論文 鉄筋コンクリート造片側袖壁付き柱の終局強度算定法に関する研究

瀬口 稜*1·津田 和明*2

要旨:鉄筋コンクリート造片側袖壁付き柱の終局強度算定法に着目した研究・実験は数少なく,既往算定 法の算定精度は明確とは言えない。本研究では片側袖壁付き柱のFEM 解析を行い,曲げ終局強度算定法 とせん断終局強度算定法の検討を行った。曲げ終局強度算定法には部材断面が全て塑性化したとして考え る全塑性モーメントを用いた結果、既往算定法と同等程度の精度を示すことが分かった。せん断終局強度 算定法には筆者らによる鉄筋コンクリート造耐震壁と両側袖壁付き柱のせん断終局強度算定法を拡張し, 片側袖壁付き柱に対応できるせん断終局強度算定法を検討した。本報では、現状の検討結果をまとめた。 キーワード:片側袖壁付き柱,曲げ終局強度、せん断終局強度、トラス理論

1. はじめに

鉄筋コンクリート造建物における袖壁付き柱は,過去 の実験などにより,柱の剛性,耐力を上昇させるための 有効な耐震部材となることが実証されている。しかし, 袖壁付き柱の挙動が不明確な点もあり耐震要素として設 計されないことが多くある。

現在,袖壁付き柱の終局強度に関する計算式はいくつ かある。まず,曲げ終局強度算定法は,日本建築学会の

「鉄筋コンクリート構造保有水平耐力計算規準(案)・ 同解説」¹⁾ (以下,保有水平耐力基準と称す)の曲げ終 局強度式がある。

せん断終局強度算定法は、日本建築防災協会の「既 存鉄筋コンクリート造建築物の耐震診断基準同解説」²⁾ のせん断終局強度式(以下,耐震診断式と称す)や日本 建築センターの「建築物の構造関係技術基準解説書」³⁾ のせん断終局強度式や,壁谷澤らによる2つの提案式 ⁴⁾⁵⁾(以下,分割累加式,トラスアーチ式と称す)があ る。この分割累加式は保有水平耐力基準にも採用されて いる。しかし,これらは荒川 min 式⁶⁾や日本建築学会 の「鉄筋コンクリート造建物の靭性保証型耐震設計指 針・同解説」⁷⁾(以下,靱性指針と称す)の算定法を準 用し,せん断補強筋の全降伏を前提としており,実際の 破壊現象と対応しない場合がある。

耐震壁と両側袖壁付き柱においては、トラス剛性に基 づくせん断終局強度算定法⁸⁾⁹⁾を筆者らが提案してい る。これらの算定法は実際の破壊現象をほぼ再現できて いる。そこで、本研究ではこの算定法を片側袖壁付き柱 に拡張することにした。

2. 曲げ終局強度算定法

2.1 保有水平耐力基準

まず,曲げ終局強度算定法について検討を行う。既往 算定法としては保有水平耐力基準の式がある。

$$M_u = \sum \left(a_t \sigma_y j_t \right) + N j_N \tag{1}$$

$$A_{cc} = \frac{\sum (a_i \sigma_y) + N}{\beta_{cc} F_c}$$
(2)

$$L_{cc} = \begin{cases} \frac{A_{cc}}{2t_{w}} & A_{cc} \leq A_{w1} = t_{w}L_{w1} \\ \frac{A_{w1}}{A_{cc}} \frac{L_{w1}}{2} + \left(1 - \frac{A_{w1}}{A_{cc}}\right) & A_{cc} > A_{w1} = t_{w}L_{w1} \\ \left(L_{w1} + \frac{A_{cc} - A_{w1}}{2b}\right) \end{cases}$$
(3)

上式中 a_t は引張鉄筋の断面積, σ_y は引張鉄筋の材料強度, j_t は引張鉄筋とコンクリート圧縮域の応力中心距離 (= d_t - L_{cc}), N は袖壁付き柱に作用する軸力, J_N は 軸力作用位置とコンクリートの圧縮域の応力中心距離, A_{cc} はコンクリートの圧縮域の面積, β_{cc} =0.85(ただし, 圧縮領域の縦筋比が 0.01 以上である場合は β_{cc} =1.0 とす る), L_{cc} はコンクリート圧縮域中心の圧縮縁からの距 離である。これらの単位は SI 単位系で,力が N,距離 が mm である。

