論文 コンクリートの塩分浸透抵抗性に及ぼすプレストレス導入の影響

齊藤 準平*1・浅見 公一*2・手島 敏史*3・加藤 凌也*4

要旨:プレストレスの導入がコンクリートの塩分浸透抵抗性に及ぼす影響を解明するために, PRC はり下縁領 域をモデル化した供試体にプレストレスを導入した状態に対して,塩水浸せき試験と電気泳動試験の2種類の 試験を実施した。その結果,プレストレス導入直角方向からコンクリートへの塩分浸透抵抗性は,プレストレ スの導入が無い場合より有る場合の方が高まること,その大きさはプレストレスの増加とともに高まり,プ レストレスが圧縮強度の約40%の応力で最大となることがわかった。

キーワード:プレストレス,塩分浸透抵抗性,電気泳動試験,塩水浸せき試験

1. はじめに

PRC構造は、プレストレストコンクリートの利点を経済的に得られることから、多くの橋梁構造に適用されている。構造機能の持続には鋼材腐食の原因である部材内の塩分濃度の評価が極めて重要であるが、PRCはり下縁領域におけるコンリートの塩分浸透には、(1)プレストレスの影響、(2)ひび割れの影響、ならびに(3)活荷重作用に伴うプレストレスの除荷と再導入の繰返しの影響など、いくつかの因子が複雑に影響しあっている。著者は継続研究^{例えば1)~4)}を通じて、単一あるいは複合的にそれら影響因子の条件を設定した実験的検討によって、PRCはり下縁領域におけるコンクリートの塩分浸透抵抗性を定量的に明らかにし、適切に塩分浸透特性を評価できる式の構築を目指している。

現在,各影響因子と塩分浸透抵抗性の関係に関しては, (1) プレストレスの影響, すなわちプレストレス導入状態 のコンクリートの塩分浸透特性について検討した研究が 極めて少ない状況にある。主なものとして、迫井らの研 究 5では、コンクリートに静的圧縮応力を継続付与した 状態の塩分浸透特性を電気泳動法(非定常)(NT BUILD492) で検討した結果, 付与応力の大きさによって 塩分浸透抵抗性に優位に働く場合(圧縮強度比(f'。比) =30%) と不利に働く場合 (f'c比=50%, 80%) の両方の影 響が現れることを明らかにしている。また、浅井らの研 究 %では、導入プレストレスが異なる供試体 (f'。比=0, 5, 10, 20%) を用いた乾湿繰返しによる促進試験を実施 し、塩分浸透抵抗性の解明を試みた結果、乾湿繰返しが 8~24 サイクルにおいて、プレストレス導入応力が 4N/mm²以上(f'c比=10%)では, RC 供試体よりも塩分 浸透抵抗性が向上することを明らかにしている。しかし、 PRC はりの塩分浸透抵抗性に関するプレストレスの影 響の解明のためには、さらに多くのプレストレスの条件

で且つ定量的な検討が必要と考える。

本稿は、プレストレスの導入が塩分浸透抵抗性に及ぼ す影響を明確にするために、大きさの異なるプレストレ スを導入した数個の供試体に対し、塩水浸せき試験 (JSCE-G572)⁷⁾と電気泳動試験(JSCE-G571)⁸⁾の2種類 の試験を行い、そこで得られた知見を示すものである。

2. 試験方法

試験 A として,供試体の多面を塩分浸透面にすること によって,多くの塩化物イオン(CF)濃度のデータが取 得でき且つその傾向を整理することができることから, 塩水浸せき試験を用いる。また,試験 B として,短期間 で拡散性状に関する定量的な検討が行えることから,電 気泳動試験を用いる。

2.1 プレストレス導入状態の塩水浸せき試験(試験 A)(1)供試体

塩水浸せき試験方法の概要を図-1に示す。供試体は、 研究対象とした PRC はり下縁部のコンクリートをモデ ル化したものである。試験Aは、プレストレス導入直角 方向からの塩分浸透とその分析を可能とする供試体形状 にするために、プレストレスを与える断面は1辺100mm の正方形断面とし、塩分浸透面も1辺が100mmの正方 形とした。供試体の打設において、試験Aは曲げ強度試 験用供試体成形用型枠(10cm×10cm×40cm)にアクリル プレートを用いて、1辺10cmの立方体の供試体が精度 良く作製できるように加工を施し、十分に振動締め固め を行った。打設面や底面は塩分浸透面に相当する。

