報告 実規模 RC 製ロックシェッドの三次元動的骨組解析における落石荷 重載荷位置に関する一検討

牛渡 裕二*1·鈴木 健太郎*2·今野 久志*3·岸 徳光*4

要旨:本研究では,実務設計を視野に入れ三次元動的骨組解析を用いて RC 製ロックシェッドの性能設計を 行う場合の合理化および省力化を目的として,解析結果を実験結果と比較したうえで,落石荷重載荷位置が 耐衝撃挙動に与える影響を検討した。その結果,1)道路軸方向に対して中央載荷よりも端部載荷の場合が部 材に生じる曲げモーメントが大きく,部材断面設計は端部載荷時で決定される傾向にある,2)柱部材に発生 する曲げモーメントは中央柱よりも端部柱が大きくなる傾向にあり,道路幅方向に加え道路軸方向にも大き な曲げモーメントが同時に発生するため2軸曲げの照査が必要となる,などが明らかになった。 キーワード:ロックシェッド,動的骨組解析,落石荷重載荷位置,最大曲げモーメント発生位置

1. はじめに

我が国の山岳部や海岸線の急崖斜面に沿った道路には, 様々な落石対策構造物が数多く建設されている。その中で 比較的規模の大きな落石に対応可能な構造物としてロッ クシェッドがある。現在,ロックシェッドの設計は落石 対策便覧¹⁾の改訂に伴い性能規定型の設計法へと移行さ れることになる。寒地土木研究所および室蘭工業大学ら の研究グループでは,鉄筋コンクリート(RC)製ロック シェッドに関する性能照査型耐衝撃設計法の確立を目的 に,RC梁やRCスラブ等の部材単位での実験や数値解析 から研究を始め,2/5 および 1/2 縮尺,更には実規模 RC 製ロックシェッド模型を製作して重錘落下衝撃実験を実 施して,三次元弾塑性有限要素法や三次元動的骨組解析 法の適用も提案し²⁾,これらの手法が実験結果を大略評 価可能であることを明らかにしている。

なかでも三次元動的骨組解析法は比較的容易に解析が 可能であることから,性能照査手法の一つとして実務設 計での採用を視野に性能照査設計例³⁾として提示されて いる。しかしながら,設計例は落石荷重載荷位置が端部 柱の中央断面1点のみが示され,大略の設計法(考えや 手順)については紹介しているに止まり,実務設計を考 えた場合,資料は不足していると言える。実務設計では 複数の各載荷位置に落石荷重を作用させて各部材・着目 点毎に最大断面力となる荷重載荷位置を探し出し設計す ることとなり,これまでの二次元静的骨組解析に比べる と作業量は大幅に増えることが予想される。

そこで、本研究では安全性確保を条件に実務設計での 合理化・省力化が図られるように載荷位置を変化させた 場合の解析を行い、落石荷重載荷位置が耐衝撃挙動に与 える影響を検討し報告するものである。

図-1 試験体の形状寸法

図-2 試験体の配筋状況

2. 実験概要

2.1 試験体概要

図-1 および 図-2 には, 落石衝撃力 P=1,466 kN に対 して二次元静的骨組解析を用いて許容応力度を満足する ように設計した RC 製ロックシェッド試験体の形状寸法 および配筋状況をそれぞれ示している。試験体は, 道路 軸方向長さが 12 m, 外幅 9.4 m, 壁高さ 6.4 m の箱型ラー

*1	(株)構研エンジニアリング 防災施設部 部長 博(工)(正会員)	
*2	(株) 構研エンジニアリング 防災施設部 (正会員)	
*3	(国研)土木研究所寒地土木研究所 寒地構造チーム 総括主任研究員 博(工)(正会員)	
*4	(独)高專機構 釧路工業高等専門学校 校長 工博(正会員)	

実験 No.	緩衝材	載荷位置	重錘 質量 (t)	落下高 (m)	入力 エネルギー (kJ)
1	敷砂	A-3	2	1	20
$2 \sim 7$	敷砂	A-2/3/4 C-2/3/4	2	2	40
8,9	砕石	C-3/4	2	1	20
$10 \sim 15$	砕石	碎石 A/2/3/4, C-2/3,N-3		2	40
16	砕石	N-3	5	5	250
17	TLAS	A-3	10	30	3,000
18	TLAS	N-3	10	30	3,000
19	敷砂	C-3	5	5	250
20	敷砂	A-3	10	15	1,500
21	砕石	A-3	10	15	1,500
22	砕石	C-3	10	15	1,500
23	砕石	N-3	10	30	3,000