2.2 全塑性モーメント

全断面が塑性化していると仮定し,力の釣り合いより 中立軸を求める全塑性モーメントを検討した。この式は, 保有水平耐力基準の式に対し圧縮鉄筋を考慮した形にな っている。今回の検証では柱が引張側となる場合の曲げ

*1 近畿大学 産業理工学部建築・デザイン学科 (学生会員) *2 近畿大学 産業理工学部建築・デザイン学科 教授 博士(工学) (正会員) 終局モーメントで決定する場合が多かったため(14 体中 11 体)、柱が引張側となる場合の算定法を示す。

$$T_c = {}_c \sigma_{y c} a_y \tag{4}$$

$$C_{wl} = -_{wl}\sigma_{y\,wl}a_y \tag{5}$$

$$C_{w2} = -_{w2}\sigma_{y\,w1}a_y \tag{6}$$

$$C = -\sigma_B t_w x_n \tag{7}$$

$$x_n = \frac{1}{\sigma_B t_w} \left(T_c + C_{w1} + C_{w2} + C + N \right)$$
(8)

$$M_{u} = T_{c}j_{c} + C_{w1}j_{w1} + C_{w2}j_{w2} + Cx_{n}/2 + Nj_{N}$$
(9)

上式中 T_c は柱主筋の断面力, $c\sigma_y$ は柱主筋の降伏強度, ca_y は柱主筋の断面積, C_{w1} は壁縦筋の断面力, $w_1\sigma_y$ は壁 縦筋の降伏強度, w_1a_y は壁縦筋の断面積, C_{w2} は端部壁 縦筋の断面力, $w_2\sigma_y$ は端部壁縦筋の降伏強度, w_2a_y は端 部壁縦筋の断面積, Cはコンクリートの断面力, σ_B はコ ンクリートの圧縮強度, t_w は袖壁厚さ, M_u は終局モー メント, j_c は壁端部から柱主筋群までの距離, j_{w1} は壁端 部から壁縦筋群までの距離, j_{w2} は壁端部から端部縦筋 群までの距離, Nは軸力, j_N は壁端部から軸力作用位置 までの距離である。図-1に各距離の図解を示す。

2.3 検証結果

既往実験結果¹⁰⁻¹⁵⁾を用い、保有水平耐力基準の式と 全塑性モーメントの式を検証した結果を図-2 に示す。 検証では柱が引張側の場合に曲げ終局強度が決定した試 験体は,14 体中11 体であった。この検証に用いたせん 断終局強度式は分割累加式である。検討の結果,平均値 は多少大きくなったが変動係数は小さくなった。このよ うな結果になったのは,片側袖壁付き柱では柱が圧縮側 の場合には,圧縮力を負担する柱主筋の影響が大きいた めと思われる。検証対象試験体が少ないことから,今後, さらに検討したい。

3. 既往せん断終局強度算定法

3.1 耐震診断式

耐震診断式では引張側となる袖壁を無視した独立柱の 場合と圧縮側となる壁を考慮して求めたせん断終局強度 のそれぞれの平均値とした場合,等価断面の長方形断面 に置換した場合,連続する壁を無視し独立柱とした場合, 柱を無視して雑壁の耐力とした場合の計4ケースの最大 値を採用する。

$$Q_{su} = \begin{cases} \frac{0.053 p_i^{0.23} (18 + F_c)}{M/(Qd_e) + 0.12} \\ + 0.85 \sqrt{p_{we} \sigma_{wy}} + 0.1 \sigma_{0e} \end{cases} b_e j_e \tag{10}$$

式(10)中 p_t は引張鉄筋比, $M/(Qd_e)$ はせん断スパン比, $p_{we}\sigma_{wy}$ は横筋比とその降伏強度の積, σ_{0e} は軸力比, b_e は 等価断面厚さである。耐震診断式では引張側の袖壁を無 視して評価している。ただし、片側のみに袖壁が付く場 合の算定精度は不明である。

