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ABSTRACT 
A stress-strain model was proposed based on the artificial neural networks (ANN) to predict the 

behavior of confined concrete columns under concentric compression. A wide range of previous 

experimental data including 182 samples were collected for establishing ANN model. Gauge length in 

the compressive test was used in the input layer of ANN model to take into consideration the difference 

of compressive fracture energy. The proposed stress-strain model provides good agreement with the test 

results independent of the compressive strength of concrete, yield strength of tie, and gauge length. 
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1. INTRODUCTION 
        

      Confinement of core concrete is an important 

topic for the seismic design of reinforced concrete (RC) 

columns [1]. Numerous experimental studies on the 

behavior of confined concrete were conducted by many 

researchers [2-11]. Effect of concrete strength, and yield 

strength and spacing of transverse reinforcement on the 

stress-strain behavior has been examined based on the 

concentric loading test of RC columns. However, it is 

still difficult to estimate the stress-strain relation of RC 

columns accurately, independent of material strength, 

and structural details and dimensions. A computational 

method to take into consideration the effect of these 

parameters on the stress-strain relation of confined 

concrete has to be developed [12]. 

      Artificial neural networks (ANN) is one of the 

optimal methods to describe the complex physical 

process and establish a nonlinear relationship between 

input and output parameters. Recently, the artificial 

neural networks have been widely used in the field of 

structural engineering. Oreta and Kawashima [13] 

proposed a neural network for predicting confined 

compressive strength and corresponding strain of 

circular concrete columns using 38 experimental data. 

Tang et al. [14] used the neural network techniques to 

predict the confinement efficiency of RC columns. The 

neural networks were trained with 45 samples and validated 

by comparing the computational and experimental results 

of the peak stress and the corresponding strain. Ӧztekin 

[12] developed an ANN model based on a large number 

and wide database with 252 experimental data for 

predicting the compressive strength of confined concrete. 

The developed ANN model predicted closer outputs to 

the experimental results than the analytical models with 

fewer errors. AL-Shatner [15] gathered experimental 

results for circular and square concrete columns to 

develop ANN for predicting the compressive strength of 

circular and square RC columns separately. For 

developing an ANN model which can completely model 

the complex interactions among the multiple variables, a 

sufficient number of data with a wide range is needed 

[13]. Although many ANN models were trained for 

estimating the strength and corresponding strain of 

confined concrete, studies on the full stress-strain 

modeling of RC columns considering post-peak 

behavior are scarce in the literature. 

      Localization occurs in compression failure of 

concrete [1, 16]. Stress-inelastic displacement can be 

used for calculating compressive fracture energy [17]. 

Akiyama et al. [1] pointed out that the stress-strain 

modeling of confined concrete based on the compressive 

fracture energy and the element length can give more 

accurate results, especially when the RC columns exhibit 

the post-peak behavior. 

      In this paper, a new model based on the ANN is 

proposed for predicting the behavior of confined 

concrete under concentric compression. The 

compressive fracture energy is adopted as a parameter in 

ANN model to establish the descending part of the 

stress-strain curve of confined concrete. A large amount 

of experimental data in the literature with wide ranges of 

each parameter are collected for training ANN. The 

stress-strain relation obtained by ANN are compared 

with the experimental results and the conventional model. 

 
2. ARTIFICIAL NEURAL NETWORKS-BASED 
PREDICTION OF CONFINED CONCRETE  
 
2.1 Description of ANN 
      Artificial neural network is a concept which was 

born due to the scientific interest about Artificial 

Intelligence (AI) during the middle of 1950 [18]. ANN 

are simplified models of a biological nervous system of 

the human brain. ANN models can be trained from the 

given information to establish a relationship between a 

set of input parameters and the output parameters. An 

ANN consists of two or more layers in which neurons 
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are linked by weights. The summation of input data 

multiplied by the weights is modified by the activation 

function to get output data. The output data generated by 

neurons are either used as an input for next layer neurons 

or results for output layer (see Eq. 1).
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where ai is the i-th input data, b is the bias for the neuron, 

f is the activation function, and sigmoid function is 

preferred mostly as below: 
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      The error between neural networks output and 

the desired value is calculated and back propagated to 

the networks to renew the weights and bias to decrease 

the error. Once the ANN is well trained, it can make 

prediction for output with any input set of data which is 

never appeared in the training set with an acceptable 

error. Most of the neural networks are based on the back-

propagation algorithm. For the construction of ANN 

models, there is no reason to use any more than one 

hidden layer for the practical problem [19, 20]. 

