論文 梁主筋の定着形式が異なる鉄筋コンクリート造柱梁接合部のせん断 強度に関する実験的研究

董 添文*1·花井 伸明*2

要旨: 梁主筋の定着形式が異なる鉄筋コンクリート造柱梁接合部の実験を実施し,接合部のせん断強度に関 して検討した結果,十字形接合部において,梁主筋定着形式の違いにより,通し配筋とした試験体と比べ, 90°折曲げ定着した試験体のほうが接合部せん断強度は低かったが,主筋の定着長さを用いてせん断強度を 算定すれば靱性指針のせん断強度算定式で概ね評価できた。また,十字形接合部で梁主筋の定着形式が異な る場合,パネルゾーンにおけるストラット機構が異なる可能性があり,このことがせん断強度が異なった原 因の一つとして考えられる。

キーワード:通し配筋,折曲げ定着,十字形接合部,ト形接合部,せん断強度,応力伝達機構

1. はじめに

日本建築学会「鉄筋コンクリート造建物の靱性保証型 耐震設計指針・同解説(1999)」¹⁾(以下,靱性指針と呼 ぶ)では,鉄筋コンクリート造建物内の柱梁接合部のせ ん断強度算定式が十字形やト形などといった接合部の形 状および接合部内の梁主筋の定着長さなどの違いに応じ て示されている。しかし,同一形状の接合部で接合部内 の梁主筋の定着形式のみが異なる場合に関して,詳しい 説明がない。

一方,筆者らは過去に左右の梁に段差を有する柱梁接 合部の実験を行い²⁾,段差が小さい場合に段差のない場 合より最大耐力が低下する結果を得ているが,その原因 として,段差のない試験体の梁主筋を通し配筋,段差の ある試験体の梁主筋を折曲げ定着としたためと考えてい る。そこで本研究では,梁主筋の配筋の違いに着目した 接合部の載荷実験を計画した。

類似する実験例としては、例えばプレキャスト梁を想 定して上端筋を通し配筋、下端筋を折曲げ定着とした実 験例³⁾等が挙げられるが、本実験の目的は、上述の段差 梁接合部の応力伝達を解明する一歩として、梁主筋の定 着方法の違いによる影響を抽出するために段差のない十 字形接合部試験体を用いて通し配筋と折曲げ定着につい て接合部のせん断強度を比較検討することである。

2. 実験概要

試験体は以下の3体を計画した。No.1 試験体は梁主筋を接合部内で通し配筋とし、No.2 試験体は梁主筋を接合 部内で90°標準フック⁴⁾(余長は8 d_b , d_b :鉄筋径)に より定着した十字形接合部とし、No.3 試験体はNo.2 試 験体と同一の定着方法を用い、片側のみの梁を有するト

*1 九州大学大学院 人間環境学府空間システム専攻 修士(工学) (学生会員) *2 九州産業大学 建築都市工学部建築学科 教授 博士(工学) (正会員)

試験体		No.1	No.2	No.3		
試験体形状		十字形		ト形		
梁主筋定着形式		通し筋	90 °折曲げ			
梁主筋配筋量		3-D16	3-D13			
梁実験荷重	E	43.1	32.3	43.9		
P_{exp} (kN)	負	40.5	30.4	39.9		
試験体 破壊形式		接合部 せん断 破壊	接合部 せん断 破壊	梁主筋 の定着 破壊		

表-1 試験体梁配筋および実験結果

1収炭 1収

鉄筋	111717月	降伏強度	ヤング係数			
	でした	(MPa)	(GPa)			
	D16	831	211			
	D13	866	210			
	D4	399	191			
コンク リート	圧縮強度	引張強度	ヤング係数			
	(MPa)	(MPa)	(GPa)			
	25.7	2.38	25.4			

表一2 材料特性

状を示す。なお, 縮尺は 1/3 程度を想定した。図-2 に 接合部の配筋詳細を示す。柱の寸法および配筋は各試験 体とも共通とした。試験体パラメータおよび実験結果を 表-1 に, 鉄筋およびコンクリートの材料特性を表-2 に 示す。コンクリート打設は, 試験体を床上に寝かして横 打ちとした。