3.2 分割累加式

分割累加式を次に示す。

$$Q_{su} = Q_{suw} + Q_{suc} + 0.1N$$
(11)

$$Q_{suw} = \begin{cases} \frac{0.053 p_{rwe}^{0.23} (F_c + 18)}{M/(Qd_w) + 0.12} \\ +0.85 \sqrt{p_{we} \sigma_{why}} \end{cases} t_w j_w$$
(12)

$$Q_{suc} = \begin{cases} \frac{0.053 p_{cce}^{0.23} (F_c + 18)}{M/(Qd_w)} \\ + 0.85 \sqrt{p_{cwe}\sigma_{cwy}} \end{cases} b_{ce} j_{ce} \tag{13}$$

上式中 Q_{suv} は壁部分のせん断終局強度, Q_{suc} は柱部 分のせん断終局強度, p_{twe} は壁部分の引張鉄筋比, d_w は 有効壁長さ(=0.95L), t_wは袖壁厚さ, p_{we}σ_{why} は袖壁横 筋比とその降伏強度の積, p_{tce} は柱部分の引張鉄筋比, d_{ce} は柱部分の有効せい(=0.95D), p_{cwe}σ_{cwy} は柱帯筋比 とその降伏強度の積, b_{ce} は柱の有効幅である。分割累 加式は, 壁と柱の断面を壁長さ方向に分割してそれぞれ のせん断終局強度を算出し, 累加してせん断終局強度を 算出する方法である。

3.3 トラスアーチ式

トラスアーチ式では分割累加式と同様に断面を壁長さ 方向に分割し、柱部分と壁部分のせん断終局強度を算出 し累加する方法である。算出においては靭性指針の柱, 梁のせん断終局強度算定法より算出する。

$$V_{u} = \mu p_{we} \sigma_{wy} b_{e} j_{e} + \left(\nu \sigma_{B} - \frac{5 p_{we} \sigma_{wy}}{\lambda} \right) \frac{bD}{2} \tan \theta \quad (14)$$

$$V_u = \frac{\lambda v \sigma_B + p_{we} \sigma_{wy}}{3} b_e j_e \tag{15}$$

$$V_u = \frac{\lambda \nu \sigma_B}{2} b_e j_e \tag{16}$$

式(14), (15), (16)中 j_e はトラス機構に関与する断面の 有効せい, b_e はトラス機構に関与する断面の有効幅, σ_{wy} は横補強筋の信頼強度, p_{we} 有効横補強筋比, vはコ ンクリート圧縮強度の有効係数, λ はトラス機構の有効 係数である。

4. 既往のせん断終局強度算定法の精度検証

片側袖壁付き柱のせん断終局強度算定法に関する既往 実験は少ないため、十分な精度検証が行えない。そのた め、FEM 解析結果を用いて検証対象を増やすこととし た。

FEM 解析には、「FINAL」を用いた。まず、裵らの 実験結果11)のシミュレーション解析を行い、解析仮定の 妥当性を確認後, 柱主筋と端部壁縦筋を弾性としたパラ メトリック解析を行うことにした。解析モデルを図-3 に、諸元を表-1示す。コンクリートは六面体要素とし、 主筋、帯筋及び壁筋は線材要素としてモデル化した。テ ンションスティフニング特性は出雲らのモデル¹⁰⁾ (C=1.0), コンクリートの圧縮応力度~ひずみ度曲線 は修正 Ahmad モデル¹⁷⁾,ひび割れ面のせん断伝達特性 は長沼モデル¹⁸⁾, 圧縮強度到達後のひずみ軟化域曲線 は修正 Ahmad モデル,付着応力度~滑り関係は Elmorsi らのモデル 19, ひび割れ後の圧縮強度・ひずみ低減は 長沼モデルとした。コンクリートのひび割れ強度は 0.33 (GB より算定した。シミュレーション解析より得ら れた荷重~変位関係の結果を実験結果と比較して、図-4に示す。FEM 解析では実験と同様に壁横筋の降伏が先 行した。その時の鉄筋の降伏図を図-5 に示す。また実 験で圧壊した位置のコンクリートが、解析では圧縮軟化 した。その時のひび割れ図を図-6に示す。これらより、

