文 リブ付き分割鋼板及び連続繊維シート巻き立て鉄筋併用工法を用いた 鉄筋コンクリート造部分架構の梁端部補強

渡部 洋*1・佐野 ゆかり*2・槇谷 榮次*3

要旨:リブ付き薄肉分割鋼板に連続繊維シートを貼り付けた補強要素により永久型枠を形成させモルタルと 一体化した補強鉄筋コンクリート(以下 RC と略記)造柱を有する複層 3 スパンの RC 造部分架構について, 梁破壊が先行する場合を対象に梁端部補強を施し,梁端部補強が終局耐力に及ぼす影響を把握することを目 的とした合計 3 体の水平加力実験を行った。実験結果より,梁端に接着系あと施工アンカーを用いて補強筋 を配したグラウトモルタルによる補強要素を追加することにより,既存の RC 造柱梁架構の終局耐力評価に 比べ,高い耐力を付与することが出来た。

キーワード:リブ付き薄肉鋼板,連続繊維シート,終局耐力

1. はじめに

ー般に RC 造柱の補強方法として、コンクリート増設 や鋼板あるいは連続繊維シート巻き立て工法があるが、 溶接等の現場作業の煩雑さ、使用する繊維などの補強要 素と既存躯体間の応力伝達の困難さなどの課題がある。

これらの課題を克服するべく,分割鋼板を用いること により現場作業を軽減し,連続繊維シート巻き立てによ り点溶接されたこれらの一体化を計り,永久型枠として 高流動モルタルを充填し既存 RC 造柱と一体成形される, リブ付き分割鋼板及び連続繊維シート巻き立てによる鉄 筋併用補強工法¹⁾による補強が施された鉄筋コンクリー ト(以下 RC と略記)造柱に関する実験が行われ,その 補強効果に関する検討が行われてきた。

リブ付き分割鋼板及び連続繊維シート巻き立てによ る鉄筋併用補強工法 いによる補強が施された鉄筋コンク リート(以下 RC と略記)造柱を含む2層3スパンの部 分架構,無補強の RC 造架構を含む総数3体について, 地震による水平荷重を想定した実験を行った。

本論文では、実験結果に基づき、D10のあと施工アン カーを介して既存 RC の躯体に接合された梁端部のグラ ウトモルタル増設ならびに配置された補強筋の補強効果 について、考察を行ったので報告する。

2. 実験概要

2.1 試験体

図-1 に実験で用いた試験体外観(No.6)を示す。試験体は、実大の1/3 スケール程度を想定した2層3スパンのRC造柱梁からなる部分架構計3体(No.5~7)である。文献²⁾で報告された2層1スパンの実験における短

*1 関東学院大学 建築・環境学部 建築・環境学科 准教授 博士(工学) (正会員)

*3 関東学院大学 名誉教授 工博

スパン梁を有する試験体4体(No.1~4)との繋がりを考 慮し,連続スパンを有するNo.5~7として示す。直交梁 は有していない。No.5~7は,既存部架構を共通として おり,No.5は既存部のみ,No.6は既存部に対する片面補 強,No.7は既存部に対する全周巻補強からなり,補強方 法を変数とした。図-2~5に試験体詳細を示す。

^{*2} 関東学院大学 建築・環境学部 建築・環境学科 実験講師 学士 (工学)

の値を示した。なお,既存部梁主筋 D16(SD295A)のひ

ずみ硬化は、ひずみ度 1.2%程度から生じていた。

表-1 コンクリートの機械的性質

0.	種類	材齢 [day]	ρ [g/cm ³]	cE [kN/mm ²]	ε ₀ [μ]	σ_B [N/mm ²]	σ_t [N/mm ²]
;	コンクリート	35	2.23	24.6	1,959	26.6	2.59
	コンクリート	38	2.23	23.3	2,011	27.9	2.50
)	グラウト	14	2.23	27.5	4,371 6	63.3	3.78
,	コンクリート	40	2.18	23.4	1,975	23.9	2.24
	グラウト	16	2 23	27.7	4 1 3 3	62.4	2.91

ho:気乾密度, cE:ヤング係数, ϵ_0 :強度時ひずみ度, σ_B : 圧縮強度, σ_1 :引張強度

D6 (SD295A) 2-D16 (SD390) 7540 4 (SD295A) -D16 (SD390) 柱補強主筋2 柱補強主筋4-D16(SD3) 75 95 4040 75 1 0 75 40 170 40 75 100 75 0 65 120 65 250 4040 95 75 Ċ 図-4 補強部梁伏図(No.6)/(No.7) 6 0 170 80 イバーD13(SD345)