本研究では接合部の破壊性状を見るために,柱および 梁の主筋を高強度筋とし,全試験体において柱梁曲げ降 伏時の接合部への入力せん断力 V_{mu} が接合部のせん断強 度の計算値 V_{ju} ¹⁾より十分に大きくなるように設計した。 なお, V_{ju} および載荷時の接合部への入力せん断力 V_{j} ²⁾(以 下,接合部せん断力と呼ぶ)は次式で算定した。

$$V_{ju} = \kappa \cdot \phi \cdot F_j \cdot b_j \cdot D_j \tag{1}$$

$$V_{j(+ \neq \mathcal{B})} = \left(\frac{L - D_c}{j_b} - \frac{L}{H}\right) \cdot P_{exp}$$
⁽²⁾

$$V_{j(\restriction \mathcal{H})} = \frac{1}{2} \left(\frac{L - D_c}{j_b} - \frac{L}{H} \right) \cdot P_{exp}$$
(3)

ここに, *κ*: 接合部の形状による係数

 Dj: 柱せいまたは 90 度折曲げ筋水平投影長さ

 L: スパン長さ
 H: 階高
 Dc: 柱せい

 jb: 梁応力中心距離(=7/8d)
 d: 梁有効せい

 Pexp: 左右梁の載荷点の荷重平均値(=(PL+PR)/2)

載荷は柱頭柱脚をピン支持として載荷装置に固定し, 柱フェイスから1100mmの位置に荷重を与え,左右のジ ャッキのストロークが等しくなるよう逆対称で制御し, 正負交番漸増載荷とした。各サイクルで目標とする層間 変形角は(1)1/500 rad, (2)1/200 rad, (3)1/100 rad, (4)1/67 rad, (5)1/50 rad, (6)1/40 rad, (7)1/33 rad, (8)1/25 rad と した。柱の初期軸力は0とした。

3. 荷重変形関係および実験破壊性状

図-3に荷重-層間変形角関係を示す。なお、*P_{ju}、P'_{ju}* は接合部せん断強度の計算値 *V_{ju}*に達する時の梁荷重(式 (1)~(3)により算定)を示す。層間変形角 *R* は、No.1、No.2 試験体は左右の載荷点の変位の合計値をスパン長さ *L* で、 No.3 試験体は載荷点の変位を *L*/2 でそれぞれ除して算定 した。

荷重-層間変形角関係から,全試験体ともエネルギー 吸収能が低い逆S字形を示していることがわかる。また, **写真-1**に最大荷重時および最終サイクル時の損傷状況 を示す。全試験体とも、柱および梁主筋の降伏は確認さ れず,接合部内の横補強筋が概ね 1/50rad のサイクルの ピーク手前で降伏した。損傷は No.3 試験体を除き主に接 合部パネルゾーン内に集中した。

No.1 試験体は正負載荷とも 1/500rad のサイクルで接 合部四隅の梁フェイス位置に曲げひび割れ(①,②)が生 じた。正載荷では、+1/100rad のサイクルで接合部内にお いて左下の入隅部から右上の入隅部まで斜めひび割れ (③)が生じ、その後、負載荷では、-1/100rad のサイク ルで反対方向の斜めひび割れ(④)も生じた。±1/50rad の サイクルで梁荷重が V_{ju}(κ=1.0, D_jは柱せいで算定)に 達する時の梁荷重 P_{ju}を超え、最大荷重に達した。その後 のサイクルでパネルゾーンの斜めひび割れが伸展し、梁 端の曲げ圧縮縁近傍でコンクリートの圧壊が見られ、耐 力低下した。-1/25rad のサイクルのピーク手前で、パネル ゾーンのカバーコンクリートが完全に剥落し、接合部が せん断破壊して荷重が急激に低下した。

No.2 試験体は最初に No.1 試験体と同じような曲げひ び割れ(①,②)が生じ、1/100rad のサイクルで、接合部 内において、正載荷では左下の入隅部から左梁上端筋の 折曲げ開始点近傍までの斜めひび割れ(③)が生じ、負 載荷では右下の入隅部から右梁上端筋の折曲げ開始点近 傍までの斜めひび割れ(④)が生じ始めた。+1/67rad の サイクルで、右上の入隅部から右梁下端筋の折曲げ開始 点近傍までの2本目の斜めひび割れ(⑤)が発生した。