表-1 実験ケース一覧

表-2 数値解析ケース一覧

Ľ	解析 No.	載荷位置	入力荷重			
Ī	1	A-3-EXP	重錘衝擊力波形 (実験値)			
	$2\sim 6$	$A-1 \sim 5$				
Γ	$7 \sim 11$	$B-1 \sim 5$	設計衝撃力 ム形波形			
	$12 \sim 16$	$C-1 \sim 5$	成 时 国 季 刀 口 D 0 0 D			
Γ	$17\sim21$	$D-1 \sim 5$				

図-4 入力荷重モデル

メン構造である。内空断面は幅8m,高さ5mであり,内 空の四隅にはハンチを設けている。柱の道路軸方向幅は 1.5m,部材厚さは,頂版,底版,柱および側壁ともに0.7 mである。

鉄筋比は一般的なロックシェッドと同程度としており, 頂版下面および上面の主鉄筋はそれぞれ D25 を 125 mm 間隔(鉄筋比 0.68%)および D29 を 250 mm 間隔で配置 している。頂版および柱主鉄筋以外の鉄筋配置間隔は全 て 250 mm であり, 頂版の配力筋は鉄筋量が道路幅方向 鉄筋の 1/2 以上を目安に,上面が D19,下面が D22 で配 置している。側壁の主鉄筋は,外側が D29,内側が D19, 配力筋は外側に D19,内側に D13,底版の主鉄筋は,上面 に D22,下面に D16,配力筋は上面,下面ともに D16 と している。柱の主鉄筋は,外側,内側ともに D29 を 144 mm 間隔で 10本配置している。帯鉄筋は D16 を中間拘束 鉄筋を含め,高さ方向に 150 mm 間隔で配置している。コ ンクリートのかぶりは,いずれも鉄筋からの芯かぶりで 100 mm としている。 コンクリートの設計基準強度は 24 N/mm² であり,実 験時の頂版,底版,柱/側壁の圧縮強度は,それぞれ 37.87 N/mm², 30.68 N/mm², 30.19 N/mm² であった。鉄筋の材 質は全て SD345 であり,引張試験結果は D13 ~ D29 でい ずれも降伏応力が 390 MPa 程度であった。

2.2 実験ケース

表-1には、実験ケース一覧を示している。また、図-3 には載荷位置を示している。本実験は、スイス連邦工科 大学チューリッヒ校との共同研究プロジェクトとして実 施されたものであり、緩衝材や重錘落下位置、入力エネ ルギーを変化させた数多くの実証実験を実施している⁴⁾。 実験に使用した緩衝材は、我が国で一般的に使用されて いる敷砂と三層緩衝構造(以後、TLAS)、スイス連邦で一 般的に使用されている砕石の3種類である。後述の実験 結果と解析結果の比較は厚さ900 mmの敷砂を用いた実 験 No.20(図-3では A-3)であり、太字で示している。

3. 数值解析概要

3.1 解析ケース

表-2および図-4には、数値解析ケース一覧および 入力荷重モデルをそれぞれ示している。数値解析では、 まず実験結果と数値解析結果の比較検討を行うこととす る。比較検討対象としたケースは図-3に示す中央載荷 位置のA-3である。この数値解析は、実験で得られた重 錘衝撃力波形および台形波形にモデル化した入力荷重モ デルの2つにおいて、載荷点直下の鉛直変位および主鉄 筋ひずみに関して実験結果と比較検討する。次に落石荷 重載荷位置が耐衝撃挙動に与える影響を検討するため、 表-2および図-3に示す計20ケースについて、設計衝 撃力の台形波形にて解析を行った。

設計衝撃力台形波形は、敷砂緩衝材を用いた場合の数

図ー6 骨組断面

値計算に一般的に使用されている台形状に簡易化した入 力荷重波形⁵⁾であり,最大値到達および最大値から除荷 までの時間がそれぞれ 10 ms,最大衝撃力の継続時間が 15 ms,荷重継続時間が 35 ms である。最大衝撃力は,落石 対策便覧に示されている衝撃力算定式より,ラーメの定 数を $\lambda = 1,000 \text{ kN/m}^2$,割増し係数 $\alpha = 1.179 \text{ として, } P = 4,300 \text{ kN} \text{ とした。}$