表-1 モデル試験体諸元							
柱	B×D(mm)	400×400					
	主筋	16-D16					
	帯筋	2-D6@50					
袖壁	厚さ×壁長さ(mm)	100×800					
	端部縦筋	8-D10					
	壁縦横筋	D6@200					
	内法高さ(mm)	1400					
	壁縦横筋 内法高さ(mm)	D6@200 1400					

表--2 パラメトリック解析諸元

		1				
CASE	壁 全長 (mm)	柱幅 (mm)	壁筋 ピッチ	$\sigma_B \over (N/mm^2)$	軸力 (kN)	FEM 最大 耐力
	()					(kN)
1			200	33	800	748
2					1200	809
3					1600	890
4					800	848
5			double	55	1200	995
6	800	400	(0.32%)		1600	1088
7				77	800	945
8					1200	1057
9					1600	1176
10				33	800	772
11					1200	849
12					1600	929
13			150	55	800	928
14			double (0.43%)		1200	1040
15					1600	1124
16				77	800	1007
17					1200	1175
18					1600	1253
19					800	824
20				33	1200	885
21					1600	971
22			100		800	975
23			double	55	1200	1083
24			(0.64%)		1600	1205
25					800	1134
26				77	1200	1221
27					1600	1303
28					800	891
29				33	1200	1041
30					1600	1092
31			200		800	1024
32		600	double	55	1200	1160
33			(0.32%)		1600	1356
34					800	1151
35				77	1200	1232
36					1600	1452
37					800	567
38				33	1200	631
39					1600	701
40			200		800	630
41	400	400	double	55	1200	716
42	Į		(0.32%)		1600	740
43					800	721
44				77	1200	824
45					1600	872

この解析仮定は妥当と判断し,パラメトリック解析を行った。

パラメトリック解析の諸元を表-2 に示す。パラメト リック解析は,壁全長,柱幅,壁筋ピッチ、コンクリー ト圧縮強度,軸力をパラメーターとし,45 ケース行っ た。

強度比 (Q_{FEM}/Q_{Su})の因子別検証をした結果を $\mathbf{2}-7$ に示す。検証因子は、柱せい壁長さ比 (L_w/D)、軸力比 (σ_0/σ_B)、壁横筋比 (p_w)である。図中の凡例 σ_0 は 柱断面積に対する軸応力度である。

耐震診断式は全体的に安全側に評価した。分割累加式, は柱せいに対して壁長さが短い場合に危険側に判定した。 トラスアーチ式はどの因子でも良好に対応した。しかし, これらの式は壁板横筋,柱帯筋の全降伏を前提としてお り,実現象と対応しない場合がある。そこで,新たな手 法を検討することにした。

5. せん断終局強度算定法の検討手法

5.1 検討手法の概要

検討手法は,柱部分では壁厚のみ考慮する。この手法 は図-8 に示すトラス機構を仮定する。このうち斜め圧 縮バネと水平引張バネのいずれかが強度に達した時をせ ん断終局強度としている。また、ひび割れ強度が最大と なる場合も考慮した。提案式は式(17)~(20)式で表され る。

$$Q_{su} = \max\left\{\min\left(Q_{cc}, Q_{hy}\right), Q_{cr}\right\}$$
(17)

上式中, Qcc はコンクリート斜め圧縮バネの強度で決 定される強度であり式(18)で表される。

$$Q_{cc} = \frac{\nu \sigma_B \sin 2\theta}{2} l_a t_w \tag{18}$$

$$v = \begin{cases} 0.7 - \frac{\sigma_B}{200} & \sigma_B \le 45 \, N/mm^2 \\ 1.698 \sigma_B^{-0.333} & \sigma_B > 45 \, N/mm^2 \end{cases}$$
(19)

$$l_a = L - h_a \tan\theta \tag{20}$$

上式中vはコンクリート圧縮強度の有効係数, θ は主 圧縮方向角度(後述),Lは壁全長, l_a は有効長さ, t_w は袖壁厚さである。 h_a の概念を図-9に示す。これは式 (21)で算定する。

$$h_a = \frac{K_2 \sin^3 \theta \cos \theta}{\frac{2K_x}{L - \alpha L}} \le \frac{h_0}{2.7}$$
(21)

