論文 ガラス球モデル内を流れる水の流動実験と MPS 法によるシミュレー ションに関する基礎的研究

松岡 卓^{*1}·Kamalova Zilola^{*2}·畑中 重光^{*3}

要旨:本報では、ガラス球の体心正方格子およびそこに小球を配置した格子モデルを用いて水平方向透水試 験を行い、MPS 法によるシミュレーション解析結果との比較を行った。シミュレーションでは初期粒子間距 離および動粘性係数を変化させた解析を行った。その結果、ガラス球の水平方向透水試験によって平均流速 と動水勾配の関係は非線形であることが確認された。また MPS 法によるシミュレーション解析結果には初期 粒子間距離の影響が大きいこと、解析によって流量および非線形透水指標の実験結果を概ね再現できること などが示された。

キーワード:ポーラスコンクリート, MPS法,水平方向透水性能,非線形透水挙動,非線形透水指標

1.1 はじめに

近年,集中豪雨の発生が増加しており,これに伴って 洪水被害が増加する懸念がある。その原因として,降雨 量が増加したこともあるが,都市化が進み,地表がコン クリートやアスファルト等に覆われ,雨水が地中に浸透 しにくくなったことも考えられる。都市部での雨水は, 抵抗の少ない排水管を通るため,雨水の流出速度は大き くなり,下流の河川等の増水は加速し,洪水の原因とな る場合も生じる。この様な洪水被害の対策の一つにポー ラスコンクリート(以下, POCと略記)を活用する試み が報告されている¹⁾。POCは,内包する連続空隙により, 透水性能・吸音性能等を有する環境共生型コンクリート である。特に,透水性能を活用した排水性・保水性・透 水性舗装は,雨水を貯留できる点や雨水の流出速度を遅 延させるなど洪水被害対策として有効と考えられる。

しかし, POC の透水性について日本コンクリート工学 会が示した「POC の透水試験方法 (案)²⁾」は鉛直方向の 透水のみを対象としており,そのため水平方向の自由表 面を持つ水の透水挙動についての研究は極めて少ないの が現状である。

本論文では、モデル化した POC で透水性能を把握し、 MPS (Moving Particle Simulation) 法を用いた解析手法を 提示することで、将来的に集中豪雨時のポーラスコンク リート舗装内の水の挙動を予測することを目指す。そこ でガラス球を用いた流動実験を行うとともに、MPS 法を 用いてこれを再現する。MPS 法とは格子を用いず、流体 を粒子として計算する解析手法である。本報では、球を 配列した格子モデルで POC を単純化して表現し、水平方 向の透水挙動について実験およびシミュレーション解析 を行った結果について報告する。

凶一2 美験装直の単位格士

*1 三重大学大学院 工学研究科建築学専攻 修了生 (現在 ショーボンド建設株式会社) *2 三重大学大学院 工学研究科建築学専攻 大学院生 *3 三重大学大学院 工学研究科建築学専攻 教授 工学(博士)(正会員)

2. 検証実験

2.1 実験装置

本研究で用いた実験装置を図-1 に示す。図-1(a)の 試験体は図-2(a)に示す体心正方格子で直径 25mmの球 体を配置したモデル(以下,体心正方モデルと表記)で, 図-1(b)の試験体は図-1(a)のモデルの隙間に直径 10mmの球体を図-2(b)のように配置したモデル(以下, 充填モデルと表記)である。既報 3の解析モデルは斜法 格子配列であったが、本報では実積率が約74%(空隙率 が約26%) で一般的な POC の空隙率に近いこと、および モデル作成の容易さを勘案して体心正方格子を採用した。 格子モデルは流下方向に 300mm, 奥行方向に 100mm, 高 さ方向に約 113mm とした。それぞれのモデルの空隙率 は体心正方モデルが約42%,充填モデルが36%である。 配置した球はすべてガラス製品である。(ガラスは清浄で あり、水の接触角は10度以下と考えられる。)注水面の 水位は水位調整用のホースにより制御した。注水面と排 水面の水位差を明確にするために排水側に堰を設け、そ の高さは 30mm とした。整流板は注水の際に水の圧力を 低減するために設置した。

2.2 実験方法

写真-1 に実験状況の例を示す。注水面の水位を 100mmで一定に保った定常状態において,流末から排出 される水を10秒間測定した。各試験体について10回ず つ測定を行い,結果を平均して用いた。また,定常状態 の内部水位も測定し,後述する動水勾配の算出に用いた。 2.3 実験結果

図-3 に平均流速と動水勾配の関係を示す。なお、平 均流速と動水勾配の関係は、既報⁴⁾で提示された式(1)に よって近似し、平均流速は式(2)により算出した。文献^{5)、} ⁰によれば、デュプイの近似仮定を用いれば、式(3)に示し たように、図-4 における各点 *Hn* の水位差を各点間の 距離で割ることで、動水勾配を算出することができる。

