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ABSTRACT 
This paper presents an exploratory type of concrete sustainability analysis by using response surface 

methodology and uncertainty analysis to cater continuous variables such as water-binder ratio and 

percentage of replacement materials. Integrating both analytical tools enables the determination of 

local maximum or minimum points, as well as numerical optimization to locate desirable points based 

on pre-defined concrete sustainability criteria. This integrated approach provides more comprehensive 

information that can guide decisions on the design of sustainable concrete. 
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1. INTRODUCTION 
  

 Defining the sustainability of concrete material 

quantitatively is important for the industry to select 

decisions and actions that are contributory to global 

sustainable development. Because of the 

multidimensional nature of concrete sustainability, it is 

often analyzed similar to a multicriteria decision 

problem (or multicriteria analysis). Multicriteria 

analysis consists of methodologies that condense the 

information of various indicators into a composite 

value (or sustainability score) [1], summarizing the 

behavior of the system of interest. The method is 

usually used to make quantitative comparisons to rank 

or select the best in a set of alternatives or decisions 

(e.g., a set of concrete mixes) and is considered as the 

appropriate tool to perform assessments of 

sustainability [2]. There are two caveats, however, with 

the use of multicriteria analysis: methodological 

multiplicity and its limited exploratory power.  

 The first caveat refers to the menu of available 

multicriteria methods in literature – each with differing 

structural assumptions – to operationalize sustainability 

evaluations. Depending on the method subscribed to by 

the analyst, different conclusions about the 

sustainability of the system of interest may result [3]. 

As a consequence, it is difficult to make distinct 

pronouncements about the sustainability of a particular 

concrete material under this methodological variability, 

as each result represents only one possibility. The first 

caveat, however, can be resolved by incorporating 

uncertainty analysis (UA) into the multicriteria 

analysis, which details how methodological multiplicity 

relates to the output of sustainability evaluation. 

 On the other hand, conventional multicriteria 

analysis is very restrictive, as it only investigates 

limited number of points (i.e., a number of concrete 

mixes). Its exploratory power diminishes – the second 

caveat – when involving continuous variables (i.e., 

range of water-binder (W/B) ratio). Multicriteria 

analysis, for example, only ranks a number of concrete 

mixes in order based on the sustainability score so that 

the relatively “best” alternative(s) can be selected 

directly by decision makers. Since only few mixes are 

included in this ranking, there is a possibility that the 

true maximum (or minimum), or the optimum 

sustainability score, within the continuum of the 

analytical domain is missed.  

 In this paper, to tackle the two major caveats 

mentioned, the use of an additional analytical tools is 

introduced – the application of UA in combination with 

the response surface methodology (RSM) – to extend 

the concrete sustainability evaluation to an exploratory 

type of analysis. RSM is an appropriate approach to 

perform exploratory investigations because of its model 

fitting capability, while UA handles methodological 

uncertainty. The results of the multicriteria analysis 

with UA for a number of concrete mixes are used as 

inputs to RSM to form mathematical models that 

illustrate a continuous trend of sustainability scores 

within the domain of the variables investigated. Further, 

the RSM models allow making numerical inferences of 

the values of any point within the analytical domain, 

including the determination of optimum values, 

therefore, making concrete sustainability evaluation not 

only robust but also exploratory. 

 
2. METHODS  
 

 Figure 1 shows the general analytical method 

employed in this paper. The multicriteria analysis for 

sustainability evaluation is first subjected to uncertainty 

analysis (Phase I). The output of phase I is then used 

for response surface modeling (Phase II), wherein the 

empirical equations of the desired responses are 

generated (Phase III). These equations are then used for 
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numerical optimization (Phase IV). The following 

subsections further detail Phases I and II, while Phases 

III and IV are demonstrated in Section 3. 
 