(2) 配合と力学的性質

試験 A, Bの供試体の配合と力学的性質について表-1に示す。水セメント比(W/C)を55%とし、細骨材のセ メントに対する容積比(S/C)を300Vol%とするモルタル を材料とした。これは、塩分浸透への骨材の影響を少な

- *1 日本大学 理工学部交通システム工学科准教授 博(工)(正会員)
- *2 日本大学大学院 理工学研究科交通システム工学専攻

*3 ニチレキ (株)

*4 日本大学理工学部交通システム工学科

くするためである。セメントは普通ポルトランドセメン ト,細骨材は山砂(表乾密度 2.654g/cm³, 2.5mm ふるい 通過)を用いた。打設後から 28 日まで封緘養生とした。

(3) プレストレス導入方法

プレストレスは, 図-1に示すように, 1本の PC 鋼棒 の緊張によって塩水浸せき試験用供試体の断面と同一寸 法のアンカープレートを介して, ナットを締めて導入す る。プレストレスの大きさの管理は、塩水浸せき試験用 供試体の塩分浸透面(4面)のプレストレス導入方向に貼 り付けたひずみゲージを用いて行う。塩水浸せき試験用 供試体と同時に打設した同一寸法の3体の強度試験用供 試体への圧縮強度試験から圧縮強度ならびに応力とひず みの関係を取得し、その応力とひずみの関係をもとに、 試験条件どおりのプレストレスに応じたひずみになるよ うプレストレスを導入した。なお、プレストレス導入後 のひずみの変化をモニタリングし、ひずみの変化が安定 したことを確認した後に塩水浸せき試験に移行した。ま た,塩水浸せき試験前にはひずみゲージ周辺を磨いて接 着剤やひずみゲージをすべて取り除き、供試体への塩分 浸透に影響のないように処置を施した。

(4) プレストレス

導入するプレストレスの大きさは、試験 A, B それぞ れの供試体における圧縮強度に対する導入応力の割合で 示すこととし、これを圧縮強度比(f'。比)と定義する。 表-2に、試験 A, B で設定したそれぞれの f'。比の条件 と試験 A のひずみを示す。なお、試験 B はロードセルを 用いるため、ひずみによる管理を行わない。

プレストレスの違いの影響を検討するために, 試験 A は f'。比をタイプ N の 0%とタイプ PRC の 5, 10, 15, 20, 25, 30%の計 7 条件とした。f'。比の設定は, 試験器 具の導入できる限界が 30%のため, 標準的に扱われるプ レストレスの程度以内になる f'。比=30%を上限とした。

(5) 衝撃弾性波試験

プレストレスによる内部損傷の影響を把握するため, 塩水浸せき試験の直前に衝撃弾性波試験を行う。弾性波 速度はコンクリート中の伝播速度から内部の損傷の有無 やその程度を把握するものである。試験は図-1に示す ようにプレストレス導入直角方向の0°と90°に対し実施 した。AE センサー近傍に打診棒によって衝撃を与え, AE センサー,プリアンプ,オシロスコープを用いて取得 したセンサー2 点間の衝撃弾性波の到達時間差と2 点間 の距離から衝撃弾性波速度を算出した。

(6) 塩水浸せき試験方法

塩水浸せき試験用供試体のプレストレス導入直角方向 の4面に塩分浸透させる試験となる(図-1)。試験は JSCE G 572⁷に準じ,濃度 10%の塩化ナトリウム水溶液中に, プレストレス導入状態の供試体を 30 日間浸せきした。

図-1 塩水浸せき試験概要図

表-1 供試体の配合と力学的性質(試験 A)(試験 B)

	S/C	単位量(kg/m ³)			試験A		試験B	
W/C					圧縮 強度	単位 容積質量	圧縮 強度	単位 容積質量
(%)	(Vol%)	水	セメント	細骨材	(N/mm^2)	(kg/m ³)	(N/mm^2)	(kg/m^3)
55	300	302.7	550.0	1387	49.55	2051	44.14	2071

表-2 プレストレス (f'。比) (試験 A) (試験 B)

	塩水浸せき詞	試験(試験A)	電気泳動試験(試験B)		
タイプ	プレストレス	ひずみ	プレストレス		
	(f' _c 比(%))	(圧縮)(μ)	(f' _c 比(%))		
Ν	0	0	0		
	5	101	10		
	10	204	20		
	15	310	30		
PRC	20	418	40		
	25	530	50		
	30	645	_		

