論文 腰壁・垂れ壁を有する低強度コンクリート柱梁接合部の構造性能

八十島 章*1

要旨:1970年以前に建設された既存低強度コンクリート建物の耐震性能を的確に評価するために,腰壁・垂 れ壁の有無を主な実験因子として,丸鋼を用いた低強度コンクリート十字形柱梁接合部の構造実験を行った。 実験結果より,腰壁・垂れ壁の有無による柱梁接合部の初期剛性,最大耐力,等価粘性減衰定数および破壊性 状の違いを把握した。腰壁・垂れ壁を有する場合は初期剛性および最大耐力が増大するが,早期にコンクリ ート圧壊で耐力低下を起こすため, 靭性能に乏しい履歴特性になることを示した。

キーワード:低強度コンクリート,丸鋼,二次壁,接合部破壊,終局モーメント

1. はじめに

1970年前後に建設された学校校舎はコンクリート強 度が低く,主筋に丸鋼が使用されており,ほとんどの柱 や梁に腰壁・垂れ壁が取り付いている。全国ほぼすべて の学校校舎は耐震改修がすでに実施されているが,耐震 診断を実施するときに,腰壁や垂れ壁の影響が適切に評 価されてきたのか不明確である。主筋が丸鋼の場合には, 主筋の付着劣化による影響や接合部のせん断抵抗機構の 変化が考えられ,腰壁・垂れ壁による周辺部材への相互 作用も考えられるため,腰壁・垂れ壁を有する柱梁接合 部の構造性能を把握することが重要である。

本研究では,腰壁・垂れ壁の有無を主な構造因子とし て,丸鋼を用いた低強度コンクリート十字形柱梁接合部 の構造実験を行い,最大耐力や破壊性状を把握するとと もに,腰壁・垂れ壁の影響について検討する。

2. 実験概要

2.1 試験体

試験体諸元を表-1に,試験体の配筋を図-1に示す。 試験体は,1970年以前に建設され旧耐震基準で設計され た既存鉄筋コンクリート造の学校校舎を想定し,主筋, 横補強筋,壁筋に丸鋼を使用した実大スケールの十字形 柱梁接合部である。試験体は4体であり,No.1とNo.2は 腰壁・垂れ壁がなく接合部アスペクト比と主筋量の異な る試験体,No.3 は腰壁を有する試験体,No.4 は腰壁およ び垂れ壁を有する試験体である。試験体の柱断面 450mm ×450mm,梁の反曲点間距離 2700mm,柱の反曲点間距 離 2440mm,接合部の配筋は共通である。試験体 No.1の 配筋は,柱主筋 6-19 ϕ ,梁主筋 8-19 ϕ ,横補強筋 2-9 ϕ @250 とし,試験体 No.2~4 の配筋は,柱主筋 8-22 ϕ , 梁主筋 8-22 ϕ ,横補強筋 2-9 ϕ @250 とした。試験体 No.3 および No.4 における腰壁・垂れ壁は,壁厚 120mm,壁 高 500mm,壁長さ 800mm とし,配筋は丸鋼 9 ϕ を 200mm 間隔でシングル配筋し,壁筋の定着部には 180°フック を設けた。なお,試験体 No.3 の壁縦筋の定着長さは鉄筋 径の 30 倍 (270mm) とした。

2.2 使用材料

使用したコンクリートの調合計画および材料試験結果 を表-2 に,鉄筋の引張試験結果を表-3 に示す。コン クリートは,目標圧縮強度10MPa,水セメント比103%, 細骨材率56%,最大粗骨材寸法20mmであり,現場封緘 養生の100φ×200mmテストピースで材料試験を行った。

	表-1	試験体諸元
--	-----	-------

日福		接合部		柱		梁		腰壁・垂れ壁						
試験 日標 強度 F_c	横補 強筋	接合部 アスペ クト比	断面 $b_c imes D_c$	主筋 (pg)	横補 強筋 (p _w)	軸力比	断面 <i>b_b × D_b</i>	主筋 (pt)	横補 強筋 (p _w)	壁種類	壁厚 ×壁高	壁縦筋	壁横筋	
No.1			1.0		6-19 <i>ø</i> (0.84%)		0.15	300mm × 450mm	8-19 <i>ф</i> (0.95%)		_	_	_	_
No.2	10MPa	2_9 <i>4</i> ×1		450mm ×		$2-9\phi$				$2-9\phi$				
No.3		1.2 450mm	8-22 <i>φ</i> (0.11% (1.50%)	(0.11%)	0.1	300mm × 540mm	$\frac{100}{100000000000000000000000000000000$	(0.17%)	腰壁	120mm	9 <i>¢</i> @200	9 <i>¢</i> @200		
No.4							J-omm			腰壁+ 垂れ壁	× 500mm	ンン グル	ンン グル	