 
 

Figure 1 General analytical method 
 

2.1 Multicriteria Analysis 
 Multicriteria analysis is comprised of four 

primary stages: (1) formation of the sustainability 

indicator set, (2) normalization of indicator values, (3) 

indicator weighting, and (4) aggregation (see also 

Figure 2). Indicators set formation defines the 

sustainability criteria upon which different alternatives 

are compared. The indicators in this set are then 

normalized to remove the differences in their units and 

scales. Each indicator is then associated with weight to 

signify their relative importance. Finally, they are 

aggregated to a single score (Y) for ease of 

interpretation by different stakeholders.  

 

 
 

Figure 2 Stages of multicriteria analysis 

While the multicriteria analysis seems 

straightforward, each stage, however, can be performed 

using different methods (some commonly used methods 

are listed in Table 1) – the first caveat. Due to space 

limitations, Table 1 only includes the brief description 

of each method, and the reader is referred to the 

appropriate literatures for an extensive explanation of 

each methods. 

Figure 3 maps all the possible methodological 

combinations of the methods listed in Table 1 to 

calculate the sustainability score (Y). From this map, an 

analyst, for example, could perform sustainability 

evaluation following a single path, i.e., SI1-R-EW-LN, 

or alternatively SI2-S-PCA-GM. Each methodological 

combination that can be formed from Figure 1 is said to 

be unique because essentially the underlying 

assumptions of the different methods are non-

equivalent, and each path will likely produce differing 

Y values. This implies that there is not a single unique 

methodological combination for performing 

sustainability evaluation. However, due to the lack of 

framework and standards for guiding the selection of 

methodological combination, it is appropriate to 

assume that each combination can be considered 

legitimate for evaluating concrete sustainability, giving 

rise to methodological uncertainty. Additionally, From 

a deterministic (single-valued) point of view, the 

changing values of Y due to methodological uncertainty 

could be a source of conflict and confusion among 

stakeholders when selecting the superior alternative 

from a set of concrete mixes.  

 

 
 

Figure 3 Map of methodological combinations 
 

Table 1 Multicriteria analysis applicable methods 
Analysis Stage Methods Brief Description [4] 

Sustainability 

Indicators Set 

Formation (SI) 

Inclusion/Exclusion of ‘n’ 

indicators 

Forming n+1 sets of indicators by dropping indicators one-at-a-time (OAT) 

(see, e.g., [5]). 

Normalization 

of Indicator 

Values (N) 

Distance to a Reference (R) Relative distance (ratio) of value of an indicator from the reference value 

[5]. 

Standardization (S) Normalizing disparate indicator values by statistical standardization [5], i.e., 

use of z-score and t-score. 

Indicator 

Weighting (W) 

Equal Weighting (EW) Equal weights are assigned to indicators. 

Principal Component 

Analysis (PCA) 

Weights are derived by performing PCA, which takes the variability and 

correlation of indicators in the data set. PCA can summarize a set of 

indicators while preserving the maximum possible proportion of the total 

variation in the original data set (see [5] for extensive discussion) 

Analytic Hierarchy Process 

(AHP) 

The weights of each indicators are determined by comparing them against 

each other either by qualitative or quantitative means [5]. 

Aggregation 

(A) 

Linear (LN) Weighted summation of the normalized indicator values [5]. 

Geometric (GM) Aggregating indicators by geometric mean (multiplicative) [5]. 
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2.2 Uncertainty Analysis (UA) 
 The presence of methodological uncertainty 