この際,プレストレス導入のためのアンカープレート, ワッシャー,PC鋼棒(ネジ切り加工)およびナット等の 金属の防錆のためにそれら金属と塩分浸透面の一部(片 側20mm程度)にエポキシ樹脂を被覆した。

塩水への浸せき終了後は、各塩分浸透面から分析用サ ンプル3.3cm×3.3cmの面積で奥行き3.3cmの部分を、乾 式ダイヤモンドカッターで切り出した(図-1)。CF濃度 の分析(電位差滴定法)はJISA1154%に準じて行い、分 析用サンプル1体全てを用いて塩分浸透方向の表層部か ら内部にかけての全断面の平均濃度を取得した。

2.2 プレストレス導入状態の電気泳動試験(試験 B)

(1) 供試体

電気泳動試験方法の概要を図-2 に示す。供試体は, 試験 A と同様に研究対象とした PRC はり下縁部のコン クリートをモデル化したものである。試験 B は、断面 40mm×40mmの正方形で奥行き 40mm とした。供試体の 打設において、セメントの強さ試験に用いるモルタル供 試体成形用型枠とアクリルプレートを用い、1 辺が 40mm の立方体の供試体が作製できるように加工を施し、十分 に振動締め固めを行った。

(2) プレストレス導入方法

プレストレスは、図-2に示すように、2本のPC 鋼棒 の緊張によって鋼製フレームを介して、ナットを締めて 導入する。プレストレスの大きさは、各PC 鋼棒に設置 したワッシャー型ロードセルにて管理し、電気泳動試験 用供試体と同時に打設した同一寸法の3体の供試体の圧 縮強度試験結果から得られた圧縮強度を基に条件通りの プレストレスを導入した。なお、電気泳動試験中は1時 間ごとにプレストレスを計測した。

(3) プレストレス

試験 B は表-2 に示すように,タイプ N の 0%とタイ プ PRC の 10, 20, 30, 40, 50%の計6条件とした。f。比 の設定は,標準的に扱われるプレストレスの程度以内に なる f。比=30%を網羅し,且つそれより大きい圧縮強度 比における影響を得るために,試験器具が有する導入で きる圧縮応力の限界となる f。比=50%を上限値とした。

(4) 電気泳動試験方法

試験 B で使用する電気泳動試験装置は,実効拡散係数 試験方法 (JSCE-G571)⁸⁾を参考に,矩形断面に適用でき るように独自の加工を施して製作したものである。なお, 本試験装置の結果の妥当性は著者の既往研究^{例えば1,3)}で証 明済みである。試験は同試験方法に準じて行い,Clの電 気泳動が定常状態になるまで連続して通電した。塩分浸 透面には供試体底面を当て陰極側水槽に接するようにし, 打設面を陽極側水槽に接するようにした。主な測定項目 は,電流,電位差,陽極側と陰極側の溶液水槽内CI-濃度, pH および溶液温度とした。測定結果を用いて,式(1), (2)から、Cl-の実効拡散係数が算出される。

$$J_{Cl(t)} = \frac{V_{(t)}^{\mathrm{II}}}{A} \frac{\Delta C_{Cl(t)}^{\mathrm{II}}}{\Delta t} \tag{1}$$

$$D_e = \frac{J_{Cl}RTL}{|Z_{Cl}|FC_{Cl}(\Delta E - \Delta E_c)} \times 100$$
(2)

ここで, $J_{Cl(t)}$: Cl⁻の定常状態の流束 (mol/ (cm²·年)), $V^{I'}_{(t)}$: 陽極側の溶液体積 (L), A: 供試体断面積 (cm²), $Ac^{I'}_{Cl(t)}/At$: 陽極側 Cl-濃度の増加割合 ((mol/L) /年), D_e : 実効拡散係 数 (cm²/年), R: 気体定数 (8.31J/ (mol/K)), T: 絶対温度 測定値 (K), Z_{Cl} : Cl⁻の電荷 (=-1), F: ファラデー定数, C_{Cl} : 陰極側の Cl-濃度の測定値 (mol/L), $\Delta E - \Delta E_e$: モデル 表面間の電位差 (V), L: モデルの奥行 (mm) である。