図—5 補強部柱断面図(No.6)/(No.7)

既存部部分架構の破壊モードとして, RC 造梁, RC 造 柱ともに曲げ降伏が先行するように設計された。また, 既存 T 形 RC 造梁の曲げ降伏がスラブ圧縮側, スラブ引 張側ともに, 既存部 RC 造柱の曲げ降伏に対し先行する ように設計された。

No.6,7において、梁端部の既存部と補強部の接合は、 梁側面に付与したD10のあと施工アンカーにより行われ た。さらに梁端部の補強として、梁側面に曲げ補強筋お よびせん断補強筋を配置し、既存梁側面表面に目荒らし を施した上、Fc45のグラウトモルタルを増設した。No.6 においては柱フェイス位置から 250mm、No.7 において は全周巻補強後の柱フェイス位置から 250mm の範囲に 梁端部補強を施した。

2.2 使用材料の特性

本実験で使用したコンクリートならびにグラウトモル タルの機械的性質について,**表-1**に示す。コンクリー トは既存部,グラウトモルタルは補強部にそれぞれ用い られている。

実験で使用した鋼材の機械的性質について,表-2に 示す。ヤング係数は,降伏点の2/3の点における応力度 一ひずみ度関係の傾きとして算出した。D6について は、明確な降伏棚は確認されなかったため,0.2%offset

表-2 使用鋼材の機械的性質

顺汉	種類	体田如位	sЕ	εy	εu	σ _y , σ _{0.2}	σι
門 1王	俚积	使用副型	[kN/mm ²]	[µ]	[%]	[N/mm ²]	[N/mm ²]
D6	SD295A	既存スラブ筋*	197	2,150	14.7	423	542
D10	SD295A	既存帯筋および	202	1,729	22.2	349	494
		梁割裂防止筋	202				
D10	SD295A	既存あばら筋	196	1,781	19.3	347	508
D13	SD295A	既存柱主筋	198	1,811	24.8	359	516
D16	SD295A	既存梁主筋	204	1,742	26.6	356	519
D10	SD345	補強後施工アンカー	192	1,978	14.3	379	565
D13	SD345	補強タイバー	195	1,877	20.0	367	552
D16	SD390	補強柱·梁主筋	203	2,367	21.2	480	646

 $_{sE}: ヤング係数, \epsilon_{y}: 降伏時ひずみ度, \epsilon_{u}: 伸び, \sigma_{y}: 降伏点, \sigma_{t}: 引張強度$

補強部の鋼板については P.L.1.6mm 厚(SS400), 繊維 についてはポリエチレン繊維シート(60tf/m)を2 層巻 き,接着方法についてはエポキシ樹脂を用い,文献¹⁾に 準拠した。

2.3 加力及び測定方法

加力装置図を,図-6 に示す。柱端ならびに梁端にピンを有する。鉛直方向の荷重は,既存 RC 造柱に対する 軸力比 0.1 として与えた。水平方向の荷重は,部分架構 の層間変形角として±1/1000,1/400,1/200,1/100,1/67, 1/50,1/33,1/25,1/20rad.に相当する試験機変位(600kN アクチュエータ)について3回繰り返し与えた。また, 鉛直荷重,水平荷重は,既存部架構の中心に作用するよ うにした。同図の左(L) ←右(R)載荷を正側載荷とした。

既存部のコンクリートの材齢は、No.5 を 35 日, No.6 を 38 日, No.7 を 40 日とした。補強部のグラウトモルタ ルの材齢は、No.6 を 14 日, No.7 を 16 日とした。

図-7に、本実験における部分架構の層間変形角Rの

定義を示す。層間変形角 R は,柱ピン位置の水平方向の 相対変位 δ 。を,柱のピン芯間の長さ h=1350mm で除す ことにより得られる。

また,図-7は、各試験体が実際に経験した層間変形 角を示す。水平荷重は、試験機変位により制御しており、 試験機変位に基づく目標の層間変形角よりも実際の層間 変形角は小さい。また、No.7は目標層間変形角 1/33 サイ クル時に最大荷重を迎えており、目標層間変形角 1/25 サ イクル終了時に加力を終了した。