±1/50rad のサイクルで梁荷重が最大荷重となったが, V_{ju} (κ=1.0, D_jは柱せいで算定)に達する時の梁荷重 P_{ju}に 達してない。その後パネルゾーンの斜めひび割れが伸展 し、+1/25rad のサイクルでカバーコンクリートが剥落し た。-1/25rad のサイクルのピーク手前で層間変形角測定 用の変位計が測定点から離れてしまい正確な測定が不可 能となった(以降,破線で示す)が、十分に耐力低下し たと判断し、載荷を終了した。No.1 試験体と比べ, No.2 試験体のほうが正負載荷とも、最大耐力が 25%程度小さ かった。

No.3 試験体は正載荷では、計測上の不具合により +1/500rad のサイクルで目標とする変位を超過したが(約

+1/333rad まで載荷), 層間変形角が小さい範囲であり, かつ次のサイクルの目標を超えていないため、実験結果 への影響はほとんどないと考える。-1/500rad のサイクル で梁フェイスの左下位置に曲げひび割れ(2)が生じた。 正載荷では、+1/100radのサイクルで、上端筋のフック余 長部付近からパネルゾーンの中下位置まで斜めひび割れ (③)が生じた。-1/100radのサイクルで、パネルゾーン の左上から梁下端筋の折曲げ終点付近にかけて斜めひび 割れ(④)が生じた。また、同サイクル以降の各サイク ルにおいて、層間変形角がゼロとなる前後に荷重が一時 的に低下する現象が見られた。+1/67rad のサイクルで, パネルゾーンの左下の入隅部からほぼ梁上端筋の定着部 までの長い 2 本目の斜めひび割れ(⑤)が生じた。± 1/50rad のサイクルで最大荷重に達した。その後のサイク ルでは、パネルゾーンの斜めひび割れが伸展せず、損傷 (⑥)は主に柱フェイス位置に集中した。

No.3 試験体は,梁最大荷重が V_{ju} (κ=0.7,正負載荷時 のストラット伝達長さを考慮し,D_jは正載荷時が梁上端 筋定着長さ,負載荷時が下端筋の定着長さで算定)に達 する時の梁荷重 P_{ju} より低く, No.3 試験体の破壊性状も 他の試験体と異なった。

4. 接合部せん断強度の実験値-計算値の比較

図-4 に接合部せん断強度の実験値 V_{jeep}(式(2)で最大 荷重により算定した)と計算値 V_{ju}(靭性指針で下限値を 表す式(1)で算定した)との比較を示す。なお、縦軸およ び横軸を梁曲げ降伏時の接合部せん断力 V_{mu}で除して基 準化としている。また、**表-3**には各試験体の接合部せ ん断強度の実験値および計算値を示す。

No.1 試験体は,正負載荷とも, V_{jexp}/V_{ju} の値は 1.0 程度 となり,接合部せん断強度の実験値は靭性指針の強度式 で評価でき,接合部がせん断破壊した実験結果と対応し ている。No.2 試験体は No.1 試験体と同様に, D_j を柱せ いとしてせん断強度を算定した結果, V_{jexp}/V_{ju} の値は 0.8 程度となり,靭性指針の強度式が No.2 試験体のせん断強 度を高く評価している。しかし, D_j を梁主筋の水平投影 定着長さとしてせん断強度を算定した結果,正負載荷と も, V_{jexp}/V_{ju} の値は 1.0 に近づいており,接合部がせん断 破壊した結果と照合すると,せん断強度の実験値は靭性 指針の強度式で概ね評価できている。また,No.3 試験体 は形状係数 $\kappa=0.7$ で接合部せん断強度を算定しても,正 負載荷とも V_{jexp}/V_{ju} の値は 0.9 程度となり,試験体の破壊 性状も併せると他の破壊モードにより破壊したことを示

