セメント比を調整しており,前述したように,ポリマー セメント比の増加に伴い水セメント比が減少している。 それにもかかわらず,水セメント比の減少に伴う PCM の圧縮強さの増大の傾向が現われていないことから, PCMの圧縮強さに関しては、水セメント比の減少に比べ て、上述したようなポリマー混入の影響がより大きいも のと考える。

Fig.2 には、PCM の圧縮強さと応力増加速度の関係を 示す。ポリマーの種類、ポリマーセメント比および供試 体形状にかかわらず, PCM の圧縮強さは応力増加速度の 増加に伴い増大する傾向にある。これは、材料試験にお いて, 載荷に伴い材料内部の組織破壊が生じるが, 応力 増加速度が遅い場合,ひび割れによる自己破壊が卓越し て進行することによるものと考える。一方、同一応力増 加速度においては、供試体寸法 40×40×80mm とした PCM の圧縮強さは、 寸法 ϕ 50×100mm および ϕ 100× 200mmのそれらに比べて,若干大きな値を示す傾向にあ る。これは、供試体加圧面の一辺の長さおよび直径に対 する高さの比が小さいものほど,また,供試体端面の形 状が、摩擦によって加圧板による横方向の拘束を受けや すいものほど強さが大きく測定され、更に、供試体形状 が大きくなるほど内部欠陥の存在確率が大きくなり強さ が小さく測定されることによるものと推察される。

Fig.2 Stress Rate for Loading vs. Compressive Strength of PCM.

Fig.3 Compressive Strength Measured by 0.5MPa/s vs. Compressive Strength Measured by 0.25 or 1.5MPa/s Using Prismatic or Cylindrical Specimen of PCM Containing AME.

Fig.4 Compressive Strength Measured by 0.5MPa/s vs. Compressive Strength Measured by 0.25 or 1.5MPa/s Using Prismatic or Cylindrical Specimen of PCM Containing EVA.

Fig.3 および Fig.4 には、応力増加速度を 0.25 または 1.5MPa/s として試験した AME および EVA 混入 PCM の 圧縮強さと応力増加速度を 0.5MPa/s としたもののそれ の関係を供試体形状別に示す。なお、ポリマー未混入モ ルタルの試験値は除き、図中のプロット点は同一ポリマ ーセメント比の PCM をそれぞれの応力増加速度で試験 した試験値を表している。ポリマーの種類および供試体 形状にかかわらず、応力増加速度を 0.25 または 1.5MPa/s として試験した PCM の圧縮強さと応力増加速度を 0.5MPa/s としたもののそれらの間には高い相関性が認め られ、その関係は図中に示す実験式で表すことができる。

得られた実験式の係数は、同一供試体形状および寸法 とした場合における、応力増加速度 0.5MPa/s で得られる PCM の圧縮強さに対する応力増加速度 0.25 および 1.5MPa/s での圧縮強さ比を表すものである。また、それ らの値はポリマーセメント比 5~20%の範囲で得られた ものである。ポリマーの種類にかかわらず、同一供試体 形状においては、応力増加速度 0.5MPa/s で得られる PCM の圧縮強さに対する比は、応力増加速度 0.25MPa/s で 0.92 ~0.96、応力増加速度 1.5MPa/s で 1.00~1.05 を与えてお り、いずれの供試体形状であっても、応力増加速度が速 いほど PCM の圧縮強さは大きい傾向にある。

Fig.5 および **Fig.6** には、寸法 ϕ 50×100 または ϕ 100 ×200mm の供試体で試験した AME および EVA 混入 PCM の圧縮強さと寸法 40×40×80mm の供試体で試験 したもののそれの関係を応力増加速度別に示す。ポリマ ーの種類および応力増加速度にかかわらず、寸法 ϕ 50× 100 または ϕ 100×200mm の供試体で試験した PCM の圧 縮強さと寸法 40×40×80mm の供試体で試験したものの それらの間には高い相関性が認められ、その関係は図中 に示す実験式で表すことができる。