$v = k'_{(m=0.5)}$	i ^{0.5}	(1)	
$v = k'_{(m=0.5)} \cdot$	i ^{0.5}	(1)	

$$v = Q/A \tag{2}$$

$$i = H_{i} = H_{i}/Y \tag{3}$$

i:動水勾配 *Q*:流量(cm³/s), *A*:流れの断面積 (cm²), *i*_n: n 番目の動水勾配, *H*_n: n 番目の水 位(cm), *X*_n: 各点の距離(cm)

表-1に、測定された流量および図-3により求めた 透水指標の値を示す。体心正方モデルは充填モデルに比 べ、流量および透水指標が大きいことが分かる。これ は、空隙率が大きいこと、空隙径が小さいことの他に、 摩擦抵抗を生じる球体の総表面積、球体の径などが影響 していると考えられる。式(1)の関係式は、決定係数 R²

写真-1 実験の状況

図-4 水平方向における動水勾配

表-1 流量および透水指標 k²

	空隙率 (%)	流量 (cm³/s)	k´ (m=0.5) (cm∕s)	R²
体心正方モデル	41.6	640	20.1	0.91
充填モデル	35.7	431	13.6	0.87

の数値から判断して,ガラス球の実験値に対しても適用 性が高いといえる。しかし,既報⁴⁾において提案された 透水指標の推定式(4)を用いると、平均骨材粒径 25mm, 空隙率 41.6%のときの透水指標 k³(m=0.5)の値は 7.1cm/s 程度であり,実験値はその約 2.8 倍となった。これは実 験に使用したモデルでは、すべて空隙が連続であるこ と、骨材と比較してガラス球は形状がなだらかであるこ と等の理由で透水指標が大きくなったと考えられる。

$$k'_{(m=0.5)} = a \cdot V_R - b$$
(4)

$$a = 0.0083 \overline{\varphi} a + 0.042$$

$$b = 0.11 \overline{\varphi} a + 0.54$$

MPS 法によるシミュレーション シミュレーションモデルの概要

図-5 にシミュレーション解析に用いたモデルを示す。 実験と同様の体心正方モデル(図-5(a))および充填モ デル(図-5(b))を用いてシミュレーション解析を行っ た。シミュレーションモデルは図-1と同じ寸法とした。

注水方法は、透水方向に向けて配置し、流入量は表-1 に示した実験値と同じ流量として、体心正方モデルが 640cm³/s、充填モデルが 431cm³/s と設定した。既報^{3,7)} のシミュレーション解析では流入口を透水方向に向けて 設置し、モデルと流入口の距離が近かった。その影響に より、流体の流速が大きくなっていたことが考えられる。 本報では、流入口による圧力を低減するために整流板を 配置した。整流板は格子状の形状とし、流体粒子が通り 抜けられるように格子のピッチは 10mm とした。解析時 間を短縮するために、初期状態において流体粒子をモデ ル試験体内にあらかじめ配置させた。

3.2 要因と水準

表-2 に本解析の要因と水準を示す。シミュレーショ ンモデルは実験と同様に体心正方モデルおよび充填モデ ルである。流体粒子の初期粒子間距離は既報^のにおいて 検討されていたが,前述した流入口による圧力がかかっ ており,再度検討するために 2mm, 1.75mm, 1.5mm の 3 水準とした。流体の動粘性係数は実験の際に測定した水 の温度および 20℃のときの動粘性係数を水準とした。な お,体心正方モデルの実験の際に測定された温度は 11℃ で動粘性係数は 1.27×10⁻²cm²/s,充填モデルの際は 8℃ で動粘性係数は 1.39×10⁻²cm²/s, 20℃の水の動粘性係数 は 1.0×10⁻²cm²/s である。

3.3 シミュレーション結果

(1) 流量

図-6 にシミュレーション結果の一例を示す。どの水 準でも流入口付近で流体粒子が盛り上がり,越流を起こ した。それより,本解析の水準では実験値と同じ流量を 流すことができないことがわかった。本解析では,水面 の堰を乗り越える粒子を測定することで流量を測定した。 図-7 に流量に及ぼす初期粒子間距離の影響,図-8 に 流量に及ぼす流体粒子の動粘性係数の影響を示す。図中 には,表-1 に示す流量の実験結果に対する解析結果の 割合を示す。図-7 より、どちらのモデルでも初期粒子 間距離が小さくなるほど流量が増加することがわかる。 また,初期粒子間距離を 1.75mm 以下にすると,実験値 の 90%以上の流量が得られる。図-8 より、流体の動粘 性係数の影響については,両モデルともに大きな差異が 見られなかった。以上より、流量の変動に及ぼす流体の