落石荷重の載荷位置は 図-3 の A-1 ~ D-5 に示す全 20 点とし、荷重作用面積は重錘と同様に直径 1,250 mm の 円形としている。なお、落石荷重は 図-5 の載荷範囲に ある節点に面積比を考慮し分割して与えている。

3.2 数値解析モデル

図-5には、本数値解析に用いた三次元骨組解析モデ ルを示している。要素分割長は部材厚に対して 0.5~1.0 倍程度の範囲内で、かつある程度均等に分割が出来るよ うに標準要素長を部材厚の 0.7 倍である 0.5 m とした。試 験体内空の四隅にはハンチを設けていることから、隅角 部には 図-6 に示すように道路橋示方書に準拠し剛域を 設定している。柱と頂版の接合部には頂版の道路軸方向 の変位やねじりを適切に柱に分担するよう柱頂部より放 射状に剛域を設定している。

骨組モデルには、断面寸法や各材料定数を考慮したファ イバー要素を使用した。ファイバー要素のセル分割は、部 材軸が道路幅方向の部材に関しては、図-7に示すとお

図-7 ファイバーモデルのセル分割状況

り各セルの中心近傍に軸方向鉄筋が配置されるように設 定している。また、上記に直交する要素に関しても、同 様にセルを分割して前述 2.1 に示す配力筋を配置してい る。なお,底面の境界条件は弾性床支持とし,圧縮方向の みのバネを考慮している。ただし、試験体はコンクリー ト剛基礎上に設置されていることから、道路橋示方書に 準拠し1要素(幅0.5 m)あたり $k_v = 5,200,000 \text{ kN/m}^2 \text{ o}$ バネ定数を入力した。コンクリートおよび鉄筋の質量は, 道路幅方向の部材のみに考慮し,道路軸方向部材は剛性の みを考慮している。なお、ねじり剛性は断面形状に応じ て解析ツール内で自動算出され、その値は線形弾性が仮 定されている。また, 頂版上の敷砂緩衝材の質量は要素 に付加することで考慮している。減衰定数は質量比例分 のみを考慮し,事前に固有振動解析を行い,鉛直方向最低 次曲げ振動モードに対応した固有振動数に対して、h=5 % としている。時間増分 Δ_{cr} は courant の条件を満足する ように、 $\Delta_{cr} = 0.1 \text{ ms}$ とした。本数値解析には Engineer's Studio (Ver.7.0.2)を使用している。

3.3 材料物性モデル

図-8には、本数値解析に用いたコンクリートおよび 鉄筋の材料物性モデルを示している。コンクリートの材 料構成則は、既往の研究⁶⁾では道路橋示方書に則し2次 曲線モデルを使用していたが、ここでは適応可能構成則 の紹介の意味も含め、東京大学コンクリート研究室で開 発されたコンクリートの除荷・再載荷を含む経路依存型 の構成則モデル^{7),8)}を用いた。なお、同モデル中の引張 軟化係数*C*は圧縮強度の1/10に達した時点で引張力を負 担しないように*C*=7.5とした。鉄筋要素に用いた物性モ デルには、塑性硬化係数*H*′を弾性係数*E*_sの1%とするバ イリニア型の等方硬化則を適用している。

図-10 頂版曲げモーメント分布図(最大ひずみ発生時刻)

4. 数值解析結果

4.1 実験結果との比較

図-9には、載荷位置 A-3 における実験結果および解析 結果の載荷点鉛直変位波形、頂版道路幅方向鉄筋のひず み波形を示している。(a) 載荷点鉛直変位波形より、解析 結果はいずれも波形の立ち上がりから最大応答値に至る まで実験結果とほぼ同様の性状を示していることが分か る。一方、最大応答値以降では、解析結果の減少する勾 配は実験結果よりも大きく、リバウンド後の負の最大応 答値および発生時刻も若干異なっている。