implies that the result of sustainability evaluation is not 

single-valued, but, rather a random variable. Ignoring 

this randomness (i.e., using a single path for 

sustainability evaluation) means a less robust analysis, 

which could lead to a biased decision. To deal with the 

randomness of Y, UA is introduced to the sustainability 

evaluation to perform two main functions: to identify 

the main sources of uncertainty, and to propagate the 

uncertainties from the source to the output (i.e., Y 

values) [4]. The main sources of uncertainty, as implied 

in Section 2.1, are the stages of the multicriteria 

analysis due to methodological multiplicity. To 

propagate the uncertainties from these stages, multiple 

sustainability evaluations must be performed by using 

all possible methodological combinations mapped in 

Figure 1, and returning the sustainability score of each 

concrete mix alternatives per evaluation. The values of 

Y for each evaluation have been rescaled from 0 to 100 

to neutralize the scale effect of the non-equivalent 

methods. A distribution of Y values can then be 

obtained, which is used to create its probability density 

function (PDF) – the output of UA. Several statistics 

can then be computed from the PDF, such as measures 

of central tendency, measures of variability, and the 

probabilities. The following discussions, however, 

focus only on the minimum (Ymin), average (Yave), and 

maximum (Ymax) sustainability scores, as well as the 

standard deviation (SD) of Y, because these are the 

minimum requirements for making statistical inferences 

about the behavior of an exploratory point in the 

analytical domain. 

 

2.3 Response Surface Methodology 
 Model fitting in RSM consists of a series of 

mathematical and statistical techniques to devise an 

empirical equation [8] – a series of polynomial terms – 

of the response of interest (or the dependent variable, 

i.e., sustainability score) as a function of the factors (or 

independent variables, i.e., W/B and recycled aggregate 

replacements). This response model can be represented 

graphically as a surface, hence the name “response 

surface.” Since the response is defined mathematically, 

numerical (or graphical) optimization is possible. RSM 

was performed using the Design Expert 11 software. 

 Four response surfaces can be devised based on 

the PDFs generated from the results of UA by using the 

minimum (Ymin), average (Yave), maximum (Ymax) and 

standard deviation (SD) values of each concrete mix. 

Ymin, Yave, and Ymax define the range of the possible 

sustainability scores within the analytical space, while 

SD estimates the variability of Y.  

 
2.4 Data 
 The data used to demonstrate how to perform 

exploratory RSM investigation under methodological 

uncertainty was sourced from [8], which investigates 

two experimental variables or factors: (1) effect of 

replacing natural aggregates with low-grade recycled 

aggregates (RA) at various percentages (0%, 50%, 

100%), and (2) the effect of varying W/B (0.30, 0.375, 

0.45). The mix proportion is reproduced in Table 2 for 

convenience. Ten concrete mixes (including the 

control) created from the combinations of RA and W/B 

were evaluated for sustainability by multicriteria 

analysis. In the source paper, time dependent values 

(i.e., compressive strength, Young’s modulus, and air 

permeability) were reported at several curing periods 

(i.e., 28 and 91 days). In this paper, however, the 

analysis is limited to the 28-day curing period value of 

the time dependent properties as this is the standard 

minimum curing period required to define concrete 

quality.  The nomenclature used to identity the concrete 

mixes in the source paper is also adopted here for direct 

referencing of values.   

 On the other hand, the indicators used for 

sustainability evaluation were referred from [8]. In 

summary, 18 sustainability indicators (Table 3) were 

utilized, which reflect a combination of mechanical 

Table 2 Mix proportion and the summary statistics of the sustainability scores of concrete mixes 

Alternatives 
Mix Proportion (kg/m3) Sustainability Score Statistics 

W C FA S NA RA Minimum Average Maximum Variance SD 

Control 171 342 0 746 1015 0 20.34 21.75 23.46 0.533 0.730 

WB30-RA0 135 225 225 659 1067 0 44.52 47.07 51.89 2.275 1.508 

WB30-RA50 135 225 225 659 533 478 47.16 50.33 55.62 4.112 2.028 

WB30-RA100 135 225 225 659 0 957 47.21 50.78 55.58 3.476 1.864 

WB375-RA0 135 180 180 721 1095 0 50.67 53.17 57.76 1.571 1.253 

WB375-RA50 135 180 180 721 548 491 52.66 53.40 54.07 0.167 0.409 

WB375-RA100 135 180 180 721 0 982 53.69 55.97 57.78 0.732 0.855 

WB45-RA0 135 150 150 772 1103 0 48.14 53.45 56.91 3.996 1.999 

WB45-RA50 135 150 150 772 552 500 52.31 56.33 58.31 2.107 1.452 

WB45-RA100 135 150 150 772 0 999 51.26 57.75 60.85 4.314 2.077 

 