*1 筑波大学 システム情報系構造エネルギー工学域准教授 博士(工学) (正会員)

図-1 試験体の配筋

2.3 加力·計測方法

加力装置を図-2 に示す。加力方法は、柱の反曲点位 置を油圧ジャッキで支持し、梁の反曲点位置に取り付け た2基のアクチュエーターにより変位制御で正負交番漸 増繰り返し載荷を行った。軸力は、一定軸力を試験体頂 部から4基の鉛直用油圧ジャッキにより作用させた。加 力サイクルは、層間変形角で $R = \pm 1/800$ rad および± 1/400rad を各1回, $R = \pm 1/20$ rad および±1/15rad を各1回とした。計測項目は、 梁のせん断荷重、層間変形、軸力、柱・梁および接合部 の部材変形、主筋および横補強筋の歪である。

3. 実験結果

3.1 梁せん断カー層間変形角関係および破壊状況

各試験体の梁せん断力-層間変形角関係および最大荷 重時および層間変形角 1/25rad 時の破壊状況を図-3 に 示す。試験体 No.1 は,層間変形角 R=1/800rad で梁端の 曲げひび割れが発生し,R=1/100rad から柱の曲げひび割 れ,接合部の斜めひび割れが生じ,梁主筋の抜け出しに より荷重変形関係がスリップ性状になるに伴い,梁端コ ンクリートの圧壊が生じた。その後,梁端コンクリート の圧壊が支配的になり,接合部の斜めひび割れは拡大せ ずに,R=1/33rad で最大荷重に達した。最大荷重以降は 緩やかに荷重低下し,逆S字型の履歴性状が顕著になり, 最終的に梁端コンクリート圧壊により最終破壊に至った。

表-2 コンクリートの調合および材料試験結果

試験 体名	水セメ ント比 (%)	細骨 材率 (%)	圧縮 強度 (MPa)	割裂 強度 (MPa)	弾性 係数 (GPa)		
No.1		56	12.5	1.45	17.1		
No.2	102		11.2	1.41	17.2		
No.3	105		12.3	1.44	17.4		
No.4			12.9	1.49	17.1		

表-3 鉄筋の引張試験結果								
鉄筋 種別	降伏 強度 (MPa)	弾性 係数 (GPa)	降伏歪 (%)	引張 強度 (MPa)	伸び (%)			
19 <i>ø</i>	319	206	0.155	463	31.8			
22 <i>ø</i>	318	208	0.152	436	31.5			
9 <i>ø</i>	363	206	0.176	474	31.9			

荷重変形関係および破壊状況 🗵 — 3

試験体 No.2 は, 層間変形角 R=1/800rad で梁の曲げひ び割れが生じ、R=1/200rad で柱の曲げひび割れおよび接 合部の斜めひび割れが発生した。その後, R=1/33rad で最 大荷重に達し,最大荷重以降は,接合部の斜めひび割れ が顕著になり、接合部のコンクリートの剥落が生じて最 終破壊に至った。

試験体 No.3 は、層間変形角 R=1/800rad で柱の曲げひ び割れが生じ, R=1/400rad で梁の曲げひび割れが生じた。 その後, R=1/200rad で腰壁に斜めひび割れが発生し, R=1/100rad で腰壁と梁端部にコンクリート圧壊が生じて 最大荷重に達した。最大荷重以降において, 腰壁の圧壊 が進行した後に接合部の斜めひび割れが支配的になり, 接合部のコンクリート剥落が生じて最終破壊に至った。

試験体 No.4 は, 層間変形角 R=1/800rad で梁および柱 に曲げひび割れが生じ, R=1/400rad で腰壁および垂れ壁 に斜めひび割れが発生した。R=1/200rad で腰壁および垂 れ壁の柱側端部にコンクリート圧壊が発生し、その後、 圧壊が進行して R=1/100rad で最大荷重に達した。最大荷 重以降は、圧壊した壁端部のコンクリート剥落および接 合部の斜めひび割れが顕著になり, 接合部のコンクリー トが剥落して最終破壊に至った。