(b) 下端鉄筋ひずみ波形より,変位波形と同じく波形の 立ち上がりから最大応答値近傍までは,解析結果は実験 結果とほぼ同様な性状を示している。最大応答値は実験 結果よりも若干小さいものの,波動継続時間はいずれも 200 ms 程度となっている。また,(c)上端鉄筋のひずみ波 形では,解析結果の最大応答値は実験結果の2倍程度と なっているものの,波形性状は概ね一致している。

4.2 頂版の曲げ挙動

図-10には、道路幅方向中心に落石荷重を作用させた 4ケース(A/B/C/D-3)について、頂版の最大ひずみ発生時 刻における曲げモーメント分布の一例を示している。な お、図に示す曲げモーメントは骨組1要素(幅0.5m)あ たりの断面力であり、道路軸方向端部断面における解析 モデルは一般部の1/2の部材幅と設定していることから、 端部断面の曲げモーメントを2倍にして示している。

(a) 図より、載荷位置 A-3 は頂版中央部に落石荷重を作

部材	頂版							柱				側壁	
	最	最大 下面引張		上面引張		端部柱上端		中央柱上端		上端外側			
載荷	鉛直	変位		最大	最大 (側壁側)		外側引張最大		外側引張最大		引張最大		
位置	時間	変位	時間	曲げモー	時間	曲げモー	時間	曲げモー	時間	曲げモー	時間	曲げモー	
				メント		メント		メント		メント		メント	
	(ms)	(mm)	(ms)	$(kN \cdot m)$	(ms)	(kN·m)	(ms)	(kN·m)	(ms)	(kN·m)	(ms)	(kN·m)	
A-1	31.2	0.6	14.4	62	26.1	-32	43.8	-74	30.3	-129	37.2	-24	
A-2	32.1	9.0	22.4	380	32.3	-211	51.0	-541	28.4	-1,253	43.9	-128	
A-3	32.1	12.5	28.0	409	30.5	-305	53.6	-815	35.8	-1,195	38.8	-204	
A-4	31.8	6.0	20.8	332	26.1	-298	40.2	-620	35.9	-732	23.6	-212	
A-5	33.1	0.3	12.3	40	35.4	-14	45.2	-56	38.3	-59	23.7	-21	
B-1	18.1	2.7	11.5	157	23.4	-105	45.4	-239	30.7	-295	37.4	-88	
B-2	32.6	9.5	20.3	356	34.7	-200	32.3	-874	31.6	-956	46.4	-207	
B-3	33.5	12.5	26.7	399	26.8	-280	45.3	-1,113	35.7	-1,017	35.3	-208	
B-4	30.6	6.1	20.5	339	22.8	-289	42.4	-775	37.6	-659	21.5	-135	
B-5	34.6	0.4	20.8	41	35.9	-12	37.9	-73	38.2	-58	25.7	-18	
C-1	34.0	0.9	14.7	68	36.7	-63	30.4	-168	44.7	-76	38.7	-55	
C-2	38.1	14.0	26.4	301	40.4	-325	29.8	-1,512	36.4	-650	41.7	-246	
C-3	38.0	22.7	25.6	428	32.8	-332	40.3	-1,620	55.8	-805	38.1	-274	
C-4	38.9	12.3	23.8	349	36.6	-285	40.2	-984	47.2	-688	27.8	-265	
C-5	34.2	0.7	12.7	47	36.9	-36	31.7	-96	36.8	-55	23.9	-28	
D-1	22.9	8.1	33.2	186	27.8	-182	31.3	-369	46.2	-225	40.4	-147	
D-2	33.5	26.4	24.1	558	39.6	-407	32.7	-1,706	56.2	-887	41.4	-353	
D-3	34.1	34.5	25.8	573	28.3	-472	40.2	-1,940	55.9	-1,105	35.3	-425	
D-4	32.8	17.2	19.1	563	25.4	-461	43.3	-1,163	49.3	-885	27.6	-428	
D-5	32.6	0.9	11.2	66	35.4	-42	36.8	-110	45.8	-66	24.1	-34	
降伏由	由げモー	メント	-	425	-	-274	-	-1,395	-	-1,395	-	-275	