 

2.2 Data collection  
 In this study, the data of total 182 samples were 

collected from the literature of RC columns under 

concentric compression conducted by eight teams [4-11]. 

The 182 datasets are divided into two separate datasets 

randomly, named training and testing datasets. 160 

datasets are used for training the network and 22 datasets 

are used for validating the developed ANN model. The 

data contains a wide range of each parameter associated 

with the stress-strain relation. The shape and size of 

specimens for testing concrete strength are varied such 

as 150×300mm cylinder and cube. Therefore the 

concrete strength of each test is converted to that of 

100×200mm cylinder strength using the empirical 

equations [21]. Peak stress and the corresponding strain 

of confined concrete, and strain at which stress drops to 

50% of peak stress of confined concrete are available and 

easily obtained from the previous papers.  

 The compressive fracture energy Gf,c is difficult to 

obtain because experimental full stress-strain curve of 

confined concrete is sometimes not available in the 

previous papers. It is assumed for obtaining Gf,c from the 

literature that stress of confined concrete drops from the 

peak stress to 50% peak stress along a straight line from 

points b to c as shown in Fig. 1. The area of quadrangle 

abcd is equal to Gf,c/Lm. 

 Gf,c can be expressed by  
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where fcc (MPa) is the peak stress of confined concrete, 

ɛcc is the strain at peak stress of confined concrete, εc50 is 

the strain corresponding to stress which drops to 50% 

peak stress, Lm (mm) is the gauge length, and Ec (in MPa) 

is the modulus of elasticity of unconfined concrete and 

is calculated by [22]. 
  

  3320 6900c coE f                    (4) 

where fco (MPa) is unconfined concrete strength in 

member. 

      Therefore the experimental value Gf,c was 

calculated by Eq. 3 based on the assumption shown in 

Fig. 1, and the experimental values (e.g., fcc, ɛcc, etc.) 

from the past literatures. For establishing a neural 

network which can be used for predicting the behavior 

of both square and circular columns, effective 

confinement coefficient Ke is considered into the input 

layer in ANN, which is calculated by Eq. 5 for square 

cross-section, Eq. 6 for hoop and Eq. 7 for spiral 

reinforcement, respectively. 

 
 

Fig. 1 Stress-strain relation with gauge length Lm 
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where wi (mm) is the i-th clear distance between adjacent 

longitudinal bars, s’ (mm) is the clear spacing between 

transverse reinforcement, dc (mm) is the core dimension 

of square and circular columns, and ρcc is the ratio of area 

of longitudinal reinforcement to area of core of section.  

      Fig. 2 shows the arcing action in confined 

concrete. The square and circular RC columns can be 

considered in one ANN models through Ke. 

 

 
 

     Fig. 2 Arcing action in confined concrete 
 
2.3 Network Model  
      Total nine influencing parameters are considered 
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into the input layer of ANN-A, including core dimension 

of columns dc (mm), height of specimen h (mm), gauge 

length Lm (mm), effective confinement coefficient Ke, 

the spacing of transversal reinforcement s (mm), area 

ratio of longitudinal steel ρcc, volumetric ratio of 

transversal steel ρs, strength of concrete fc (MPa) and 

yield strength of transversal steel fyh (MPa). For ANN-A 

pattern, the peak stress of confined concrete fcc (MPa), 

strain at peak stress of confined concrete ɛcc, and 

compressive fracture energy Gf,c (MPa∙mm) were chosen 

as the output in the neural networks.  