部分架構の水平変位 δ_c ,梁の軸方向変位 δ_{BL} は,高 感度変位計(東京測器研究所,CDP100×4,CDP50× 4,CDP25×4)により計測した。

梁の軸方向変位 *δ*_{BL}は, **図**-1 中に示される柱梁接合 部位置に取り付けた高感度変位計の相対変位とした。

ひずみは、図-2~5の位置に貼付されたひずみゲージ を用い計測した。特にコンクリート、グラウトモルタル の表面のひずみを3軸のひずみゲージを用い計測した。

梁主筋のひずみゲージ貼付位置は、施工時のあばら筋 との取り合いを考慮し、水平荷重時における既存部分架 構の梁端の柱フェイス位置断面から15mm ずつ内側とし た。これにより、計測されている値は、梁の中央に反曲 点位置があるものと仮定すると、危険断面位置で想定さ れる値に対して、360/375=0.96 倍となる。

各サイクルの加力終了時に,ひび割れの発生状況な ど,外付け補強側を中心に,梁の損傷過程を目視により 把握した。

3. 実験結果

3.1 水平荷重一層間変位関係

実験より得られた部分架構の水平荷重*H*-層間変位 δ_c 関係を図-8に示す。全ての試験体において,梁主筋の 降伏を伴う履歴性状を示した。

No.5 においては,スラブ筋降伏を 1/200 サイクル時 に,梁主筋降伏を 1/100 サイクル時に,柱主筋降伏を 1/33 サイクル時に生じた。最大荷重は、1/25 サイクル 時に迎えた。

No.6 においては、梁主筋降伏、スラブ筋降伏を 1/100 サイクル時に、あばら筋降伏を 1/50 サイクル時に、柱 主筋降伏を 1/25 サイクル時に生じた。最大荷重は、 1/25 サイクル時に迎えた。

No.7 においては,梁主筋降伏を1/100 サイクル時に, スラブ筋降伏およびあばら筋降伏を1/67 サイクル時に 生じた。最大荷重は,1/33 サイクル時に迎えた。

補強を施した No.6, No.7 は No.5 と比べ, 高い最大荷 重の値を示した。

3.2 破壊性状

実験より得られた各試験体の最大荷重時ひび割れ状況 (外付け補強側)を図-9に示す。

No.5 は、右側の柱の脚部に付着割裂に起因するひび割 れの発生が認められた。これは、本来の応力状態では発 生しないひび割れだが、柱上下のピンが開放されておら ず、ボルトによる拘束が残った状態で加力を実施したこ とによるものと考えられる。No.6、7 においては、無補強 区間の梁の損傷が顕著であった。これは、端部補強され た箇所に比べ、中央の無補強区間の箇所では生じた応力 度が大きく、相対的に損傷が集中したものと考えられる。

図-9 最大荷重時ひび割れ状況(外付け補強側)

3.2 水平荷重-既存部梁伸び関係

実験より得られた水平荷重 *H*-梁平均軸方向ひずみ度 ε b 関係を図-10 に示す。

柱梁接合部の節点位置の相対的な移動距離から,梁伸 びを評価している。同図の横軸は,梁の軸方向に生じた 伸びの平均値を,補強後の梁の柱フェイス位置間の距離

(No.5~6:750mm, No.7:590mm)で除して得た。ここでは、±1/33サイクルまでに限定して示している。No.5~7において、部分架構の層間変形の増大に伴い、梁は元長さに対して伸びを生じていることがわかる。

3.3 既存部梁主筋降伏時ひずみ度分布

図—11 に梁主筋ひずみ分布(既存部 RC 造梁主筋降 伏時)を示す。図中の鉛直方向の点線は柱フェイス位置 を示しており,ここでは、青の数値線で示される梁下端 主筋に注目する。No.5 では柱フェイス近傍で引張ひず みが卓越しているのに対し,No.6,7 では補強端近傍に て引張ひずみが卓越していることがわかる。梁両端に設 けた端部補強により、特にNo.6 では、梁主筋が降伏す る位置がスパン内側に移動し、これに伴い梁主筋降伏に 要するせん断力が増大し、部分架構の耐力が増大したと 考えられる。