表-3 頂版最大鉛直変位および各部材の最大曲げモーメント一覧

用させていることから,最大曲げモーメント発生位置は 載荷点直下となり,端部断面では頂版中央部が上面引張 になっていることが分かる。(b)図より,柱間中央に作用 させた B-3の最大曲げモーメント発生位置も載荷点直下 であり,端部断面では頂版中央部において上面引張から下 面引張へ推移している様子が窺える。(c)(d)図より,端部 柱断面 C-3 および端部断面 D-3 の場合には,いずれも頂 版中央部が下面引張となる。また,頂版の柱側および側壁 側端部は上面に大きな負の曲げモーメントが生じている。

各載荷位置による最大曲げモーメントを比較すると,中 央付近に落石荷重が作用する A-3 および B-3 の場合には ほぼ同程度の曲げモーメントが発生しているものの,道 路軸方向端部付近に作用する C-3 および D-3 の場合には A-3 に比べそれぞれ 1.05 倍, 1.40 倍と曲げモーメントが 大きくなる傾向にあることが分かった。

4.3 各部材の最大応答値

表-3には, 頂版の最大鉛直変位および各部材各着目 要素における最大曲げモーメントおよび発生時刻を示し ている。なお, 曲げモーメントは1要素(幅0.5m)あた りの値となっている。表最下段には参考として軸力をゼ ロとした場合における鉄筋降伏時曲げモーメントも併せ て示している。

表より, 頂版最大鉛直変位については, 載荷位置 A ~ D それぞれで比較すると, 道路幅方向中央部に載荷した A-3 ~ D-3 が最も大きいことが分かる。また, 道路軸方向 の載荷位置では端部の変位が大きくなる傾向にあり, D-3 は A-3 の約 2.76 倍となっている。頂版下面引張最大曲げ モーメントも道路幅方向中央部に載荷したケースが大き く,特に C-3 および D-2 ~ D-4 の4ケースは軸力ゼロと した場合の降伏曲げモーメントを超過している。頂版側 壁側の上面引張最大曲げモーメントは前述の4ケースの ほか, A-3/4, B-3/4, C-2/4 も降伏曲げモーメントを若干 超過している。柱については,載荷位置 A では端部柱よ りも中央柱の曲げモーメントが大きいが,端部載荷とな る載荷位置 C および D では端部柱が大きい。特に C-2/3, D-2/3 の4ケースは降伏曲げモーメントを大きく超過して いる。側壁では D-2 ~ D-4 の3ケースが降伏曲げモーメ ントを大きく超過する。

表-4には、頂版において上記降伏曲げモーメントを 超過した C-3、D-2~D-4の4ケースについて、同要素の 最大ひずみを示している。表中、上段は鉄筋の引張ひず み、下段はコンクリートの圧縮ひずみを示している。表 より、頂版中央下面の鉄筋最大引張ひずみは C-3 で 1,910 µであり、降伏ひずみである 1,950 µ 程度となっている。 D-2/3 は降伏ひずみを大きく超過しているものの、コンク リートの圧縮ひずみは -1,500 µ 以下となっている。頂版 側壁側上面の鉄筋最大引張ひずみは、4ケースいずれも降 伏ひずみを大きく超過しているが、コンクリートの圧縮 ひずみは D-3 が最大となり -1,900 µ となっている。以上 より、載荷位置 C-3 の頂版下面鉄筋が降伏ひずみ以下と

部材		頂	版			柞	側壁			
	下面引張		上面引張		端部柱上端		中央柱上端		上端外側	
載荷	最大		最大 (側壁側)		外側引張最大		外側引張最大		引張最大	
位置	時間	ひずみ	時間	ひずみ	時間	ひずみ	時間	ひずみ	時間	ひずみ
	(ms)	(μ)	(ms)	(μ)	(ms)	(μ)	(ms)	(μ)	(ms)	(μ)
C-3	31.5	1,910	38.2	4,430 *	36.8	1,690	89.8	970	31.3	1,090
	36.7	-731	38.3	-1,040	40.8	-1,380	41.1	-608	39.2	-639
D-2	26.0	3,920 *	39.5	5,310 *	29.7	2,970 *	87.3	1,440	43.2	1,200
	25.3	-1,310	37.4	-1,310	29.7	-2,450	58.2	-688	41.4	-730
D-3	29.6	4,810 *	35.9	9,240 *	35.2	2,650 *	84.4	1,380	36.7	1,150
	25.6	-1,430	34.8	-1,900	36.4	-2,080	58.9	-702	36.4	-726
D-4	26.5	1,470	28.0	6,760 *	39.4	1,320	46.3	908	28.5	783
	26.2	-800	27.1	-1,670	33.9	-929	48.2	-639	27.5	-669