最大耐力は、腰壁・垂れ壁を有する試験体 No.4 が最も 大きく、二次壁のない試験体 No.2 の約2倍ほどであっ た。初期剛性も試験体 No.4 が最も大きく、二次壁を有す ることによる最大耐力と初期剛性の増大が確認された。 しかし、すべての試験体の履歴特性はスリップ性状が著 しく,二次壁のない試験体 No.1 および No.2 は耐力低下 が緩やかであったが、腰壁・垂れ壁を有する試験体 No.3 および No.4 は最大荷重時の層間変形角 R=1/100rad から の耐力低下が顕著であった。

3.2 梁の歪分布

試験体 No.2~No.4 における梁主筋の歪ゲージ位置お よび歪分布を図-4 に示す。歪値は層間変形角 *R*=1/800 ~1/50rad の正加力1サイクル目の値である。図中の一点 鎖線は鉄筋引張試験結果より得られた降伏歪を示してい る。いずれの試験体も層間変形角の増大に伴い,圧縮側 鉄筋の歪が引張側に移行し,層間変形角 *R*=1/100rad 時に は梁主筋の歪がすべて引張歪になった。また,層間変形 角*R*=1/25radにおいても主筋の降伏は確認されなかった。 主筋が丸鋼でコンクリート強度が低いため,付着劣化が 早期に発生し,主筋の抜出しが生じたことと接合部の斜 めひび割れが支配的になったことが要因と考えられる。

3.3 各部材の変形割合

全体変形に対する柱、梁、接合部の各部材変形の割合 の図-5 に示す。各部材変形は、図-2 に示される部材 変形計測用インサート位置で測定した変位である。試験 体 No.1 は, 層間変形角 R=1/400rad から梁端の曲げひび 割れの進展により梁の変形割合が増大し、その後、梁端 コンクリートの圧壊に伴って梁の変形割合が支配的にな った。試験体 No.2 では層間変形角 R=1/200rad までは柱 および梁の曲げひび割れの進展によりそれらの変形割合 が顕著であるが, 層間変形角 R=1/100rad からは接合部の 斜めひび割れの進展により接合部の変形割合が増大した。 試験体 No.3 および No.4 は, 層間変形角 R=1/67rad まで は柱の曲げひび割れの進展により柱の変形割合が増大し, その割合は腰壁のみの No.3 よりも腰壁・垂れ壁を有する No.4 のほうが大きくなった。柱側端部における腰壁・垂 れ壁の圧壊が進展するまでは接合部の変形は抑えられて いたが、壁の圧壊後の R=1/50rad 以降は接合部の変形割 合が増加することが確認された。

4. 実験結果の検討

4.1 包絡線の比較

各試験体の梁せん断力-層間変形角関係の包絡線の比較を図-6に示す。なお、図中には最大耐力の80%に低下した時点の限界変形角も示している。初期剛性は、梁せいが大きく、腰壁・垂れ壁が取り付くと増大しており、試験体 No.4 が最も大きいことが確認できた。最大荷重後

- 304 -

の挙動については、梁端圧壊した試験体 No.1 が最も緩や かで、限界変形角は 1/15rad であった。接合部破壊した試 験体 No.2 の限界変形角は 0.046rad, 腰壁を有する試験体 No.3 の限界変形角は 0.034rad, 腰壁・垂れ壁を有する試 験体 No.4 の限界変形角は 0.017rad で, No.4 の限界変形 角は No.2 の半分以下であった。層間変形角が小さい段階 で壁・垂れ壁の圧壊により急激な耐力低下を起こすため, 耐震性能に対する腰壁・垂れ壁の効果は限定的であるこ とがうかがえる。

4.2 等価粘性減衰定数

等価粘性減衰定数と層間変形角の関係を図-7 に示す。 腰壁・垂れ壁を有する試験体 No.3 および No.4 の等価粘 性減衰定数は,層間変形角 $R=1/200\sim1/67$ rad までは試験 体 No.1 と No.2 よりも大きく,試験体 No.4 の R=1/100rad 時の1サイクル目においては 15%以上であった。試験体 No.1 と No.2 は同様な傾向を示し,破壊形式の違いによ る差がなかった。腰壁・垂れ壁の圧壊が進行した層間変 形角 R=1/50rad 以降は,すべての試験体がほぼ同じ値で 推移し,腰壁・垂れ壁の効果は R=1/67rad 程度までであ ることが確認された。また,層間変形角 $R=1/200\sim1/67$ rad の範囲では,1サイクル目は平均 12%,2サイクル目は 平均 7%であった。