試験結果および考察

3.1 プレストレス導入状態の塩水浸せき試験(試験 A)(1) プレストレス導入後のコンクリートひずみ

図-3 に、プレストレス導入後のコンクリートひずみ (4 面の平均値)を示す。図より、プレストレス導入直 後から時間の経過とともに、ひずみの変化が生じたこと が確認された。これは、クリープやリラクゼーションの 影響と考えられる。f'。比の大きさの違いがひずみの変化 に及ぼす影響をみると、f'。比=5%の場合でひずみが最も 大きく変化し安定するまでに時間を要した。それより大 きい f'。比ではプレストレス導入直後こそ幾分増加した がそれ以降は比較的安定した推移を示した。すべてのひ ずみがプレストレス導入後7日程度で安定したため、塩 水浸せき試験に移行した。なお、試験期間中のプレスト レスの変化は確認していないが、図-3 においてひずみ の安定が確認できたことから、試験期間中は概ね一定の プレストレスが導入状態にあったと考えられる。

(2) プレストレス導入後の衝撃弾性波速度

図-4 に、塩水浸せき試験直前のコンクリート中のプレストレス導入直角方向の衝撃弾性波速度を示す。図には、各プレストレスにおいて衝撃弾性波試験の4断面の

最大値,最小値および平均値を示し,全データの近似直 線を併記している。図によると,衝撃弾性波速度は全て のプレストレスにおいてほとんど違いがなく,また一般 的なコンクリートの弾性波速度とも大差なく,プレスト レスの導入に起因して発生する内部損傷が無かったこ とが推測される。

(3) 塩化物イオン濃度とプレストレスとの関係

図-5 に CI-濃度とプレストレスの関係を示す。ここで はプレストレスを導入プレストレス(設定 f°c比)とし て扱いグラフ化した。図-3 に示すように、プレストレ スの大きさはプレストレス導入直後から塩水浸せき試 験までに変化が生じたことから、本来であれば実際に塩 水浸せき中に導入されているプレストレスとの関係を 示すべきであるが、当該関係図は CI-濃度とプレストレ スの定性的な傾向を得ることを目的にしていることか ら図のようなグラフ化とした。なお、打設面や底面とい った試験面の違いにより塩分の浸透抵抗性に違いが生 じることが想定されることから、図には各プレストレス におけるサンプル4検体の最大値、最小値および平均値 を示し、全データの近似直線を併記している。

図より、プレストレスを導入した場合の Cl 濃度は、 与えない場合と比べ同じか大きくなること,fc比の増加 に伴い Cl-濃度が増加する傾向が認められた。また、そ の増加傾向は、f'c比=0%に対しf'c比=20%は約2割, f'。比=30%は約4割大きくなった。これら結果を基にプ レストレスによる塩分浸透抵抗性への影響を検討する と、プレストレスの導入によって塩分浸透抵抗性が低下 し塩分が浸透しやすくなるものと評価される。しかし, 本研究による衝撃弾性波試験からプレストレスによる 内部損傷の影響がなかったことが推測されたこと, 迫井 らや浅井らの研究結果 5),6)から本試験で扱う程度のプレ ストレスでは拡散係数が低下し塩分浸透抵抗性は向上 する結果が得られていることなど、その評価とは矛盾が 生じた。そこで、本研究と同様にプレストレスを与えた 状態での塩水浸せきを検討した浅井らの研究データの Cl濃度とあわせてこの挙動を考察する。

図-6は、浅井らの既往研究におけるプレストレスを 与えた状態の塩水浸せき試験の結果のについて、本研究 と塩水環境におかれた期間がほぼ同じで、分析深さもほ ぼ同じとなる塩分浸透面から3cmのCl-濃度をグラフよ り読み取り、各断面のCl-濃度とf。比の関係を塩分浸透 面からの距離ごとに再グラフ化したものである。図によ ると、最も表面に近い断面(断面1)のCl-濃度は本研究 結果の挙動と同様にf。比の増加に伴い大きくなってい ることがわかる。しかし、それより内部ではその挙動は 逆転し、断面2、3ではf。比の増加に伴い小さくなって いることが確認できる。本研究では、表面部から内部に

かけての全断面を一括で分析し平均濃度としているため 各断面の CI-濃度の浸透分布は推測になるが,浅井らの研 究結果を参考にして考察すると、本研究においてもプレ ストレスの導入によって表層付近の断面の濃度が高くな り、その表層部の濃度の大きさに引っ張られる形で全断 面の CI-の平均濃度が高くなった可能性が否定できない。 さらに併せて、内部の空隙量が少なくなると拡散係数が 小さくなるという拡散係数と空隙構造の関係に関する試 験結果¹⁰を考慮すると、プレストレスが増加した場合コ ンクリート内部の空隙が小さくなり内部に浸透する塩分 を比較的表面に近いコンクリート部分に留める,すなわ ち表面付近は濃度が高くなっても内部には塩分を浸透さ せにくくさせている現象が生じていることが想像される。

