論文 間接支持される R C 梁のせん断耐荷機構に関する一考察

佐藤 祐子*1·田所 敏弥*2·轟 俊太朗*1·進藤良則*3

要旨:杭基礎フーチングの単位幅を想定したRC梁を用いた載荷試験および有限要素解析を行い,間接支持 されるRC梁のせん断耐荷機構について検討した。その結果,橋脚の軸方向鉄筋のフック先端に斜めひび割 れが進展するとともに圧縮ストラットが形成される。そして,せん断補強鉄筋がある場合は,曲げ圧縮部近 傍の圧縮ストラットが破壊することでせん断破壊すること,せん断耐力の算定ではせん断補強鉄筋の補強効 果とともにコンクリートの分担分も期待できるが,せん断スパン比が大きい直接支持されるRC梁で用いら れるせん断補強鉄筋とコンクリートの分担分の累加では評価できない可能性があることがわかった。 キーワード:間接支持,RC梁,せん断耐力,せん断補強鉄筋

1. はじめに

ー般に、杭基礎フーチングにおいては、せん断スパ ン比が小さいため、その断面諸元は地震時のせん断力の 照査で決まる。杭基礎フーチングの支持状態は、図-1 のように地震時の慣性力により、どちらか一方のスパン が直接支持状態、もう一方が間接支持状態となる。直接 支持とは杭に押し込みが生じる場合であり、間接支持と は杭に引き抜きが生じる場合である。直接支持されるせ ん断スパン比の小さいRC部材の耐荷機構やせん断耐力 に関しては、単純支持されたRC梁を用いた載荷試験や 有限要素解析により、概ね明らかになっている^{1),2)}。一 方,間接支持されるせん断スパン比の小さいRC部材は、 載荷試験等の実験的研究も少なく、せん断力に対する耐 荷機構やせん断耐力の算定法は示されていない。

既往研究^{3),4),5),6)}で,筆者らは,杭基礎フーチングの単位幅を想定したRC梁の試験体を用いて,間接支持条件

を模擬した載荷試験を行った。そこでは、せん断スパン 比、せん断補強鉄筋比、杭の軸方向鉄筋のフーチングへ の埋込み長が間接支持されるRC梁のせん断耐力に与え る影響が検討され、間接支持されるRC部材のせん断耐 力は、直接支持されたRC部材と異なり、せん断スパン 比が小さい場合においても、せん断補強鉄筋の受け持つ せん断力のみで、概ね評価できる可能性が示唆されてい る。しかしながら、せん断耐力におよぼすコンクリート の分担分の影響等、不明な点もある。本研究では、これ らの載荷試験を対象に有限要素解析を行い、間接支持さ れるRC部材のせん断耐力におよぼすせん断補強鉄筋と コンクリートの分担分の影響について検討した。

本研究では、まず、既往の間接支持されるRC梁の載 荷試験を対象に有限要素解析を行った。そのうえで、支 持条件を直接支持に変更した解析を行い、載荷試験では、 詳細な確認が困難なせん断補強鉄筋やコンクリートのひ ずみ分布を比較することで、間接支持されるRC部材の

*2 (公財)鉄道総合技術研究所構造物技術研究部 コンクリート構造 博士(工学) (正会員)

*3 (独)鉄道建設・運輸施設整備支援機構 九州新幹線局施設管理課 修士(工学) (正会員)

せん断力に対する耐荷機構や間接支持がせん断耐力にお よぼす影響を検討した。

2. 間接支持されるRC梁の載荷試験

2.1 載荷試験の概要

表-1,図-2に試験体のパラメータおよび試験体寸法 を示す。試験体は、杭基礎フーチングの単位幅を想定し たRC梁であり、中央部に橋脚の軸方向鉄筋、左右に杭 の軸方向鉄筋を模擬した鉄筋を配置した。