      To examine the effect of gauge length on the 

accuracy of stress-strain relation, gauge length is not 

considered in the input layer in the ANN-B pattern. If the 

data of strain corresponding to 50% peak stress in 

descending part εc50 is available in the literature, it is used 

directly as the third output neuron in the output layer in 

the ANN-B. The full stress-strain relation can be 

established based on εc50 predicted by ANN model for 

describing the descending branch. The minimum and 

maximum values of each parameter are listed in Table 1.  

 

Table 1 Structural details of RC column 

       

      For selecting the number of neurons in hidden 

layers, 10 models are developed with 11-20 neurons in 

hidden layers for each ANN patterns. The parameters 

used in ANN models are shown in Table 2. In this paper, 

a software, Multiple Back-Propagation (MBP) with 

back-propagation algorithm for training neural networks, 

was used for predicting the behavior of confined 

concrete. 

 

     Table 2 Input and output of ANN models   

Note: √ means the parameter is considered in ANN and 

× means the parameter is not used in ANN.   

      
2.4 Model verification 
      The statistical parameters, OTR (ANN output to 

desired target ratio), MV (mean value), MAPE (mean 

absolute percentage error), SD (standard deviation) and 

COV (coefficient of variation) are used to verify the 

ANN model. These indices are expressed as following, 
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where m, n, O, T are the number of output layer neurons, 

the number of test data, the output of a single neuron j 

and desire target for the single neuron j, respectively. 

 
2.5 Model selection  
      For the two ANN patterns adopted in this paper, 

ANN-A and ANN-B with varying numbers of neurons 

from 11-20 in hidden layer were tested to choose the best 

model. Fig. 3 shows the statistical parameters SD and 

MAPE for each ANN models. The model selection is 

based on the results of SD and MAPE.  

      In ANN-A pattern, when the number of neuron in 

hidden layer is larger than 17, SD and MAPE increase 

slightly. When the number of hidden layer neurons is 20, 

SD and MAPE are equal to 0.563 and 0.248, 

respectively. As the number of neuron ranges from 11 to 

16, SD and MAPE are variable and changing from 0.268 

to 0.422 and from 0.192 to 0.253, respectively. When the 

number of neurons in hidden layer is 16, the optimum 

model is obtained with SD = 0.235 and MAPE = 0.158, 

respectively.  

      In ANN-B pattern, the SD starts from a larger 

value (i.e. 0.750), when the number of neurons in the 

hidden layer is 11. It decreases sharply to the minimum 

value (i.e. 0.376). The same trend is also confirmed in 

MAPE. Finally, 9-16-3 ANN model in pattern A and 8-

12-3 ANN model in pattern B were chosen since both 

models can make a better prediction for the test results 

in each pattern. The two ANN structures are shown in 

Fig. 4. 

      

 
   Number of neurons in hidden layer 

 
  Fig. 3 Statistical results for two patterns 

 

 
 

Fig. 4 ANN structure of two patterns 

Input layer

Hidden layer

Output layer

dc

mm

h

mm
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mm

Ke s

mm

ρcc ρs fc

MPa

fyh

MPa

1 2 3 15 16

Gf,cɛccfc ɛc50

MPa MPa∙mm

Parameter Minimum Maximum 

dc (mm) 130 720 

h (mm) 457 2400 

Lm (mm) 203 1600 

Ke 0.182 0.923 

s (mm) 23 169 

ρcc 0 0.05 

ρs 0.0028 0.0727 

fc (MPa) 35 129 

fyh (MPa) 317 1387 

Layers Input  Output 

Parameters dc h Lm Ke d ρcc ρs fc fyh  fcc ɛcc ɛc50 Gf,c 

ANN-A √ √ √ √ √ √ √ √ √  √ √ × √ 
ANN-B √ √ × √ √ √ √ √ √  √ √ √ × 
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     Table 3 ANN output to test result ratio   

     

      Table 3 lists the output results of two ANN 

models about the three prediction values fcc, εcc, and Gf,c 

(or εc50). They are ratio of computational to experimental 

values. It can be confirmed from these results that both 

ANN models can provide an accurate prediction of the 

fcc value for each test sample. 