式(21)中 h_0 は内法高さ、 K_2 は補正係数を乗じたコンク リートの圧縮方向のバネ剛性、aは拘束領域せいの係数 であり、 K_2 、aはそれぞれ式(22)(23)で算定する。aは、 拘束領域の曲げ剛性とせん断剛性を考慮して導いた。

$$K_2 = 0.168\sigma_B^{0.38} E_c \frac{1}{0.01\sigma_B + 0.8}$$
(22)

$$\alpha = 0.206 - 0.0372 \left(\frac{L}{h_0}\right) \le 0.2$$
(23)

式(22)中 Ecはコンクリートのヤング係数である。

Qhy は横筋が降伏するときのせん断終局強度であり式 (24)で算定する。

$$Q_{hy} = \frac{\sigma_{hy} K_x}{E_{hs} \tan \theta} L t_w$$
(24)

上式中 *o*_{hy}は壁横筋の降伏強度,*E*_{hs}は壁横筋のヤング 係数である。

ここで, 主圧縮方向角度(θ)の算定方法を式(25)に 示す。

$$\left(\frac{1}{K_x} - \frac{1}{K_y}\right)\cos^4\theta - 2\left(\frac{1}{K_2} + \frac{1}{K_x}\right)\cos^2\theta$$

$$\left(\frac{1}{K_2} + \frac{1}{K_x}\right) = 0$$
(25)

上式中 *K_x* は水平方向の平均バネ剛性, *K_y* は鉛直バネ であり, それぞれ式(26)(27)で算定する。

$$K_{x} = p_{wh}E_{hs} + \frac{L - \alpha L}{\frac{t_{w}h_{0}^{4}}{720E_{c}I_{c}} + \frac{t_{w}h_{0}^{4}}{720E_{c}I_{w}}}$$
(26)

$$K_{y} = p_{v}E_{v} \tag{27}$$

上式中*pvEv*はすべての縦筋の鉄筋比とそのヤング係数 の積で,鉄筋比は(全長×壁厚)に対する比である。*pwh* は壁横筋比, *I*_cは柱部分の拘束領域の断面二次モーメン ト, *Iw*は壁部分の拘束領域の断面二次モーメントでそれ ぞれ式(28), (29)で算定する。

$$I_c = B(\alpha L)^3 / 12 \tag{28}$$

$$I_w = t_w (\alpha L)^{12} / 12$$
 (29)

式(28)中Bは柱幅である。

ここで、せん断ひび割れ強度式(Qcr)を式(30)に示す。

$$Q_{cr} = 1.2\sqrt{\sigma_t^2 - \sigma_t \sigma_0} \frac{A_{all}}{\kappa_s}$$
(30)

$$\sigma_t = 0.33 \sqrt{\sigma_B} \tag{31}$$

上式中 σ_0 は軸方向応力度(圧縮を負), A_{all} は部材全断 面積, κ_s は応力度法によるせん断に対する形状係数, σ_t はコンクリートの引張強度である。

5.2 検討手法の精度検証

4 章のパラメトリック解析結果を用いて検討手法の強 度比 (Q_{FEM}/Q_{su}) に対する因子別検証を行った結果を図 -10 に示す。検証因子は既往算定法の検証と同じ、柱 せい壁長さ比 (L_w/D),軸力比 (σ_0/σ_B),壁横筋比 (P_w)に対して行った。検討手法は既往算定法と同等 の算定精度を確認できた。しかし、回帰曲線がやや傾く 場合があることから、今後さらに検討したい。