No.2 試験体では、せん断力が大きくなることが予想さ れたため,等曲げ区間において断面を400mm 増厚した。 なお, No.1 試験体との比較のため, No.2 試験体の増厚し た範囲の軸方向鉄筋は VM テープを巻き、コンクリート との付着を取り除いた。いずれの試験体も、杭および橋 脚の軸方向鉄筋には D25 を用い, 杭の軸方向鉄筋のフッ ク先端までの埋込長は 377mm とした。橋脚の軸方向鉄 筋から杭の軸方向鉄筋までの距離 l と, 部材高さ h の比 である I/h は 1.0 とした。 せん断補強鉄筋を配置した試験 体においては、D13 のせん断補強鉄筋を 100mm 間隔で 配置し、せん断補強筋比は0.84%とした。RC梁の軸方 向鉄筋には D16 を用い,引張鉄筋比は 0.66% とした。R C梁の軸方向鉄筋の定着は、梁端面に設けた鋼板にねじ 止めをすることで行った。なお、曲げ破壊防止のため、 RC梁の軸方向鉄筋には熱処理し高強度化した降伏強度 1000N/mm²相当の鉄筋を用いており、最大せん断力時に おいて、両試験体ともに軸方向鉄筋は降伏しなかった。

No.1 試験体の試験状況を図-3 に示す。両試験体とも 載荷は、杭の軸方向鉄筋を固定し、橋脚の軸方向鉄筋を 固定した鉄骨に鉛直力を作用させることで行った。なお, 鉄骨に作用させた鉛直力は,橋脚の軸方向鉄筋とコンク リートの付着により,せん断力として試験体に作用する。 また,杭の軸方向鉄筋を模擬した支点部は,実構造物に おける杭の拘束を想定し,拘束の影響を低減するために, 図-3 のように杭の軸方向鉄筋と PC 鋼棒上端を鉄骨を 介して接続し, PC 鋼棒下端を別の鉄骨の PC 鋼棒よりも 径の大きい穴に通し,ボルト締めすることで,回転を許 容する構造とした。

2.2 破壊形態および破壊荷重

図-4 にひび割れ状況を、図-5 にせん断力-変位関 係を示す。せん断補強鉄筋を配置した No.2 試験体につい て、図-6 にせん断補強鉄筋に貼り付けたひずみゲージ の位置を、図-7 にせん断力と図-6 の位置で計測したせ ん断補強鉄筋ひずみの関係を示す。図-4 には、下記の 代表的なひび割れが生じたときのせん断力を記載した。

図-4 において太い赤線で示した斜めひび割れは,各 試験体が最大せん断力を示す直前に開口し,荷重低下に 対して支配的と思われるひび割れである。この斜めひび 割れとRC梁の軸方向鉄筋がなす角度は,おおよそ45° である。いずれの試験体も,せん断力75kNまでに橋脚 の軸方向鉄筋に沿って曲げひび割れが生じた。その後, せん断補強鉄筋を配置していない試験体 No.1 では, 110kN程度でより支点に近い位置から橋脚の軸方向鉄筋 のフック先端に向かって斜めひび割れが生じ,試験体 No.2と比べて剛性が低下した。そして,181kNで2本目 の斜めひび割れが生じた直後に,せん断力が急激に低下 した。せん断補強鉄筋を配置したNo.2試験体では,100kN

程度で生じた斜めひび割れが進展し、110kN 程度で S3 ~5のせん断補強鉄筋にひずみが表れ、剛性も低下した。 せん断力150kN程度でより大きな斜めひび割れが発生し、 圧縮鉄筋および引張鉄筋に沿ったひび割れに進展し、 280kN程度でひび割れ幅が大きくなるとともに、多数の びび割れが生じ,試験体 No.1と比べて緩やかにせん断力 が低下した。最大せん断力は288kNであった。最大せん 断力時には、両試験体ともに橋脚下方におけるRC梁の 下側軸方向鉄筋に沿ったひび割れが生じていた。