      For the Gf,c and εc50 predictions, it can be seen 

that the model in which Lm is considered in the input 

layer shows a slightly better result than that in which Lm 

is not considered in the input layer. COVs of Gf,c and εc50 

in two ANN models are 0.323 and 0.348, respectively. 

While the error of MV is 0.022 for Gf,c in pattern A which 

is larger than 0.003 in pattern B for εc50. The statistic 

results indicated that the ANN models can make accurate 

predictions for the values fcc, εcc, and Gf,c (or εc50) with 

lower errors. The results of COVs show the lower 

fluctuation of prediction of ANN models for 

experimental results. Lm is an important parameter in the 

compressive test for obtaining the strain in post-peak 

region. For the establishment of a stress-strain model of 

confined concrete, Lm has to be considered. In this study, 

the difference of results between two ANN models is not 

significant since the output of ANN model is not 

sensitive to the change in Lm. 

 

3. MODEL FOR CONFINED CONCRETE 

      In previous literature, a number of models for 

confined concrete under concentric loading have been 

proposed computationally and experimentally. Table 4 

shows an example of previous conventional models, 

which include fcc, ɛcc and the mathematic expression for 

describing the stress-strain relationship of confined 

concrete. For establishing the relationship for confined 

concrete using the output of ANN models, the 

mathematical expressions of the ascending part 

originally proposed by Fafitis and Shah [2] was used 

herein. The mathematic expression of Fafitis and Shah 

model shows a good agreement with the ascending 

branch of experimental stress-strain curve of confined 

concrete. It has been widely used in many confined 

concrete models. It is expressed by Eq. 11. The 

descending part is determined assuming a straight line 

from the peak stress (point b) to the 50% of peak stress 

(point c) as shown in Fig. 1. The descending branch is 

expressed as Eqs. 12 and 13. 

 

   1 1 c

c cc

cc

f f







  
    
   

  0 c cc         (11) 

 

  50

50

0.5cc

c c c cc

c cc

f
f   

 
    

  cc c  (12) 

  

,

50

22

3

f c cc

c cc

cc m c

G f

f L E
 

 
   

 
               (13) 

cc

c

cc

E
f


                              (14) 

 

where fc, fcc, and Ec are in MPa, Gf,c is in MPa∙mm, and 

Lm is in mm.   

The full experimental stress-strain curve of confined 

concrete was extracted from the literature. Previous nine 

experimental results were used for validating the stress-

strain model. Fig. 5 shows the comparison of the results 

from the proposed model and experiment. 

      In all nine cases, the stress-strain relationship of 

confined concrete proposed in this paper based on the 

output of ANN model can accurately make the prediction 

for the experimental results. The results from Mander et 

al. [3] were only provided for normal strength concrete 

columns in Fig. 5. It is because the longitudinal strain in 

the experiment conducted by Mander et al. [3] was 

obtained over the central 450 mm (circular) and 400mm 

(square) gauge length of the columns, and their model 

was verified by the test results of the normal strength 

concrete columns. The proposed model can provide a 

good agreement with the experimental results 

independent of the concrete strength.   