とはいえ,これらの考察は推測の域を脱しておらず, 条件や精度の面で今後浸せき期間の条件追加や全断面平 均化ではなく各断面濃度分布を把握するなどによって, プレストレスによる塩分浸透抵抗性のメカニズムの詳細 な解明が必要である。さらに,プレストレスによる表面 付近の塩分遮蔽に関する考察についても,プレストレス 導入による内部空隙構造の変化に関する実験によって裏 づける必要がある。

3.2 圧縮応力下における電気泳動試験(試験B)

(1) 電気泳動試験期間のプレストレスの推移

図-7 に電気泳動試験中のプレストレスの推移を示す。 なお、期間は電位差と時間の積を用いている。この理由 は図-8 の説明を参照されたい。図によると、いずれの プレストレスにおいても試験期間を通じてその低下の程 度は概ね小さく、プレストレスがほぼ設定どおりに継続 導入されていたと判断できる。なお、プレストレスが小 さいf。比=10~30%の条件ではその低下率は2.7%~4.3% 程度、大きいものでもf。比=40%で 6.7%, f。比=50%で 8.1%の低下率であった。

(2) 陽極側水槽中の塩化物イオン濃度の推移

図-8に陽極側水槽中のCI濃度の推移を示す。経過時 間でなく電位差と経過時間の積として示したのは、各供 試体の試験中の電位差が完全に一致しないことからその 違いの影響を除去することができる 3ためである。図に よると、プレストレス導入の有無の違いに関わらず、濃 度が増加しない非定常状態を経た後に定常状態に移行し ていることが確認された。Cl濃度の増加の開始以降の挙 動をみると、プレストレスが無いあるいは小さい条件ほ ど濃度の上昇が早く,一方でプレストレスが大きい条件 ほど濃度の上昇が緩やかになっている傾向があることが わかる。これは、プレストレスによる内部空隙率の減少 に伴う浸透抵抗性の向上10に伴うものと考えられる。た だし、プレストレスが大きい条件においても、プレスト レスが f'c 比=50%の場合ではプレストレスが f'c 比=30% の場合より濃度の上昇が早くなっていることが確認でき る。これは、プレストレスが骨材とモルタルの界面部の ボンドクラックやマトリックスクラックなど内部構造に 微細ひび割れを発生11)させ、物質の移動経路が短絡化5) されたものと考えられる。

(3) 実効拡散係数とプレストレスの関係

プレストレスの塩分浸透抵抗性への影響を定量的に検 討するために、図-9 に実効拡散係数とプレストレスの 関係を示し、全データの近似線(多項式)を併記する。

プレストレスは通電期間の平均値とした。図によると, プレストレスの増加に伴い,実効拡散係数が低下する傾 向,すなわちプレストレスの導入によって塩分浸透抵抗 性が向上する傾向があることが確認された。プレストレ スが導入されない場合に対し導入された場合は,f°。比 =10,20%で約2割,f°。比=30%で約3割,f°。比=40%で最 も大きく約4割程度も向上した。通常のPRC構造のプレ ストレスがf°。比=10~30%程度であることを考えると, 本試験結果からは,PRC構造にすることによってRC構 造の場合より塩分浸透抵抗性が約20~30%程度向上する ことが示唆される。また、図によると、プレストレスが f°。比=40%の場合をピークにそれ以上のプレストレスで は塩分浸透抵抗性が減少することが確認できる。迫井ら の研究結果 ⁵からもプレストレスが f°。比=50%の拡散係 数が f°。比=30%の拡散係数より低下した現象が得られて いることから、プレストレスが f°。比=30%と 50%の間に このような塩分浸透抵抗性へのプレストレスによる優位 な影響の変換点があることが推測される。