4.3 終局強度の検討

各試験体の最大耐力の実験値と計算値の一覧を表-4 に示す。梁の曲げ耐力計算値は、略算式¹⁾,主筋付着力 をゼロとした一般化累加強度理論²⁾の式(1),壁付き梁 の曲げ耐力式¹⁾を用い、柱の曲げ耐力計算値は柱フェイ ス位置を危険断面位置として略算式¹⁾を用いて算出した。 柱および梁のせん断耐力計算値は、腰壁・垂れ壁を無視 した荒川 mean 式³により算出した。腰壁・垂れ壁および 接合部のせん断耐力計算値は、日本建築学会の終局強度 型指針に基づき、等価壁長さによる耐震壁せん断強度式 および接合部せん断強度式⁴⁾を用いて算出した。接合部 釣合い破壊時の終局モーメントは、腰壁・垂れ壁による 拘束領域を考慮しない接合部パネルのみに対して、文献 5)による式(2)および梁・柱のせん断力と接合部の節点

		しと計昇値の一	筧		
	試験体名	No.1	No.2 No.3		No.4
接合部アスペクト比 Db/Dc		1.0	1.2		
二次壁の有無		_	_	腰壁	腰壁+ 垂れ壁
	最大耐力 Qmax(kN)	83	113	164	229
実験値	破壊形式	梁端圧壊	接合部破壊	壁圧壊後の 接合部破壊	壁圧壊後の 接合部破壊
計算値 	梁曲げ耐力 bQmu (kN) (壁考慮なし略算式)	116	190	190	190
	梁曲げ耐力 bQms (kN) (壁考慮なし累加強度式)	83	109	119	125
	壁付き梁曲げ耐力 <i>bQmw</i> (kN) (壁を考慮した略算式)	_	_	378	595
	梁せん断耐力 bQsu (kN) (壁考慮なし荒川 mean 式)	143	192	196	199
	柱曲げ耐力時の梁せん断力 <i>cQmu</i> (kN) (壁考慮なし略算式)	151	205	200	202
	柱せん断耐力時の梁せん断力 _c Q _{su} (kN) (壁考慮なし荒川 mean 式)	197	200	205	208
	耐震壁のせん断耐力 wQsu (kN) (終局強度型指針式)	_		192 (156*)	200
	接合部せん断強度時の梁せん断力 V _{jsu} (kN) (終局強度型指針式)	137	157	173	181
	接合部釣合い破壊の終局モーメント時 の梁せん断力 V _{jmu} (kN)	107	98	107	113
実験値/計算値 Qmax/wQsu		_	_	1.05	1.14
実験値/計算値 Qmax/min(bQms,wQsu, Vjmu)		1.00	1.15	1.53	2.03

表-4 実験値と計算値の一覧

*壁考慮なし累加強度式の梁曲げ耐力と耐震壁のせん断耐力の平均

モーメントの関係による式(3)によって算出した。なお, ストレスブロックの形状を表す係数βおよびストレスブ ロックの高さと中立軸から圧縮縁までの距離の比を表す 係数β1は,主筋が丸鋼でコンクリートが低強度であるた めに早期付着劣化が生じて付着力がなくコンクリートの 圧縮力のみが作用する応力状態を考慮して1とした。

梁端圧壊で破壊に至った試験体 No.1 は,付着力をゼロ とした一般化累加強度式による計算値と良い対応を示し た。接合部破壊に至った試験体 No.2 は,接合部釣合い破 壊時の終局モーメントによる計算値と良好に対応してお り,破壊形式も的確に判定することが可能であった。腰 壁・垂れ壁を有する試験体 No.4 は,壁のせん断強度計算 値と概ね一致しており,接合部破壊時の終局モーメント による計算値が最も小さい値であることから最終的な破 壊形式の判定も可能であることがうかがえる。また,腰 壁のみを有する試験体 No.3 は,一般化累加強度式による 梁曲げ耐力計算値と壁のせん断強度計算値の平均値と概 ね対応しており,実験結果の破壊状況と整合する結果で あった。