Table 3 List of sustainability indicators 
Indicator Name Unit 

Primary raw materials consumption kg/m3 

Water consumption kg/m3 

Recycled materials content kg/m3 

CO2 emissions kg-CO2/m
3 

SOx emissions kg-SOx/m3 

NOx emissions kg-NOx/m3 

Particulate matter emissions kg-PM/m3 

Compressive strength MPa 

Young’s modulus N/mm2  

Cost of raw materials Monetary 

Cost of recycled materials Monetary 

Global warming potential Tons CO2 eq. 

Photochemical ozone creation potential kg-C2H4 eq. 

Acidification potential kg-SO2 eq. 

Eutrophication potential kg-PO4 eq./m3 

Human toxicity potential kg 1.4-Dichlorobenzene eq. 

Structural safety kN-m 

Production cost Monetary 
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performance, environmental emissions and impacts, 

and economic cost. The value of each indicator is 

computed for 1m3 functional unit of concrete. Due to 

space limitations, the detailed description of each 

indicator is not reflected here, and the reader is referred 

to the source literatures ([7] and [8]).  
 

 
3. RESULTS AND DISCUSSION 
 
3.1 Multicriteria Analysis and Uncertainty Analysis 
 By performing multiple sustainability evaluation 

following the methodological combinations in Figure 
3, the uncertainties from the stages of multicriteria 

analysis are propagated. The concrete mixes were 

evaluated for sustainability using 19 sets of indicators 

created from 18 indicators by alternatively dropping 

one indicator-at-a-time (see Table 1) to simulate the 

natural inconsistency of indicator sets, because in 

concrete sustainability, no accepted single set of 

indicators exists. Further, 2 normalization methods, 3 

weighting approaches, and 2 aggregation rules were 

applied. Overall 228 methodological combinations 

were used for sustainability evaluation.  

 Figure 4 is the PDF of WB30-RA50 generated 

by plotting the result of 228 multicriteria sustainability 

evaluation simulations. Each concrete mix will have a 

different PDF, which graphically explains the 

susceptibility of its sustainability score, Y, to 

methodological uncertainties. The variability of Y 

suggests that the sustainability assessments for concrete 

should not be performed and presented in a 

deterministic manner but rather in probabilistic form to 

emphasize the presence of methodological 

uncertainties. Performing UA allows for the 

determination of the minimum and maximum values, 

which define the range of possible sustainability scores 

per concrete mix alternative. 

 The summary statistics of the sustainability 

scores of the 10 concrete mixes after conducting UA is 

reflected in Table 2. From this result, it is clear that the 

sustainability scores of each concrete mix are not 

invariant to the methodological changes. The 

differences in the variance imply that methodological 

uncertainties affect each concrete mix’s sustainability 

score unevenly, which could be attributed to the 

inherent disparity of the data of indicators between 

alternatives. The most affected is WB45-RA100 with 

sustainability score ranging from 51.26 to 60.85, while 

the least affected is WB375-RA50. Based on the 

sustainability scores, however, all alternatives are better 

than the control mix. The statistics in Table 2 were 

used as inputs for RSM computations.  

 
 

Figure 4 Distribution of Y values for WB30-RA50 
 

3.2 Response Surface Models 
 The models of the concrete sustainability score 

responses (Ymin, Yave, Ymax) and the estimate model of 

the variability of sustainability scores, SD, are shown in 

Table 4. These models were obtained by adding (or 

removing) higher order terms from an initial 

polynomial model (usually linear) and performing f-

statistic to measure the significance (p-value) of each 

term in the model. A term can be removed to simplify 

the model without substantially affecting the predicting 

power of the response model based on p-value (e.g., p-

value > 0.05) of each term. The response model is 

accepted if R2 > 0.90 and the adjusted R2 > 0.80. Since 

these response models are empirical, they are valid only 

for the region of space being investigated (at RA = [0%, 

100%] and W/B = [0.30, 0.45]), and their accuracy is 

dependent on the number of input points. 