図-4 接合部せん断強度の実験値-計算値の比較

表一3 実験値および計算値一覧							
試験体		接合部の	のせん断強	実験値/計算値			
		V_{jexp}	V_{ju}	V_{mu}	Vjexp/Vju		
No.1	Ē	350	227	898	1.07		
	負	330	327		1.01		
No.2	Ē	261	327	597	0.80(0.97)		
	負	245	(269)		0.75(0.91)		
No.3	正	177	194	200	0.92		
	負	161	183 298		0.88		

(): Djは上下の梁主筋定着長さの平均値で算定した値

している。

5. 主筋定着性状の違いによる応力伝達機構への影響

図-5に No.1 試験体および No.2 試験体の梁および柱 主筋のひずみ分布を示す。

No.1 試験体は,正載荷時において,梁主筋の B6~B10 間のひずみ勾配が大きく,柱の圧縮縁寄りにおいて大き な付着力が生じている。一方,負載荷では,柱の引張縁 寄りとなる B6~B10 間のひずみ勾配は小さく,付着応力 はほぼ生じていない。なお,逆対称性を考慮すれば,正 載荷時の B2~B6 間においても負載荷時の B6~B10 間と同 様な現象が生じていると考えられ,柱の引張縁寄りにお いて梁主筋の付着劣化が生じたといえる。また,梁端部 付近の曲げ圧縮側主筋に引張ひずみが生じている。これ は B2~B6 間で付着劣化が生じた結果,付着領域が右梁ま でシフトしたためであると考えられる。なお,塩原ら⁵⁾ も接合部のせん断破壊の原因として,これに類似した現

象について指摘している。柱については、梁と同様に曲 げ圧縮側の主筋に引張ひずみが生じているが、主筋のひ ずみ分布を見ると、柱主筋ではパネルゾーン内でほぼ均 等な付着応力が生じている。楠原らのは、このような梁 圧縮筋の引張転化という現象により、コンクリートの圧 縮域が増大すると指摘しているが、逆に言えば、本実験 のように梁主筋が降伏せず、接合部のコンクリートの圧 縮で耐力が決まる場合は、ストラットせいが増大すれば それだけ大きな圧縮力が伝達できる(せん断強度が大き くなる)ことになる²。

一方, No.2 試験体は, No.1 試験体と異なり, 梁の曲げ 圧縮側主筋に引張ひずみは生じていない。No.1 試験体は 主に柱の圧縮縁寄りから反対側の梁にかけての付着応力 が梁主筋の引張に抵抗したことに対して, No.2 試験体で は,梁主筋の引張に対する抵抗機構の一部(半分程度) を折曲げ部付近の支圧力が負担していたと考えられる。 また,柱主筋において, No.1 試験体の梁主筋と同様に曲 げ圧縮側に引張ひずみが生じており,さらに No.1 試験体 と異なり梁の引張縁寄りで付着力が減少している。

そこで、図-6(a)(b)に、逆対称性を考慮した上で、負 載荷時の柱梁主筋のひずみ分布を上下または左右に反転 した図を示す。柱梁主筋のひずみ分布から主筋の応力状 態およびこの応力に基づいた主筋の付着応力状態を考え ると,主筋の付着力は図-6(c)に示すように推定できる。 また、図-7に示すような簡略化した圧縮ストラット機 構を想定する。No.1 試験体では、図-7(a)に示すような 対角方向の圧縮ストラット機構を想定する。一方, No.2 試験体では、図-7(b)に示すような、柱梁端圧縮力の一 部と折曲げ部の支圧力の釣合い (Model), 折曲げ部の支 圧力同士の釣合い(Mode2), No.1 と同様な対角圧縮の釣 合い (Mode3), の3つのストラット機構が同時に生じ得 ると考えられる。すなわち, No.1 試験体にはない2つの ストラット機構によりひび割れ性状が変化し、3 章で述 べたような接合部曲げ圧縮側の入隅部と梁の引張主筋の 折曲げ部付近を結ぶ2本の斜めひび割れが生じたものと 考えられる。

以上のように, No.1 試験体と No.2 試験体は梁主筋の 定着性状が違うことで異なる応力伝達機構が生じる可能 性があり、この違いによって、接合部せん断強度の差が 生じたと考えられる。