ポリマーの種類にかかわらず、同一応力増加速度においては、寸法 40×40×80mm の供試体で得られる圧縮強 さに対する比は、寸法 ϕ 50×100mm の供試体で 0.94~ 0.99、 ϕ 100×200mm の供試体で 0.79~0.82 であり、い ずれの応力増加速度であっても、PCM の圧縮強さは、 ϕ 100×200mm< ϕ 50×100mm<40×40×80mm の供試体 の形状および寸法の順に大きな値を与える。

Table 6には, **Fig.3**~**Fig.6**に示した試験結果を整理し, ポリマー未混入モルタルの試験値も含めて, JIS A 1171 の試験条件である寸法 40×40×80mm の供試体を用い, 応力増加速度を 0.5MPa/s として得た圧縮強さを 1.0 とし

Fig.5 Compressive Strength Measured by $40 \times 40 \times 80$ mm Specimen vs. Compressive Strength Measured by $\phi 50 \times 100$ mm or $\phi 100 \times 200$ mm Specimen of PCM Containing AME.

Fig.6 Compressive Strength Measured by 40×40×80mm Specimen vs. Compressive Strength Measured by φ50× 100mm or φ100×200mm Specimen of PCM Containing EVA.

	0.5MPa/s.					
Trme of	Stress	Compressive Strength Ratio				
Polymer	Rate	$40\! imes\!40\! imes$	ϕ 50 $ imes$	ϕ 100 $ imes$		
Torymer	(MPa/s)	80mm	100mm	200mm		
	0.25	0.95	0.94	0.75		
*	0.5	1.00	0.98	0.82		
	1.5	1.07	1.05	0.85		
AME	0.25	0.95	0.92	0.75		
	0.5	1.00	0.98	0.82		
	1.5	1.02	1.01	0.83		
EVA	0.25	0.94	0.89	0.76		
	0.5	1.00	0.94	0.79		
	1.5	1.01	0.99	0.81		

Table 6 Compressive Strength Ratio of PCM to
Strength Measured by Prism Specimen with
Size of $40 \times 40 \times 80$ mm under Stress Rate of
0.5MPa/s.

Note,^{*} : Unmodified cement mortar.

た場合のその他の試験条件で得られた圧縮強さの比を示 す。ポリマー未混入モルタルに比べて、応力増加速度が 速くなった場合の PCM の圧縮強さの増加程度は若干小 さく、供試体形状が大きくなった場合の圧縮強さの低下 の程度は若干大きい傾向にある。

Fig.7には、JSCE-G 505-2013、JIS R 5201 および JIS A 1108 の条件で試験した PCM の圧縮強さと JIS A 1171 の 条件で試験した PCM の圧縮強さの関係を示す。なお、 ポリマー未混入モルタルの試験値は除いている。JIS A 1171 によって試験した PCM の圧縮強さとその他の規格 によって試験した PCM の圧縮強さの間には高い相関性 が認められ,それらの関係は図中に示す実験式で表すこ とができる。実験式の係数は JIS A 1171 によって得られ る圧縮強さに対する比を表しており,それらを整理して Table 7 に示す。なお,圧縮強さ比は,AME および EVA 混入 PCM について,ポリマーセメント比 5~20%の範囲 で得られたものである。ポリマーの種類にかかわらず, PCM の圧縮強さを適用規格ごとに比較すれば,JIS A 1108<JSCE-G 505-2013<JIS A 1171<JIS R 5201 の順に 大きい傾向にある。

なお、土木研究所資料の「断面修復材の換算圧縮強度 の求め方(案)」³⁾には、JIS A 1108 で得られる圧縮強さ 相当の値を得るための供試体形状別の補正係数として、 JIS R 5201 は 0.84、JSCE-G 505-2013 は 0.92 と示されて いる。但し、JIS R 5201 は 1.5MPa/s、JIS A 1108 および JSCE-G 505-2013 は 0.6MPa/s の応力増加速度で試験して いる⁴⁾。**Table 7** に示した AME および EVA 混入 PCM の 圧縮強さ比の中間値を用いて、同様の補正係数を算出す れば、JIS R 5201 は 0.79、JSCE-G 505-2013 は 0.88、JIS A 1171 は 0.80 であり、参考文献 3) に示される値に比べて、

Fig.7 Compressive Strength of PCM Tested by JIS A 1171 vs. Compressive Strength of PCM Tested by JSCE-G 505-2013, JIS R 5201 or JIS A 1108.