Sample 
ANN-A 9-16-3 ANN-B 8-12-3 

fcc  ɛcc Gf,c fcc ɛcc ɛc50 

CC [9] 0.92 0.89 0.91 0.93 0.64 0.86 

CG [9] 1.03 1.21 1.37 1.15 0.95 0.65 

SI [9] 1.08 1.50 1.23 1.00 0.80 1.99 

C [9] 0.98 0.97 1.05 0.98 1.00 0.74 

fc40s50fy1288 [10] 0.95 0.97 1.29 1.01 0.92 1.26 

fc80s25fy1288 [10] 1.04 1.01 0.64 1.03 0.80 0.59 

fc80s100fy1288 [10] 0.90 0.98 1.52 0.95 0.70 0.97 

fc120s100fy317 [10] 1.06 1.17 0.43 1.01 0.69 1.24 

fc120s100fy1288 [10] 1.03 0.95 0.84 1.08 0.76 1.12 

LH13LA [5] 0.96 1.32 0.83 1.02 1.63 1.34 

HH13LB [5] 0.99 0.62 0.96 0.99 0.82 0.90 

LL08LD [5] 1.04 1.68 0.60 1.02 1.30 0.56 

1D [6] 0.97 1.12 1.29 1.03 0.75 1.42 

3A [6] 1.01 0.65 0.64 0.83 0.89 0.89 

5A [6] 1.01 1.18 0.78 1.04 0.68 1.21 

8B [6] 0.96 0.84 1.16 0.95 0.87 1.10 

Ca1m-1 [11] 1.14 0.95 1.41 1.08 0.95 1.14 

Sa2s-1 [11] 1.02 0.98 0.41 1.05 0.66 0.42 

Sb2s-2 [11] 1.00 1.08 1.18 0.99 0.78 0.89 

Sb4l-2 [11] 0.92 0.86 0.86 0.91 1.11 0.80 

H-D-25-S5.7-P53 [8] 0.86 1.24 1.00 0.95 0.73 0.80 

VH-D20-S11.3P86 [8] 1.07 1.35 1.15 1.10 1.38 1.19 

MEAN 1.00 1.07 0.98 1.00 0.90 1.00 

COV 0.07 0.23 0.32 0.07 0.28 0.35 

Table 4 Models for confined concrete 
Refs. Peak stress Strain at peak stress Model for confined concrete 

[1] fcc=fco[2.28(pe/fco)0.647] εcc= εco+0.0766(pe/fco) fc=fcc[1-(1-εc/εcc)α] fc=fccexp[kc(εc-εcc)kd] 

[3] fcc=fco(-1.254+2.254√1+7.94fl/fco-2fl/fco) εcc=εco[1+5(fcc/fco-1)] fc=fccxr/(r-1+xr) 

[7] fcc=fco+k1fle εcc= εco(1+5k3k1fle/fco) fc=fccxr/(r-1+xr) 
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(a) fc40s50fy1288 [10] 

 
(b) fc80s25fy1288 [10] 

 
(c) fc80s100fy1288 [10] 

 
(d) HH13LB [5] 

 
(e) 5A [6] 

 
(f) Ca1m [11] 

 
(g) Sa2s [11] 

 
 (h) Sb2s [11] 

 
(i) Sb4l [11] 

 
Fig. 5 Comparison of stress-strain relation from test 
results and from prediction by ANN and Mander et 
al. model [3] 

 

4. CONCLUSIONS 
 

      The present study shows the feasibility of using 

artificial neural networks (ANN) model for predicting 

the behavior of confined concrete. Two kinds of ANN 

models for predicting the behavior of confined concrete 

under concentric compression were developed. Once the 

ANN model was trained, fixed mathematic network with 

weights and bias was obtained. Although this 
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mathematic network is an implicit model, it can be used 

easily to predict the behavior of confined concrete in 

practice. 

      (1) When the gauge length data in the experiment 

is used for training the network, the ANN model can give 

an accurate result of peak stress of confined concrete, 

strain at the peak stress and compressive fracture energy. 

      (2) The stress-strain relation for confined 

concrete established using two branch equations can 

provide good agreement with the test results compared 

with the conventional model. 

      (3) The proposed model gives reasonably good 

predictions for the experimental results, including the 

post-peak behavior of circular and square specimens 

with normal- to high-strength concrete (fc=35-129 MPa) 

confined by normal- to high-strength reinforcement 

(fyh=317-1387 MPa) of different volumetric ratios and 

arrangements. 
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