3. 有限要素解析による耐荷機構の検討

3.1 解析概要

図-8 に解析モデルを示す。解析モデルは、対称性を 考慮し、載荷試験における試験体の 1/2 を対象とした 3 次元モデルとした。間接支持されるRC梁では、荷重は 橋脚の軸方向鉄筋とコンクリートの付着によりRC梁に 伝達される。そのため、橋脚の軸方向鉄筋からコンクリ ートへの3次元的な応力伝達を詳細にモデル化する必要 がある。本研究では、橋脚および杭の軸方向鉄筋につい ては、フック形状も含め、ソリッド要素を用いて詳細に モデル化した。また、橋脚および杭の軸方向鉄筋とコン クリートの付着特性については,島モデル⁷⁾を基本とし たが, R C 梁の軸方向鉄筋とせん断補強鉄筋については, 付着特性の影響が小さいと考え、完全付着を前提とする 埋め込み鉄筋要素を用いた。RC梁のコンクリートは, 材料非線形を考慮するが、増厚部のコンクリートは弾性 要素とし、載荷試験と同様に増厚部において橋脚の軸方 向鉄筋とコンクリートの付着は考慮しない。

島モデル⁷⁰は、マッシブなコンクリートに埋め込まれ た異形鉄筋の付着応力とひずみの関係をモデル化したも のであり、本研究のようにかぶりの小さいものに適用す る場合には低減が必要であると考えられる⁸⁰。また、載 荷試験において橋脚の軸方向鉄筋に沿ったひび割れが生 じた 75kN 以上のせん断力が作用している時には、橋脚 の軸方向鉄筋とRC梁のコンクリートとの付着力は大き く低下していると考えられる。さらに、載荷試験におい

て橋脚の軸方向鉄筋に沿ったひび割れが断面方向に貫通 していたことから、本研究では十分に付着力が低下した 状態として島モデルを 0.1 倍することにした。一方、杭 の軸方向鉄筋とコンクリートとの付着は、載荷試験にお いて最大荷重直前までひび割れが生じないことから、島 モデルにおける低減を行わないことにした。

コンクリートおよび鉄筋の材料特性値は、載荷試験と 同一とし、コンクリートの圧縮特性には Parabolic モデ ル⁹、引張特性には Hordijk モデル¹⁰⁾を用いた。ひび割 れモデルは全ひずみ固定ひび割れモデルを用いた。ひび 割れ面でのせん断伝達には図-9 に示す、全ひずみに反 比例する形でせん断強度を低減する Al-Mahaidi モデル¹¹⁾ を用いた。

支点条件は、図-8のようにして載荷試験を再現した。 具体的には、鉄骨を模擬した剛な板要素を設け、この剛 な板要素の中央に載荷試験におけるRC梁から回転中心 までの距離である 398mm の剛梁要素を接続し、下端を 拘束した。このように、支点部の回転を許容するモデル とすることで載荷試験における支点条件を再現した。

表-2 に有限要素解析における検討ケースを示す。載 荷試験の試験体 No.1 と No.2 の解析結果をケース 1,ケ ース 2 とする。載荷は,橋脚の軸方向鉄筋の先端に鉛直 上向きの強制変位を与えた。さらに,橋脚基部および杭 頭部を載荷位置と想定し,直接支持されるR C 梁の耐荷 機構について検討した。直接支持条件を示す。荷重は, 増厚コンクリート上面に鉛直下向きの強制変位として与 えた。試験体 No.1 と No.2 に対応する直接支持の解析ケ ースをケース 3,ケース 4 とし,支持条件の影響につい て検討した。

3.2 有限要素解析の結果

(1) 間接支持されるRC梁

図-10にせん断力-変位関係を示す。ケース1につい

て、図-11 に橋脚の軸方向鉄筋に沿った曲げひび割れ発 生時と最も大きな斜めひび割れ発生時の最大主ひずみを、 図-12 に最も大きな斜めひび割れ発生時の最小主応力 を示す。ケース2について、図-13 に橋脚の軸方向鉄筋 に沿った曲げひび割れ発生時,最大せん断力に達するま でで最も大きな斜めひび割れ発生時,最大せん断力時の 最大主ひずみを,図-14 に最大せん断力時の最小主応力 を、図-15 にせん断補強鉄筋の応力を示す。図-11 と 図-13 には,記載の変位で新たに生じたひび割れを矢印 で示した。また,本研究では、100 μ 以上の最大主ひずみ が生じたコンクリート要素でひび割れが生じると考えら れる。