(b) 充填モデル 図-5 シミュレーションモデル図

表-2 要因と水準

要因	水準			
シミュレーションモデル	体心正方モデル、充填モデル			
初期粒子間距離(mm)	2, <u>1.75</u> , 1.5			
流体の温度	<u>実測値</u> , 20℃			

_:基準となる水準

(a) 体心正方モデル

(b) 充填モデル 図-6 シミュレーション結果の一例 (初期粒子間距離:1.75mm, 流体の温度:実測値)

(2) 内部水位

図-9 に内部水位に及ぼす初期粒子間距離の影響,図 -10 に内部水位に及ぼす流体粒子の動粘性係数の影響

を示す。全ての解析が実験値の内部水位よりも高い位置 となる結果となった。図-9 より初期粒子間距離が小さ くなるほど水位が低くなり、実験値に近づくことがわか る。図-10 の動粘性係数の影響は僅かで、グラフはほぼ 重なっている。シミュレーションによる内部水位は実験

値と同じような曲線になっている。すなわち、初期粒子 間距離をさらに小さい値とすれば実験を定量的に表すこ とができるのではないかと考える。

表-3 解析による透水指標 k²

シミュレーション モデル	初期粒子 間距離 (mm)	温度 (°C)	k' _(m=0.5) (cm/s)	R²
体心正方 モデル	2	11	15.6	0.26
	1 75	11	16.9	0.79
	1.75	20	17.6	0.40
	1.5	11	18.1	0.48
充填モデル	2	0	9.83	0.17
	1.75	o	11.1	0.41
		20	11.2	0.18
	1.5	8	11.5	0.82

図-13 透水指標に及ぼす初期粒子間距離の影響

(3) 平均流速と動水勾配の関係

式(1)~(3)を用い,本解析の平均流速と動水勾配の関係 を求めたものを図-11 および図-12 に示す。図中には 実験値および式(3)による近似曲線を併示した。表-3 に 透水指標および決定係数を示す。解析結果はすべての水 準が実験値の透水指標を下回った。図-11 によれば,両 モデルともに初期粒子間距離が小さくなるほど透水指標 は大きくなり,実験値に近づく傾向を示した。図-12の 動粘性係数には大きな変動は見られなかった。図-13, 14 に透水指標に及ぼす各種要因について示す。同図には 実験値に近づく水準はどちらのモデルでも初期粒子間距離 が 1.5mm のときである。透水指標の値から判断して,概 ね実験を解析的に再現できているといえよう。

ただし、透水指標の値は通常の POC から得られる値と 比べるとかなり大きい。今後、POC に使用される骨材粒 径により近い寸法の球を用いること,空隙形状をより現 実に近づけることなど,実際の POC に近いモデルを作成 してシミュレーション解析を実施したい。また,モデル と流体の摩擦抵抗を含めた解析も必要である。

4. まとめ

本報では、ガラス球を用いた格子配列モデルで水平方 向透水試験を行い、同様なモデルに対して行った MPS 法 によるシミュレーション解析の結果と比較した。 本研究により、以下の知見を得た。

- ガラス球を用いた格子配列においても平均流速と 動水勾配の関係は非線形であることが示された。
- (2) MPS 法でのシミュレーション解析において,モデ ル内部の流動に初期粒子間距離の影響が大きいこ とが分かった。
- (3) 実験により得られた流量および透水指標をシミュ レーション解析によって概ね再現することができ た。

謝辞

本研究費の一部は科学研究費補助金 基盤研究(B)(研 究代表者:畑中重光)によった。付記して謝意を表する。

参考文献

- 中川武志,浦山益郎,畑中重光,三島直生:都市型 水害の減災に資する地盤内の水流制御技術の開発 研究(その2:水害対策法の提案),日本建築学会大会 学術講演梗概集,pp.207-208, 2013.8
- 日本コンクリート工学会:性能設計対応型ポーラス コンクリートの施工標準と品質保証体制の確立に 関する研究委員会報告書, pp.336-339, 2015.6
- 松岡卓,三島直生,畑中重光,関本亮太:MPS法を 用いたポーラスコンクリートモデル中を流れる水 の流動シミュレーション,コンクリート工学会年次 論文集, Vol.39, No.1, pp.1501-1506, 2017.7
- 4) 関本亮太,松岡卓,三島直生,畑中重光:ポーラス コンクリートの非線形透水挙動のモデル化と街区 からの排水シミュレーション,コンクリート工学会 年次論文集, Vol.39, No.1, pp.1507-1512, 2017.7
- 5) 山口柏樹:土質力学(全改訂),技報堂出版, pp.53-64, 1984
- 6) 松岡元:土質力学,森北出版, pp.32-53, 1999
- 7) MPS 法を用いたポーラスコンクリート内の流動挙動に及ぼす粒子間距離の影響に関する基礎的研究: 松岡卓,三島直生,畑中重光,日本建築学会大会学術講演梗概集,pp.81-82,2017.8