3.4 実験結果一覧

実験結果の一覧を表-3に示す。()内の数値は,荷 重,ひずみならびに梁の軸変位を計測した静的計測とと もに実施した,荷重と層間変位を計測した動的計測の値 を示している。

表—3 実験結果一覧

Ne	H_{y1}	H_{y2}	H_{y3}	H_{y4}	LHmax	$_{\rm R}H_{\rm max}$
INO.	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
5	66.7	105	_	139	170	176
3					(168)	(180)
6	106	85.9	148	184	198	211
0					(194)	(214)
7	129	148	129	-	231	196
/					(228)	(200)

Hy1:スラブ筋降伏時水平荷重,Hy2:梁主筋降伏時水平荷重

Hy3:あばら筋降伏時水平荷重, Hy4:柱主筋降伏時水平荷重 LHmax:正側最大荷重(動的計測), RHmax:負側最大荷重(動的計測)

4. 主筋降伏耐力・終局耐力評価

RC 造部分架構の梁に対する端部補強が,部分架構の 終局耐力に及ぼす影響について考察する。

文献 3)などに基づき,既存無補強 RC 造梁の(1)曲げひ び割れ,(2)主筋降伏,(3)終局耐力の評価を行った。これ により,梁部材の破壊が何によって決定されているかを 推定することを目的とする。

曲げ終局耐力ならびに曲率の評価には、コンクリート の応力度-ひずみ度関係に e 関数 model を,鉄筋の応力 度-ひずみ度関係に完全弾塑性型の Bilinear model を用 いた曲げ解析より得られた値を採用した。No.5~7 のコ ンクリートの圧縮強度、ヤング係数、強度時ひずみ度に ついては、実験結果の平均値を採用した。また、スラブ 筋や梁主筋の降伏後のひずみ硬化の影響は曲げ終局耐力 に考慮しない。

曲げ終局耐力時の梁の部材角 R は,破壊領域の軸方向 の等価長さを既存 RC 造梁全せい D_b と等しいものと仮 定して,曲率 øに乗じた値として算定した。既存部 T 形 断面コンクリート圧縮縁ひずみ度は,スラブ引張側の左 端において-2510µ,スラブ圧縮側の右端において-2530µ であり,それぞれ表-1 に示されるコンクリート

せん断終局耐力 V_uならびに部材角 R の評価には,ヒ ンジを考慮した文献 3)の方法を用いた。

梁の部材角 R に梁の部材長 L を乗じて得られる梁の軸 直交変位 δ_bとして,同等の変位におけるせん断終局耐力 の計算値と前述の曲げ耐力の計算値の最小値として,部 材の終局耐力は決定されるものとする。

No.5~7の既存部梁の復元力特性を図—12に示す。

(梁左端:赤スラブ引張、梁右端:青スラブ圧縮)

既存 T 形 RC 造梁の終局耐力は, No.5 および 6 では, 主筋の曲げ降伏後, 曲げ終局耐力に達した後のせん断破 壊によって, No.7 では, スラブ引張側では曲げ降伏前の せん断破壊によって, スラブ圧縮側では主筋の曲げ降伏 後のせん断破壊によって, それぞれ決定されている。

実験において、No.6,7 では梁中央であばら筋の降伏 が確認されており、せん断引張破壊を生じていることが 読み取れる。

図-8 に,部分架構の水平荷重一層間変位関係に計算 による既存梁の復元力特性を重ね合わせた数値線を黒線 により示す。計算上,柱は剛体回転するものとして評価 しており,一方で実際の部分架構の柱は剛性を有するた め,計算に基づく架構の初期剛性は過大評価となってい る。

最大荷重は、No.5 ではスラブ圧縮側梁断面の復元力 特性により安全側に評価され、No.7 ではスラブ引張側 T 形断面梁の復元力特性により評価され、No.6 ではス ラブ引張側 T 形断面梁の復元力特性により安全側に評 価された。