Table 7 Compressive Strength	Ratio	of	PCM	tested	by
Various Standards.					

Standard No.	Specimen Size	Stress Rate	Compressive Strength Ratio	
	(mm)	(MPa)	AME	EVA
JSCE-G 505-2013	φ 50×100	0.25	0.92	0.90
JIS A 1171	$40 \times 40 \times 80$	0.5	1.00	1.00
JIS R 5201	$40 \times 40 \times 80$	1.5	1.02	1.01
JIS A 1108	$\phi 100 \times 200$	0.5	0.82	0.79

若干小さな補正係数となる。これは、本研究においては、 ポリマーセメント比 5~20%の範囲を取扱った試験値か ら圧縮強さ比を求めており、ポリマーの混入によって供 試体形状が大きい JIS A 1108 の試験値が相対的に小さく なっていることに起因するものと推察される。

本研究においては、2 種類のセメント混和用ポリマー を使用し、セメント:細骨材=1:3 (質量比)、フロー値 170±5 とする水セメント比、ポリマーセメント比 5~ 20%の範囲で調製した PCM について、試験時の応力増加 速度および供試体形状がその圧縮強さに及ぼす影響を検 討したものであり、今後、使用材料の種類や調合条件を 更に広範に検討したい。 5. 結論

本研究で得られた試験結果を総括すれば,次の通りで ある。

- (1) ポリマーセメント比を 5, 10, 15 および 20%とし、 フロー値 170±5 となるように水セメント比を調整 した本研究の調合条件においては、ポリマーセメン ト比の増加に伴って、PCM の水セメント比は減少 し、その空気量はわずかに増大する傾向にある。
- (2) ポリマーの種類,応力増加速度および供試体形状に かかわらず,ポリマーセメント比の増加に伴って, PCM の曲げ強さは増大するが,その圧縮強さは減 少する傾向にある。
- (3) ポリマーの種類, ポリマーセメント比および供試体 形状にかかわらず, PCM の圧縮強さは応力増加速 度の増加に伴い増大する。
- (5) 本研究の限りでは、PCM の圧縮強さを適用規格ご とに比較すれば、JIS A 1108<JSCE-G 505-2013<JIS A 1171<JIS R 5201の順に大きい傾向にある。</p>

謝辞

本研究に当っては、ジャパンコーティングレジン(株) および日本化成(株)にセメント混和用ポリマーの提供 を頂いた。ここに記して謝意を表する次第である。

参考文献

- 日本規格協会: JIS A 1171 (ポリマーセメントモル タルの試験方法),日本工業規格,pp.20-24,2016.8
- 2) 西田 電, 我喜屋宗満, 齋藤俊克, 出村克宣, 掛川 勝: PCM の圧縮強さに及ぼす供試体形状および荷 重速度の影響, コンクリート構造物の補修・補強・ アップグレード論文報告集, Vol.17, pp.197-200, 2017.10
- 3) 土木研究所:附属資料A 断面修復材の換算圧縮強 度の求め方(案),コンクリート構造物の補修対策 施工マニュアル(案),土木研究所資料 第4343号, pp.Ⅲ-34-Ⅲ-36,2016.8
- 川上明大,片平 博,渡辺博志:供試体の形状や寸法が断面修復材の圧縮強度に及ぼす影響,土木学会年次学術講演会講演概要集, Vol.70, No.5, pp.1175-1176, 2015.9