 The response models in Table 4 

allow numerical inference of the possible values of the 

minimum, average, maximum, and the standard 

deviation of the sustainability score at any point within 

the analytical space. They also illustrate graphically the 

trend of Y as a function of RA and W/B, as in Figure 5, 

which shows the surface generated for Ymin. The 

experimental points are reflected in the response 

surfaces as filled circular dots. From this surface, it is 

discernable that the true maximum point (marked with 

red square) is not part of the set of concrete mixes 

originally investigated. This maximum would normally 

be missed in point analysis. Exploratory analysis, 

therefore, provides the decision maker with better 

information so that they can select, for example, the 

optimum values, making their decision more robust.  

Figure 6 shows the contour plots of Yave, Ymax, 

and SD. Figures 5, and 6b demarcate the theoretical 

limits of Y, but may wrongfully estimate the mean if 

both are used independently. The use of Figure 6a 

helps estimate the location of the mean (expected) 

value of Y, but is not enough to describe the 

Table 4 Response surface models for sustainability scores and the standard deviation 

Equation No. Response Equation R2 
1 Ymin -57.969 + 0.088(RA) + 549.378(W/B) – 0.000585(RA)2 – 694.519(W/B)2 0.9793 

2 Yave -2.788 + 0.036(RA) + 251.222(W/B) – 277.630(W/B)2 0.9649 

3 Ymax 
23.491 + 147.567(W/B) + 0.001848(RA)2 – 160.723(W/B)2 – 0.0399(RA)2(W/B)2 

+ 0.000021(RA)3(W/B)2 + 0.067684(RA)2(W/B)3 
0.9997 

4 SD 
5.044 + 0.037(RA) + 0.000651(RA)2 – 47.779(W/B)2 – 0.005404(RA)2(W/B) – 

0.3375(RA)(W/B)2 + 0.010347(RA)2(W/B)2 + 364.719(W/B)5 
0.9927 

 

 

- 1562 -



randomness of the sustainability scores within the 

limits defined by Ymin and Ymax. Hence, Figure 6c, is 

also equally important to provide an estimate measure 

of variability, or, equivalently, the spread of the Y 

values from the mean. Lower SD means that the 

sustainability scores tend to be close to the mean, while 

higher SD means the sustainability scores are spread in 

a much wider range. However, SD alone cannot provide 

an estimate of Y, nor it can define the theoretical limits 

for Y (the minimum or maximum). Therefore, Figures 
5 and 6 should be used jointly to characterize more 

precisely the behavior of sustainability score at a 

particular point as a result of methodological choices. 

 Important trends can also be observed using the 

response surfaces, directly linking the experimental 

variables to the behavior of the sustainability scores. In 

Ymin surface (Figure 5), for example, it is observable 

that increasing use of recycle aggregate is beneficial for 

sustainability but only up to 80% then the benefit starts 

to diminish. In the same surface (or alternatively using 

Eq. 1), increasing W/B is beneficial only up to 0.38. 

On the other hand, based on average (Figure 6a), both 

the increases in RA and W/B is beneficial for 

sustainability. For exploratory investigations, the 

surfaces generated by Eq. 1 to 4 are highly important 

because they provide an idea of the randomness of the 

sustainability score of the concrete mix behaves when 

the experimental variables are changed continually 

within the analytical domain.  

 

3.3 Sample Numerical Optimization 
 By optimizing based on predefined criteria, the 

most sustainable point(s) (or region in the analytical 

space) can be discovered. In this data set, for example, 

an analyst might be interested in what point(s) satisfy 

when maximizing the use of RA within the given range 

of W/B such that it produces the maximum 

sustainability score. A numerical optimization can be 

performed following these criteria because the response 

models are numerically defined (Table 4).  