(各上段は鉄筋引張ひずみ(+),各下段はコンクリート圧縮ひずみ(-)を、*は鉄筋降伏ひずみ1,950 μ以上を示す)

図-11 端部柱ひずみ分布図 (D-2)

なる断面を有する場合,より大きな断面力が生じる端部 載荷において頂版の一部の鉄筋が降伏ひずみを超過する が,圧縮ひずみは-2,000 µ以下であることから,頂版に クラック等の損傷は発生するものの圧縮破壊には至らな いものと推察される。

図-11には, 表-4のうち柱のコンクリート圧縮ひず みが-2,450 µ と最も大きい D-2に関するひずみ分布図を 示している。図より,柱は道路幅方向および道路軸方向 の2軸曲げになっており,-2,000 µ 以上となる領域は内 空方向・道路軸端部方向の隅角部に限定され,柱の倒壊 に至るような損傷ではないことが分かる。

以上より,端部柱断面における中央載荷 C-3 の頂版下面 鉄筋を降伏以下で断面決定するとした場合には,端部載荷 である D-2 ~ D-4 では C-3 より大きな断面力が発生する が,利用者被害に繋がるような損傷までには至らないこ とが明らかとなった。ただし,終局限界まで見込む設計 を行う場合には,端部載荷が最危険断面となる場合もあ るため,落石荷重載荷位置の決定には留意が必要である。

5. まとめ

本研究では、実務設計を視野に入れ、三次元動的骨組 解析を用いて RC 製ロックシェッドの性能設計を行う場 合の合理化および省力化を目的として、解析結果を実験 結果と比較した上で、落石荷重載荷位置が耐衝撃挙動に 与える影響を検討した。道路軸方向長さ12m程度の一般 的なロックシェッドに対して、本研究で得られた結果を まとめると、以下の通りである。

- 道路軸方向に対して中央載荷よりも端部載荷の場合 が部材に生じる曲げモーメントが大きく、部材断面 設計は端部載荷時で決定される傾向にある。
- 2) 柱部材に発生する曲げモーメントは中央柱よりも端 部柱が大きくなる傾向にあり,道路幅方向に加え道 路軸方向にも大きな曲げモーメントが同時に発生す るため2軸曲げの照査が必要となる。
- 3)本モデルにおいては、端部柱断面中央載荷(C-3)の頂版下面鉄筋を降伏以下で決定する場合には、端部載荷(D-2~D-4)において断面力は端部柱断面中央載荷(C-3)より大きくなるが、利用者被害に繋がる損傷までには至らない。

参考文献

- 1) 日本道路協会:落石対策便覧, 2000.6
- 2) 牛渡裕二, 今野久志, 小室雅人, 保木和弘, 岸徳光: RC 製ロックシェッドに関するファイバー要素を用 いた三次元骨組動的応答解析法の適用性検討, 構 造工学論文集, 土木学会, Vol.59A, pp.1008-1016, 2013.3
- 3) 土木学会:構造工学シリーズ 27 爆発・衝撃作用を 受ける土木構造物の安全性評価, 2017.4
- 4)山口悟,小室雅人,栗橋祐介,今野久志,岸徳光:敷 砂または砕石緩衝材を用いた落石防護覆道の実規模 衝撃載荷実験,構造工学論文集,土木学会, Vol.61A, pp.1012-1023, 2015.3
- 5) 土木学会:構造工学シリーズ8ロックシェッドの耐 衝撃設計, 1998.11
- 6) 今野久志,山口悟,牛渡裕二,岸徳光:実規模RC製 ロックシェッドの三次元動的骨組解析における各種 解析パラメータの影響に関する一検討コンクリート 工学年次論文集, Vol.37, No.2, pp.607-612, 2015.7
- 7) 岡村 甫,前川宏一:鉄筋コンクリートの非線形解析 と構成則,技報堂出版,1991.5
- K.Maekawa, A.Pimanmas, H.Okamura : Nonlinear Mechanics of Reinforced Concrete, Spon Press, 2003.3