(4) 内部ひび割れの評価

図-10 に、Spesific Crack Area と圧縮強度比の関係を 示す。Spesific Crack Area は、Loo¹²⁾の提案した静的圧縮 応力が導入された際のコンクリート中の損傷の程度を評 価する方法で、式(3)より算出される。ここでの Spesific Crack Area (ϵ_{cr})の算出は、電気泳動試験供試体と同時に 打設した同一形状の3体の圧縮強度試験用供試体の破壊 にいたるまでの縦ひずみ (ϵ_y)、横ひずみ (ϵ_x)と、1/3 圧 縮強度時のポアソン比 ($\mu = \epsilon_x/\epsilon_y$)を用いた。

$$\varepsilon_{\rm cr} = 2(\varepsilon_x - \mu \varepsilon_y) \tag{3}$$

図によると、Spesific Crack Area は、プレストレスの増 加に伴い f'。比=20~30%程度までは低下傾向を示し、そ れ以降は破壊にいたるまで増加することが確認された。 また、Spesific Crack Area が 0µc よりも大きくなる、すな わち内部損傷の増加が開始するのはプレストレスが f'。 比=40~50%付近であることが認められた。この結果から、 プレストレスが f'。比=30%~50%の間に生じたプレスト レスによる塩分浸透抵抗性への優位な影響の反転は、こ の内部損傷の影響がその一因にあったものと考えられる。

4. まとめ

本試験の範囲内で,プレストレスの導入がコンクリー ト下縁からの塩分浸透抵抗性に及ぼす影響を検討し,以 下のことが明らかになった。

- プレストレスの導入によって塩分浸透抵抗性は向 上する傾向があることが確認された。
- (2) 塩分浸透抵抗性の向上は、プレストレスが導入された場合は、圧縮強度比20%で約2割、圧縮強度比40%で約4割程度であった。
- (3) 塩分浸透抵抗性は、プレストレスが圧縮強度比40% 程度で最大となり、それより大きくなると塩分浸透 抵抗性は反転し低下することが確認された。

謝辞

本研究は、日本学術振興会(科学研究費補助金基盤研 究(C) JP17K06539,研究代表者:日本大学 齊藤準平) および公益財団法人大林財団(2017年度研究助成金)の 助成を受けたものです。ここに付記し、謝意を表します。

引用・参考文献

- ř藤 準平: PRC はり下縁におけるプレストレスと 荷重作用による応力付与の繰り返しがコンクリート の塩分浸透特性に及ぼす影響,コンクリート工学年 次論文集, Vol.40, pp.705-710, 2018.7
- 齊藤 準平,下邊 悟:繰返し荷重下におけるコンク リートの塩分浸透特性,第 26 回プレストレストコ ンクリートの発展に関するシンポジウム論文集, pp.93-98, 2017.10
- 3) 齊藤 準平,下邊 悟:電気泳動法を用いた PRC はりのひび割れ領域部における塩分浸透特性に関する実験的検討,コンクリート工学年次論文集, Vol.39, pp.679-684, 2017.7
- 齋藤 準平,下邊 悟:塩分浸せき試験を用いた PRC はりのひび割れ領域部の塩分浸透に関する検討,第

 25 回プレストレストコンクリートの発展に関する

 シンポジウム論文集,pp.187-192,2016.10
- 5) 迫井 裕樹、川北 昌宏、堀口 敬:フライアッシュおよび高炉スラグ微粉末を混入したコンクリートの塩分浸透性に及ぼす圧縮応力の影響、コンクリート工学論文集、第18巻、第3号、pp.1-7、2007.9
- 浅井 貴幸,青木 圭一:プレストレスを導入したコン クリートの塩分浸透特性に関する基礎的研究,第22回 プレストレストコンクリートの発展に関するシンポ ジウム論文集,pp.235-240,2013.10
- 1 土木学会:2013 制定 コンクリート標準示方書 [規 準編] 土木学会規準および関連規準, JSCE-G 572-2013, pp.372-376, 2013
- 2013 制定 コンクリート標準示方書 [規 準編] 土木学会規準および関連規準, JSCE-G 571-2013, pp.363-369, 2013
- 9) 日本工業規格 JIS A 1154:2012「硬化コンクリート中 に含まれる塩化物イオンの試験方法」,2012
- 港湾空港技術研究所:港湾空港技術研究所資料 (No,1141)「港湾 RC 構造物における塩化物イオン 拡散係数調査結果および簡易推定手法に関する検 討」, p.11, 2006.9
- 岩波 光保,大即 信明,二羽淳一郎,鎌田 敏郎,長 瀧重義:コンクリート中における弾性波伝播挙動に 関する基礎的研究,土木学会論文集 No.627/V-44, pp.223-238, 1999.8
- Y.H.Loo : A new method for microcrack evaluation in concrete under compression, Materials and Structures, Vol.25, pp.573-578, 1992