図—13 に,既往の無補強 RC 造梁に関する評価式を用 いた曲げ降伏耐力ならびに最大荷重の予測精度を示す。 ここで, calQmy:梁主筋降伏時せん断力の計算値, expQmy: 梁主筋降伏時せん断力の実験値, Qmax:梁の最大荷重時 せん断力の実験値とする。calQul は無補強 RC 造梁を対象 としてファイバー解析による梁の曲げ終局耐力と修正荒 川 mean 式による梁のせん断終局耐力の最小値とし, calQu2 は文献 3)のヒンジを考慮する方法で得られた梁の 終局耐力の値としている。ここでは,床スラブの効果は 考慮されている。

また,同図には参考として,本実験ならびに文献2) の実験で得られた合計7体の結果(図中◆)に加え,関 東学院大学の講義「建築構造実験」の中で行われた, RC造梁(梁幅150mm,梁せい200mm)18体の4点曲 げ載荷実験の実験結果(図中○)をあわせて示してい る。なお,これら18体は,全て床スラブを有していな い試験体である。

図-13 曲げ降伏および最大荷重の予測精度

主筋降伏耐力の実験値は No.5~7 において計算値を下 回った。これは、本実験において柱軸力を作用させた段 階で、生じた梁下端主筋の初期ひずみの影響によると考 えられる。

No.1~7 の全ての最大荷重の実験値を安全側に評価する際には, calQu2が有効であることが認められる。

No.5,7において,Hmax が梁両端の終局耐力の平均 値に対して上回った。さらに No.6 においては,Hmax が梁両端の終局耐力の平均値に対して上回っただけでな く、スラブ引張側の梁断面における曲げ終局耐力の値を も上回った。このことから,補強による終局耐力の増加 が明確に確認されたのは No.6 であると考える。

部分架構に対する L=R 加力とし, T 形断面梁左端を スラブ引張, T 形断面梁右端をスラブ圧縮として, 梁の 応力を検討する。水平荷重 *H*_{max}=204kN が作用したと き, No.6 の柱フェイス位置における梁の端部曲げモー メントは *M*_{br1}=102×0.50625=51.6kNm, 梁補強端位置に おける曲げモーメントは *M*_{br2}=17.2kNm である。

一方で,既存部 T 形梁のみのスラブ引張側の既存部 T 形梁のみの終局曲げモーメント LMub は 46.0kNm, スラ ブ圧縮側の終局曲げモーメント RMub は 38.8kNm であ り,スラブ圧縮側において少なくとも

dM=51.6-38.8=12.8kNm

の終局端部曲げモーメントの増分が柱フェイス位置で得 られている。

スラブ圧縮側において,補強部の梁主筋1-D16 (SD390)を考慮して,梁の曲げ終局耐力の略算より, 補強部の梁主筋の応力度 σ_{st}は式(3)のように得られる。 $\sigma_{str} = \frac{dM}{a_{tr} \cdot j} = \frac{12.8 \times 10^6}{196.8 \cdot 240 \times 7/8} = 310 \,\text{N/mm}^2 \qquad (3)$

ここで,梁補強部の引張を受ける主筋の断面積を *a*tr, 圧縮合力中心からの応力中心間距離を*j*としている。

また,補強部の梁主筋 D16 を考慮した曲げ解析を行う と,スラブ引張側において,終局曲げモーメント LMur=56.2kNm,終局曲げモーメント時の曲率 ϕ =0.0500m ⁻¹,終局曲げモーメント時の中立軸深さ x_n =51.0mm,ス ラブ圧縮側において,終局曲げモーメント RMur=59.4kNm, 終局曲げモーメント時の曲率 ϕ =0.121m⁻¹,終局曲げモ ーメント時の中立軸深さ x_n =22.0mm が,それぞれ得られ る。

スラブ引張側,スラブ圧縮側ともに,実験より得られ た柱フェイス位置のモーメントより,高い評価を与えて いること,補強前の既存 RC 造梁断面においてはスラブ 引張側の耐力が高く,補強後の梁断面においてはスラブ 圧縮側の耐力が高くなっていることがわかる。これは, 補強要素の梁主筋の配筋位置の影響と考えられる。ここ で,スラブ引張側において補強後断面のコンクリート圧 縮縁ひずみ度は-2552µ,スラブ圧縮側において補強後 断面のコンクリート圧縮縁ひずみ度は-2667µ であった。