6. まとめ

鉄筋コンクリート造片側袖壁付柱の曲げ終局強度につ いて検討した結果,以下の見解を得た。

- 全塑性モーメントは既往算定法と同等の算定精度 を有することが確認できた。
- 既往式に比べ平均値は多少大きくなったが変動係 数は小さくなった。

検証した試験体数が少ないため今後詳細に検討した い。

また,筆者らの提案手法をベースにした片側袖壁付 き柱のせん断終局強度算定法を考案した。これを FEM 解 析結果を用いて検討した結果,以下の見解を得た。

- 既往算定法と同等の算定精度を有することが確認 できた。
- 構成因子の大小に対し、算定精度が変動した。
 以上のことを踏まえて、今後詳細に検討したい。

参考文献

- 日本建築学会:鉄筋コンクリート構造保有水平耐 力計算規準(案)・同解説, pp.226-228, 2016.4
- 日本建築防災協会:既存鉄筋コンクリート耐震診 断基準同解説, pp.229-238, 2001.10
- 日本建築センター:建築物の構造関係技術基準解 説書,2008.5
- 4) 壁谷澤寿成,壁谷澤寿海,東條有希子,壁谷澤寿 ー:せん断破壊型袖付き柱に関する実験的研究, コンクリート工学年次論文集, vol.30, No.3, pp.115-120, 2008
- 5) 裹根國,壁谷澤寿海,金裕錫,壁谷澤寿一:袖付
 き柱の構造特性に関する実験的研究、コンクリー ト工学年次論文集,vol.32,No.2,pp.115-120, 2010
- 6) 日本建築学会:建築耐震設計における保有水平耐力と変形性能(1990), 1990.10
- 日本建築学会:鉄筋コンクリート造建物の靭性保 証型耐震設計指針・同解説, pp.142-159, 1998.8
- 津田和明:鉄筋コンクリート造耐震壁のせん断強 度算定法に関する研究,日本建築学会構造系論文 集,第74巻,第645号,pp.2069-2075,2009.11
- 9) 今泉拓,津田和明:鉄筋コンクリート造両側袖壁 付き柱の終局強度とせん断破壊型の復元力特性算 定法に関する研究,コンクリート工学会年次論文 集,Vol.39, No.2, pp.115-120, 2017.7
- 10) 木原智美,鈴木卓,倉本洋,樋渡健:片側袖壁付 きRC柱の損傷制御に及ぼす壁筋の定着と構造スリ ットの影響,日本建築学会近畿支部研究報告集, 構造系,vol.55,pp.653-pp.656,2015

- 11) 裵根國,壁谷澤寿海,金裕錫,壁谷澤寿一, PHAN Van Quang,石井貴子:鉄筋コンクリート造 片側そで壁付き柱の終局強度に関する実験的研究, 日本建築学会構造工学論文集,vol.55B, pp.385-390, 2009.3
- 12) 磯雅人,上原正敬,福山洋,田尻清太郎:袖壁付 きRC柱のせん断挙動に与える袖壁の出幅の影響, コンクリート工学会年次論文集,vol.32,No.2, pp.109-114,2010
- 13) PHAN Van Quang, 壁谷澤寿海, 金裕錫, 壁谷澤寿 一, 裵根國, 石井貴子, 福山洋, 田尻清太郎:高 強度鉄筋コンクリート造片側袖壁付き柱の耐震性 に関する実験的研究, 日本建築学会大会学術講演 梗概集, pp.121-124, 2009.8
- 14) 久徳琢磨,徳広育夫:片側袖壁付き柱の変形および耐力に関する実験的研究,日本建築学会大会学術講演梗概集,pp.743-744,1988.10
- 15) 山田貴大,磯雅人,河南孝典,小川敦久:袖壁付き RC柱の高靭性化に関する研究 その3 片側袖壁付き柱 RC柱の場合 実験概要・破壊性状,日本建築学会大会学術講演梗概集,pp.287-288, 2014.9
- 16) 出雲淳一,他:内面力を受ける鉄筋コンクリート 板要素の解析モデル,コンクリート工学論文, No.87.9-1, pp.107-120, 1987.9
- Al-Mahaidi , R.S.H. : Nonlinear Finite Element Analysis of Reinforced Concrete Deep Member, Report 79-1, Dep.of Structural Engineering, Cornell Univ., Jan.1979
- 長沼一洋:三軸圧縮下のコンクリートの応力~ひ ずみ関係,日本建築学会構造系論文集,第 474 号, pp.163-170, 1995.8
- Elmorsi, M., Kianoush, M.R. and Tso, W.K.: Modeling bond-slip deformations in reinforced concrete beam-columm joints, Canadian Journal of Civil Engineering, Vol.27, pp.490-505, 2000