 The optimization criteria described previously 

are only applied to Ymin, Yave, and Ymax since they 

estimate the sustainability scores, while SD was used 

only to describe the variability of Y at the located 

optimum point. Table 5 summarizes the results of 

numerical optimization. The values within the 

parentheses indicate the optimum values to obtain a 

maximum Y, while maximizing RA content within the 

range of W/B; otherwise, those without parentheses are 

the equivalent values of Ymin, Yave, Ymax, and SD when 

the optimum values of RA and W/B are substituted to 

Eq. 1 to 5.  

 Table 5 shows that, for the same optimization 

criteria, the optimum points will likely differ. In this 

case, however, optimizing on Yave and Ymax located the 

same optimum point at RA = 100% and W/B = 0.45. 

Using this location, the equivalent minimum 

sustainability score is 51.5544, which is lower than the 

optimum value when using Ymin with a score of 

53.6166. To eradicate the possibility of obtaining a Y 

value less than the optimal minimum value, optimizing 

using Ymin surface (or Eq. 1) is more desirable.  

 The optimization result (location and value) for 

Ymin is marked with a ‘star’ in Figure 5 and 6, showing 

that the desired criteria is achieved by using RA = 

100% and W/B = 0.3955. The response models infer 

the following statistics for this point: minimum = 

 
 

Figure 5 Surface plot of Ymin 
 

 
(a)             (b)    (c)   

Figure 6 Contour plots of (a) Yave, (a) Ymax, and (c) SD 
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53.6166, average = 56.7462, maximum = 58.1957, and 

SD = 1.0646. From these statistics, it is possible to 

estimate the distribution and PDF (similar to Figure 4) 

of this point by using, for example, a truncated normal 

distribution, as illustrated in Figure 7, without again 

performing multicriteria analysis and uncertainty 

analysis. In this case, the normal distribution was 

selected because of its simplicity for this purpose, but 

other statistical distributions can also be applied (e.g., 

beta distribution) to obtain the idealized behavior of the 

sustainability score.  

 The estimation of this PDF is important because 

of the following reasons: (1) it provides the range and 

the random behavior of Y values at the point of interest, 

(2) it can help guide future design of experiments and 

validate the experimental results and, (3) it produces 

quantitative information on locations without actual 

experimental data, which may be either too costly or 

takes longer time to obtain to support immediate 

decisions.  

 

 
 

Figure 7 Estimated sustainability scores using 
truncated normal distribution 

 

 

4. CONCLUSIONS 
 

 The above analyses led to the following 

conclusions: 

(1) Multicriteria analysis alone is not a robust 

exploratory method for problems involving 

variables with continuous domain, such as those 

considered in concrete mix design (i.e., RA and 

W/B) as it only investigates pre-selected points 

within the experimental domain. 

 (2) The application of response surface methodology, 

together with uncertainty analysis, illustrates 

more distinctively and continually the behavior of 

the concrete sustainability score within the 

experimental domain, leading to the discovery of 

important points, such as the local maximum or 

minimum. 

 (3) Numerical optimization is possible with RSM, 

which is important to locate point(s) that meet 

pre-determined sustainability criteria for concrete 

sustainability to guide future experimentations 

and support actions needing immediate decisions. 

 (4) The combination of multicriteria analysis, 

uncertainty analysis, and response surface 

methodology makes the quantitative concrete 

sustainability evaluation robust. 
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Table 5 Summary statistics of the sustainability scores of concrete mixes 
Response used 

for Optimization 

Numerical Values 

RA (%) W/B SD Ymin Yave Ymax 

Ymin (53.6116) 56.7462 58.1957 (100) (0.3955) 1.0646 

Yave 51.5544 (57.6450) 60.7875 (100) (0.4500) 2.0770 

Ymax 51.5544 57.6450 (60.7875) (100) (0.4500) 2.0770 
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