図-4,図-10,図-11,図-13から2ケースとも載 荷試験と同様のひび割れ性状,せん断力-変位関係を示 しており,載荷試験が概ね再現できたと考えられる。せ ん断補強鉄筋の配置の有無にかかわらず,60kN程度で橋 脚の軸方向鉄筋に沿って最大主ひずみが卓越しているこ とがわかる。また,RC梁の曲げひび割れから,橋脚の 軸方向鉄筋のフック先端に向かって斜めひび割れが進展 していることがわかる。斜めひび割れが生じたときのせ ん断力は,2ケースとも110kN程度であり,斜めひび割 れが生じることで剛性が低下した。角度 45°の最も大き な斜めひび割れが生じたときのせん断力は,2 ケースと も 150kN 程度であり,その後杭および橋脚の軸方向鉄筋 のフック先端まで進展した。せん断補強鉄筋を配置して いないケース1は,最も大きな斜めひび割れが生じた直 後に急激に荷重が低下した。図-12 から,150kN 程度で 斜めひび割れ発生した時に圧縮ストラットが形成されず, 橋脚の軸方向鉄筋のフック先端まで進展した斜めひび割 れにより急激に荷重が低下したと考えられる。せん断補 強鉄筋を配置したケース2では,最も大きな斜めひび割 れ発生後に剛性が低下したが,荷重は増加し,278kN で 最大せん断力に達し,載荷試験と同様にせん断力が頭打 ちとなった。

図-16にケース2における各せん断補強鉄筋の最大の ひずみを抽出した結果を示す。せん断補強鉄筋にひずみ が生じ始めるせん断力は、斜めひび割れ発生せん断力と 同じ110kN 程度であり、載荷試験とほぼ同じであった。 図-16では、載荷試験と異なり、最も大きな斜めひび割 れ発生後の120~150kN でS1,2に大きなひずみが生じ ている。これは、載荷試験ではひずみ測定位置とひび割 れ間に距離があるためと考えられる。なお、同位置にお

ける S1,2のひずみが試験結果と解析結果で概ね一致し ていることは別途確認している。このようにせん断補強 鉄筋のひずみは,解析結果と試験結果は概ね一致してい た。以上のように,有限要素解析は,ひび割れ状況やせ ん断補強鉄筋のひずみ等,載荷試験を良好に再現できた。

図-15から最大せん断力時に、最も大きな斜めひび割 れと交差する橋脚側の3本のせん断補強鉄筋(S3~5) に特に大きな応力が生じていることがわかる。また, 図-14にように、最大せん断力時には斜めひび割れに沿 うようにして、杭および軸方向鉄筋の先端から圧縮スト ラットが形成されていることがわかる。この圧縮ストラ ットにより、最大せん断力時において、コンクリートが せん断力の一部を負担したと考えられる。また、試験体 下面の曲げ圧縮縁において最小主ひずみが卓越しており, 最小主応力がコンクリートの圧縮強度に達していること が確認できたことから,橋脚下方でコンクリートが圧縮 破壊していると考えられる。これにより、曲げ圧縮部の 圧縮ストラットが破壊し、せん断耐力に達したものと推 測される。このように、間接支持されるRC梁では、せ ん断補強鉄筋を配置したことで、最も大きな斜めひび割 れ発生後に、せん断補強鉄筋がせん断力を負担するとと もに、圧縮ストラットが形成されたことで、橋脚下方に おけるRC梁の下側軸方向鉄筋に沿ったひび割れの進展 は緩やかになり、橋脚下でコンクリートが圧縮破壊した ことで最大せん断耐力に達した。その結果、補強鉄筋の 配置有無による最大耐力の差が生じたと推測される。

(2)直接支持されるRC梁

ケース4について、図-17、図-18にひび割れ発生時 の最大主ひずみと最小主応力を示す。図-17には、記載 した変位で新たに生じたひび割れを矢印で示している。 せん断力-変位関係は図-10に示している。せん断補強 鉄筋の配置の有無にかかわらず、まず、せん断力 70kN 程度で引張縁に曲げひび割れが生じ、その後 190kN 程度 で支点を結ぶようにして 45°の斜めひび割れが生じた。