$$\frac{1}{2}b_b D_b \sigma_B \le (a_t + a_c)\sigma_y \ \mathcal{O} \succeq \stackrel{*}{\ge} M_{ms} = \frac{1}{8}b_b D_b^2 \sigma_B \tag{1-1}$$

$$\frac{1}{2}b_b D_b \sigma_B > (a_t + a_c)\sigma_y \ \mathcal{O} \succeq \overset{*}{\succeq}$$
$$M_{ms} = \frac{1}{2}(a_t + a_c)\sigma_y D \left(1 - \frac{(a_t + a_c)\sigma_y}{b_b D_b \sigma_B}\right)$$
(1-2)

$${}_{b}Q_{ms} = \frac{M_{ms}}{(L_{b} - D_{c})/2}$$
 (1-3)

$$M_{jb} = \frac{1}{8}b_j D_c^2 \sigma_B + \frac{1}{4}D_b V_c + \frac{1}{4}D_c V_b$$
(2)

$$V_{jmu} = \left(\frac{1}{8}b_j D_c^2 \sigma_B\right) \middle/ \left(L_b - \frac{D_b}{4} \frac{L_b}{H_c} - \frac{D_c}{4}\right)$$
(3)

ここで、 b_b :梁幅、 D_b :梁せい、 σ_B : コンクリート圧 縮強度、 a_t :梁の引張鉄筋断面積、 a_c :梁の圧縮鉄筋断面 積、 σ_y :梁主筋の降伏強度、 M_{ms} :累加強度理論による曲 げモーメント、 bQ_{ms} :累加強度理論による梁の曲げ強度、 L_b :梁の反曲点間距離、 M_{jb} :接合部釣合い破壊の終局モ ーメント、 V_{jmu} :接合部釣合い破壊の終局モーメント時の 梁せん断力、 b_j :接合部の有効幅、 D_c :柱せい、 V_c :柱の せん断力、 V_b :梁のせん断力、 H_c :柱の反曲点間距離

5. まとめ

1970 年以前の旧耐震基準で設計された既存鉄筋コン クリート造の学校校舎を想定し,腰壁・垂れ壁の有無を 主な変動因子とした低強度コンクリート十字形柱梁接合 部の構造実験を行った。以下に得られた知見を示す。

- (1) 丸鋼を用いた低強度コンクリート十字形柱梁接合部は、早期に付着劣化を生じ、主筋の抜出しに伴う梁端コンクリートの圧壊、または接合部釣合い破壊に至った。
- (2) 腰壁・垂れ壁を有する柱梁接合部は、周辺部材の変 形が抑制されるため、腰壁・垂れ壁の圧壊が先行し て最大耐力に達した。腰壁・垂れ壁の圧壊後は、接 合部の斜めひび割れ損傷が進展して耐力低下し、最 終的に接合部破壊に至った。
- (3) 腰壁・垂れ壁を有する試験体の最大耐力は,壁のな い試験体の約2倍であった。腰壁・垂れ壁の効果で 初期剛性も増大し,層間変形角 R=1/67rad までは靭 性能も向上した。ただし,最大耐力以降の履歴特性 はスリップ性状が顕著になり,急激に耐力低下した。
- (4) 丸鋼を用いた低強度コンクリート柱梁接合部の終 局強度および破壊形式の判定は、一般化累加強度理 論の曲げ強度および接合部釣合い破壊の終局モー メントによって評価可能であった。また、腰壁・垂 れ壁を有する柱梁接合部の最大耐力は、耐震壁のせ ん断強度計算値と概ね一致した。

謝辞

本研究は,JSPS 科学研究費補助金(若手研究(B)課 題番号 25820261)の助成を受けて実施した。また,実験 実施にあたって,佐野達彦氏の協力を得た。

参考文献

- 日本建築防災協会:2001 年改訂版 既存鉄筋コンク リート建築物の耐震診断基準・同解説,2001
- 日本建築学会:鉄骨鉄筋コンクリート構造計算規 準・同解説,2001
- 日本建築学会:鉄筋コンクリート構造保有水平耐力 計算規準(案)・同解説,2016
- 4) 日本建築学会:鉄筋コンクリート造建物の終局強度 型耐震設計指針・同解説,1990
- 5) 塩原等:鉄筋コンクリート柱梁接合部:終局強度と 部材端力の相互作用,日本建築学会構造系論文集, 第74巻,第635号,pp.121-128,2009.1