6. 折曲げ定着の主筋の定着性状

図-8 に No.2 試験体および No.3 試験体において,各 サイクルのピーク時の梁主筋の引張力の挙動を示す。横 軸を層間変形角 R とし,縦軸を梁端(B1,B2,B9,B10)お よび折曲げ開始点(B5,B6,B14)の鉄筋引張力の実験値 *Texp*とする。実験値*Texp*は鉄筋に貼り付けたひずみゲー ジの計測値から算定した。なお,ひずみゲージの計測不 良があり,信頼できるデータのみを示す。

No.2 試験体では、左右梁の引張力の差が大きいものの、 左梁の同一主筋の梁端(B2)と折曲げ開始点(B6)の引 張力の差が大きくなっている。右梁の梁端(B10)と折曲 げ開始点(B14)も同様である。すなわち、梁主筋の水平 部分に十分な付着力が生じているといえる。最大荷重後 も、梁端と折曲げ開始点位置の引張力の差は減少せず、 梁主筋の水平部分で付着力が十分に保たれている。以上 より、No.2 試験体は梁主筋の定着破壊ではないと考えら れる。

一方, No.3 試験体では, B1~B5 間の付着力(B1とB5の引張力の差)が1/100rad前後で最大となり,次の1/67rad以降のサイクルで,付着力が徐々に小さくなり,1/40rad前後でB1~B5間の付着力がほぼ失われた。また,最大荷重後のサイクルでは,柱フェイス位置でひび割れが開いたり閉じたりし,一方でパネルゾーンのせん断ひび割れにほとんど変化が見られなかったこと(写真-1(c)参照)も鑑みると,No.3 試験体は梁主筋の定着破壊と判断する

のが妥当であると考えられる。

7. まとめ

本論では梁主筋の定着形式が異なる鉄筋コンクリー ト造柱梁接合部の正負交番漸増載荷実験を行い,配筋形 式が接合部せん断強度に及ぼす影響について検討した。

その結果,本研究の検討対象の範囲では以下の知見を 得た。

- (1) 十字形接合部において、梁主筋定着形式の違いにより、通し配筋とした試験体と比べ、90°折曲げ定着した試験体のほうが接合部せん断強度は25%程度低かった。しかし、主筋の定着長さを用いて、せん断強度を算定すれば靭性指針で概ね評価できた。
- (2) 接合部内のせん断ひび割れの状況および主筋のひず み計測値に基づいて、各定着形式におけるストラット機構ついて検討した。定着形式によりストラット 機構が異なる可能性があり、このことがせん断強度 が異なった原因の一つとして考えられる。
- (3) ト形接合部の試験体は,梁主筋の水平部分の付着が 失われていることや観察された損傷状況から,定着 破壊したものと考えられる。

謝辞

本研究に際し,九州大学人間環境学研究院教授・蜷川 利彦博士および助教・南部恭広博士には貴重なご助言を 賜りました。また,九州産業大学学生・浦山栄二君,坂 ロ大洋君,中山翔太君の協力を得ました。ここに記して 謝意を表します。

参考文献

- 1)日本建築学会:鉄筋コンクリート造建物の靱性保証型 耐震設計指針・同解説,1999
- 2) 董添文,花井伸明,内田和弘,白川敏夫: RC 段差梁柱 接合部における応力伝達に関する研究,コンクリート 工学年次論文集, Vol.38, No.2, pp.301-306, 2016.7
- 3) 近藤修一,西原寛,松本智夫,鈴木英之:曲げ上げ定 着を有する柱梁接合部に関する実験,コンクリート工 学年次論文報告集,Vol.15,No.2, pp.595-600, 1993.6
- 4)日本建築学会:鉄筋コンクリート構造計算規準・同解 説,2018
- 5) 塩原等, Safaa Zaid, 小谷俊介:柱・梁接合部における 接合部せん断力と接合部内定着力の相互作用, コンク リート工学年次論文集, Vol.23, No.3, pp.355-360, 2001
- 6)楠原文雄,塩原等:接合部破壊が先行する RC 柱はり 接合部の接合部せん断力と接合部破壊の因果関係、コ ンクリート工学年次論文報告集,Vol. 19, No.2, pp. 1005-1010, 1997.7