ケース3,ケース4ともに290kN程で剛性が低下し, 一旦荷重が低下したが,これは曲げ圧縮縁のコンクリートが破壊したためと考えられる。曲げ圧縮縁のコンクリ ートの破壊は、図-18で橋脚基部内側において最小主応 力が卓越しており、コンクリートの圧縮強度以上の応力 が生じていたことが別途確認できたことからも示唆され た。せん断補強鉄筋を配置していないケース3のせん断 耐力は345kNであった。せん断補強鉄筋を配置したケー ス4は、せん断力330kNでせん断スパン中央のせん断補 強鉄筋が降伏し、剛性低下を伴いながら荷重が増加し、 350kNでせん断耐力に達した。

このように、直接支持される試験体は、間接支持され る試験体と異なり、橋脚を模擬したコンクリートがある ため、橋脚下方におけるRC梁の上側軸方向鉄筋に沿っ てひび割れは進展しない。このために、せん断耐力時に は、図-18のように圧縮ストラットが十分に形成され、 せん断補強鉄筋の配置の有無によるせん断耐力の違いが わずかであったと考えられる。これは、既往の研究¹⁾に おけるタイドアーチを前提としたディープビームの考え 方に一致するものである。ただし、本研究における解析 ケースでは、通常の載荷試験における載荷板幅²⁾よりも 大きいため、圧縮ストラットの幅が広いことがわかる。

3.3 せん断耐力へのせん断補強鉄筋の寄与

ここで、間接支持されるRC梁のせん断補強鉄筋に大 きなひずみが発生していたことから,せん断補強鉄筋の せん断耐力への寄与分をトラス理論が成り立つと仮定し, 解析で確認された斜めひび割れの発生角度 45° を前提 に検討した。斜めひび割れと交わるせん断補強鉄筋はひ び割れ位置から、橋脚に近い3本、すなわち図-6のS3 ~5のひずみゲージを取付けた鉄筋とした。ただし、解 析では、最も橋脚に近いせん断補強鉄筋位置に曲げひび 割れが生じており、S5位置でのひずみは曲げに対する抵 抗分が含まれていると考えられる。そのため、解析では S3 と S4 のひずみ計を取付けた鉄筋のひずみの平均を 3 倍することでせん断補強鉄筋分担分を求めた。なお,S3 と S4 の平均を 3 倍して求めた場合のせん断補強鉄筋分 担分が、S3~5の和から求めた場合と比較して、斜めひ び割れの生じるせん断力 75kN 以上では等しい値となる ことを確認している。

図-7および図-16に示したせん断補強鉄筋のひずみ

からトラス理論に基づき算定したせん断補強鉄筋の分担 分とせん断力の関係を図-19に示す。なお、載荷試験結 果を示す波線が2本あるのは、橋脚の左右でひずみを計 測したためである。載荷試験ではひずみ計位置でひび割 れが生じるとは限らない。このため、図-19の2本の破 線は一致しない。一方で、解析ではひび割れと交わる任 意の場所のひずみを得ることができるため、ひび割れに よるせん断補強鉄筋のひずみを精緻に把握することがで き、試験結果よりもせん断補強鉄筋の分担分が大きくな った。

図-19では、全せん断力をせん断補強鉄筋が負担する 場合を直線で示している。したがって、曲線の左側がせ ん断力のうちせん断補強鉄筋の分担分を、曲線の右側か ら直線までがコンクリートの分担分を示している。解析 結果から、最大せん断力(278kN)時において、せん断 力の 74%にあたる 205kN をせん断補強鉄筋で負担して おり、間接支持されるRC梁では、せん断スパン比が小 さい場合においても, せん断補強鉄筋のせん断補強効果 があると考えられる。また、間接支持されるRC梁では 斜めひび割れの進展とともにコンクリートのせん断力分 担分が減少することがわかる。ただし、ひび割れ進展後 も圧縮ストラットを形成することでコンクリートはある 程度のせん断力を分担すると考えられ、最大せん断力時 においても 70kN 程度をコンクリートが分担していた。 せん断スパン比が大きい直接支持されるRC梁に適用さ れる修正トラス理論では、コンクリートの分担分は一定 という前提のもと、コンクリートと鉄筋の分担分を累加 してせん断耐力を求めるが、間接支持される RC 梁の場 合は、斜めひび割れ発生後にコンクリートの分担分が減 少する傾向にあることから、間接支持されるRC梁のせ ん断耐力は、せん断補強鉄筋の受け持つせん断力とコン クリートの受け持つせん断力の単純な累加では表現でき ない可能性があることがわかった。