No.6 の実験結果より,式(4)により補強後の T 形断面 RC 造梁の終局曲げモーメント *Mubrl* は得られるものと考 える。

$$M_{ubr1} = 0.9a_t \sigma_v d_b + 0.9a_{tr} \sigma_{str} d_{br}$$

$$\tag{4a}$$

 $\sigma_{\text{str}} = \text{MIN}(\sigma_{\text{y}}, f_{\text{str}}) \tag{4b}$

ここで,柱フェイス位置における梁の圧縮縁から補強 要素の梁主筋までの有効せい*d*_b,梁補強部の主筋の短期 許容引張応力度 *f*_{str}とする。補強要素の主筋の応力度に, 降伏点ではなく許容応力度を採用する理由として,実験 において補強要素の梁主筋が,部分架構の最大荷重時に 未降伏であったことと対応している。現時点では補強梁 主筋の降伏点を用いるよりも合理的であると考えている。

補強要素は,既存梁に対して片面補強など,既存梁断 面の図心から偏心した位置に配置されることを考慮する 必要があると考えられる。本論文で対象とした補強要素 を追加したことによるT形断面RC造梁部材の曲げ耐力 の増加は,引張主筋増設に伴う引張応力の増加と,結果 として中立軸深さが増大することに伴うコンクリートの 圧縮応力の増加に起因するものと考える。

補強後 RC 造梁部材の終局耐力は, T 形断面 RC 造梁 部材のウェブ側において補強端のせん断圧縮破壊が抑制 されたことを考慮したせん断終局耐力と,式(4a),(4b)に よる曲げ終局耐力との,小なる値として決定されるもの と考える。 5. 結論

No.5 においては、スラブ筋降伏を 1/200 サイクル時に、 梁主筋降伏を 1/100 サイクル時に、柱主筋降伏を 1/33 サ イクル時に生じた。最大荷重は、1/25 サイクル時に迎え た。

No.6 においては,梁主筋降伏,スラブ筋降伏を1/100 サイクル時に,あばら筋降伏を1/50 サイクル時に,柱 主筋降伏を1/25 サイクル時に生じた。最大荷重は, 1/25 サイクル時に迎えた。

No.7 においては,梁主筋降伏を1/100 サイクル時に, スラブ筋降伏およびあばら筋降伏を1/67 サイクル時に 生じた。最大荷重は,1/33 サイクル時に迎えた。

No.6, 7 においては,梁危険断面位置が柱フェイス位 置からスパンの内側に移行しており,スラブ引張側の梁 断面においてはグラウトモルタル増設による既存梁幅に 対する貢献幅の増加に伴い,スラブ圧縮側の梁断面にお いては付与した梁の補強筋による曲げ応力下の引張抵抗 の増大に伴い,梁降伏に要するせん断力が増大したもの と考えられる。一方で,柱フェイス位置から梁補強内端 に梁曲げ降伏位置が完全に移行するほどの耐力増は得ら れなかった。

既存部梁の耐力評価に基づき検討すると,最も補強効 果を示したのは No.6 であった。No.7 においては梁の短 スパン化に伴う梁中央のせん断破壊が早期に卓越したこ とにより,梁端部補強の効果は No.6 に比べ小さかったと 考えられる。

謝辞

本研究は、中高層建築耐震機構の委託研究で実施した 内容をまとめたものです。2017年度関東学院大学卒業研 究生の富永城泰氏をはじめ、実験に協力をいただきまし た関係者に心より御礼申し上げます。

参考文献

- 一般社団法人中高層耐震建築機構:リブ付き分割鋼 板及び連続繊維シート巻き立てによる鉄筋併用補 強工法に関する技術指針-HP耐震工法の設計-(第 3版),2018.3
- 2) 渡部 洋,中村 円香,佐野 ゆかり,槇谷 榮次:リ ブ付き分割鋼板及び連続繊維シート巻き立て鉄筋 併用工法を用いた鉄筋コンクリート造部分架構の 実験、コンクリート工学年次論文集, Vol.38, No.2, pp.367-372, 2016.7
- 3) 日本建築学会:鉄筋コンクリート造建物の靭性保証 型設計指針・同解説,1999
- 4) 日本建築学会構造委員会ほか:コンクリート構造部 材の靱性設計手法と耐震架構への応用,1997