4. まとめ

本研究では、杭基礎フーチングの単位幅を想定した RC梁の有限要素解析を行い、載荷試験では詳細な確認 が困難なせん断補強鉄筋やコンクリートのひずみ状況を 把握することで、間接支持されるRC梁のせん断力に対 する耐荷機構を検討した。その結果、本試験体諸元の範 囲において、以下の知見を得ることができた。

(1)間接支持されるRC梁においては、荷重が直接作用 する鉄筋先端のフック近傍に斜めひび割れが進展すると ともに圧縮ストラットが形成される。そして、せん断補 強鉄筋が配置されたRC梁においては、最終的には、曲 げ圧縮部近傍の圧縮ストラットが破壊することによって、 せん断破壊する可能性がある。 (2) せん断補強鉄筋においては、ある程度のひずみが発 生することから、せん断補強鉄筋の補強効果が期待でき るとともに、圧縮ストラットの形成にともなうコンクリ ートの寄与も期待できる。ただし、せん断スパン比が大 きい直接支持されるRC梁のように、せん断補強鉄筋と コンクリートの受け持つせん断力の単純な累加では、評 価できない可能性がある。

(3) せん断補強鉄筋がない場合については, せん断補強 鉄筋を配置した場合や直接支持されるRC梁のような強 固な圧縮ストラットが形成されないため, 斜めひび割れ 発生後, まもなく, 脆性的に破壊すると考えられる。

参考文献

- 谷村幸裕,佐藤勉,渡邊忠朋,松岡茂:スターラッ プを有するディープビームのせん断耐力に関する 研究,土木学会論文集,No.760/V-63, pp.29-44, 2004.5
- 谷村幸裕ほか: せん断補強鉄筋を有する杭基礎フー チングのせん断耐力評価に関する研究, 土木学会論 文集, No.795/V-68, pp.127-143, 2005.8
- 田所敏弥ほか:間接支持されるRC梁のせん断耐力 に関する検討,土木学会年次学術講演会講演概要集, Vol.65, V-087, pp.173-174, 2010.8
- 進藤良則ほか:支持条件に着目したフーチングのせん断耐力の評価に関する検討,土木学会年次学術講 演会講演概要集, Vol.65, V-088, pp.175-176, 2010.8
- 5) 轟俊太朗,田所敏弥,谷村幸裕,進藤良則:上側引 張を受ける R C 梁のせん断耐力に及ぼすせん断補 強鉄筋の影響,コンクリート工学年次論文集, Vol.33, No.2, pp.739-744, 2011.7
- 6) 田所敏弥ほか: せん断力に対する杭基礎フーチングの有効幅の一考察, 土木学会年次学術講演会講演概要集, Vol.66, V-085, pp.169-170, 2011.8
- 7) 島弘,周礼良,岡村甫:マッシブなコンクリートに 埋め込まれた異形鉄筋の付着応力すべりひずみ関 係,土木学会論文集,No.375/V-6,pp.165-174,1987.2
- 飯塚敬一,檜貝勇,斎藤成彦,高橋良輔:かぶり厚の影響を考慮した異形鉄筋の付着応力-すべり-ひずみ関係,土木学会論文集E2, Vol.37, No.2, pp.280-296,2011.6
- Feenstra, P. H. : Computational Aspects of Biaxial Stress in Plain and reinforced Concrete.PhD thesis, Delft University of Technology, 1993
- Hordijk, D. A. : Local Approach to Fatigue of Concrete. PhD thesis, Delft University of Technology, 1991.
- Al-Mahaidi, R. S. H.: Nonlinear Finite Element Analysis of Reinforced Concrete Deep Members. , Cornell University, Tech. Rep. 79-1, 1979.