論文 寸法効果による影響を考慮した鋼・コンクリート合成柱材の弾塑 性変形性状に関する実験的研究

倉富 洋*1·堺 純一*2·田中 照久*1·池田 将啓*3

要旨:十字鉄骨とコンクリートのみを使用した鋼・コンクリート合成柱材において,寸法効果によるコンク リート圧縮強度の低下が本柱材の曲げ耐力に及ぼす影響を調べるため,一定軸力を保持した状態で正負交番繰 返し載荷実験を行なった。本実験では鉄骨せい500mmを有する試験体を製作し,既往の研究で実施した鉄骨 せい190mmの実験結果と比較したところ,柱脚部において一般化累加強度で算出した曲げ耐力を発揮し,寸 法効果による影響は見られなかった。また,既往の研究で得られた十字鉄骨によるコンクリートの拘束効果 を考慮して弾塑性解析を行なうと,寸法効果の影響に拘らず,実験挙動を精度よく追跡できることを示した。 キーワード:鋼・コンクリート合成柱材, 十字鉄骨, 寸法効果, 弾塑性解析

1. 序

優れた耐震性能を保持しつつ省人化・省力化を目指し た合成柱材の開発を意図して,著者らは十字鉄骨とコン クリートを用いた八角形断面を有する鋼・コンクリート 合成柱材(以下,SC柱材と略記)に関する研究を行なっ ている。既往の研究より,本SC柱材が高軸力下でも優れ た変形性能を示すことを明らかにするとともに,柱梁接 合部ディテールを検討し,弾塑性変形性状および耐力評 価式を提案した^{1), 2)}。

本研究では、断面寸法が大きくなるとコンクリートの シリンダー圧縮強度が発揮されにくくなる寸法効果によ る影響に着目して、本SC柱材の鉄骨によるコンクリート の拘束効果および計算耐力に対するせん断曲げ耐力比と 変形性状について検討する。鋼コンクリート合成柱材に おいては寸法効果の影響が見られることが既往の研究か らも示されている^{例えば3),4)}。本SC柱材においては、文献 1)の実験で使用した試験体は鉄骨せい190mmを有する比 較的小さな断面寸法であり,実大断面とした際の寸法効 果による影響を検討できていなかった。そのため,本実 験では鉄骨せい500mmを有する試験体を製作した。ま た,文献5)では鉄骨せい190mmの本SC柱材に対して,十 字鉄骨によるコンクリートの拘束効果を考慮した弾塑性 解析を実施し,比較的精度よく実験挙動を再現できるこ とを示した。鉄骨せい500mmとした際において同様の解 析手法を用いて,鉄骨によるコンクリートの拘束に及ぼ す寸法効果の影響について解析的に検討した。

2. 実験計画

2.1 試験体

試験体詳細を図-1に示す。実大断面を想定して柱断 面500x500mm, せん断スパン比3.0を有する試験体を4体 製作した。以下に試験体の製作方法について概略説明す

*3 福岡大学大学院 工学研究科博士課程前期

る。本実験で使用した十字鉄骨は、9mm, 12mm, 16mm の鋼板 (SS400材)を溶接して製作した。また, 柱頭部に は載荷治具との接続用の厚さ32mmのベースプレートを 設け, 柱鉄骨フランジとは完全溶け込み溶接, 柱鉄骨 ウェブとは隅肉溶接で接合した。コンクリートは呼び強 度 30N/mm²で, 早強ポルトランドセメントと最大寸法 20mmの骨材を用い, 縦打ちで打設した。

寸法効果による影響およびフランジ幅厚比の違いが柱 材の挙動に及ぼす影響を調べるため,表-1に示す試験 体を選定した。本SC柱材の十字鉄骨は曲げせん断抵抗だ けでなく、コンクリートの拘束効果の役割も兼ねるため、 フランジ幅厚比の違いが挙動に及ぼす影響を検討する。 表-1中に、建築物の構造関係技術基準解説書のに基づい た、フランジおよびウェブの部材種別を示す。同表中の 試験体 No.5 および No.6 は文献 1)で実施した鉄骨せい 190mmの試験体条件であり、これらの試験体に用いたコ ンクリートの最大骨材径は13mmである。また、表-2に 5号試験片を使用した鋼材の機械的性質を示す。

2.2 載荷方法

載荷装置を図-2に示す。載荷は5000kN試験機を用い て所定の軸力を作用させ、一定に保持した状態で1000kN の水平ジャッキで正負交番繰返し水平力を載荷した。載 荷治具と試験体はPC鋼棒で締め上げて支持ビームと一 体化させた。載荷形式は、部材角2.0%までは0.5%ずつ 漸増させ、部材角2.0%から4.0%まで1.0%ずつ漸増させ るものとした。各変位振幅とも2サイクルずつ繰り返した。ここで、部材角は水平ジャッキ加力位置における水 平変位を柱材長 L で除した値である。水平力は水平 ジャッキに取り付けたロードセルにて計測した。変形 は、柱脚のスタブ部分に変位計フレームを設置し、柱材 の水平変位および軸縮みを測定した。

3. 実験結果

3.1 水平力一部材角関係

図-3に水平力-部材角関係を示す。同図(e), (f)は文献1)にて実施した実験結果を示している。表-3に主要

図-2 載荷方法

No.		长一台华风	フランジ 幅厚比	部材種	別***	鉄骨比 (%)	載荷軸力 ^{**} (kN)	$_{c}\sigma_{B}$	せん断
	<u> 訊</u> 駅 14 名	——杜丁子		フランジ	ウェブ			(N/mm ²)	スパン比
1	SC(12.8)36-0.30	CH-500x230x9x9	12.8	FC	FA	7.9	3631	36.0	3.0
2	SC(9.6)36-0.30	CH-500x230x9x12	9.6	FB	FA	9.1	3977	36.5	3.0
3	SC(7.2)36-0.30	CH-500x230x9x16	7.2	FA	FA	10.8	4390	36.3	3.0
4	SC(5.0)36-0.30	CH-500x120x9x12	5.0	FA	FA	8.0	3111	36.3	3.0
5	SC(8.3)30-0.30*	CH-190x100x4.5x6	8.3	FB	FA	12.4	647	26.7	2.1
6	SC(5.0)30-0.30*	CH-190x60x4.5x6	5.0	FA	FA	10.9	522	27.6	2.1

表-1 試験体一覧

* 試験体 No.5 および No.6 は文献 1) で実施した試験体条件(コンクリートの最大骨材径 13mm)

** 軸力比 n は 0.3 で共通。 n=N/_{sc}N_u, N:載荷軸力, _{sc}N_u: SC 柱断面の圧縮耐力, _{sc}N_u=_cA · _cσ_b+_sA · _sσ_y, _cA: コンクリート断面積, _cσ_b: コンクリートの圧縮強度, _sA: 十字鉄骨断面積, _sσ_y: 鉄骨の降伏点

*** 部材種別の判別:フランジはFA=0.322(E/_sσ_y)^{1/2}, FB=0.406(E/_sσ_y)^{1/2}, FC=0.525(E/_sσ_y)^{1/2}, ウェブはFA=1.46(E/_{sw}σ_y)^{1/2}で計算。 E:鋼材のヤング係数, _{st}σ_x, _wσ_y: それぞれ,フランジおよびウェブの降伏応力度

使用箇所	鋼種	t (mm)	$\sigma_y (\text{N/mm}^2)$	$\sigma_u (\text{N/mm}^2)$	$E (\text{N/mm}^2)$	Elng. (%)	<i>Y.R</i> .				
フランジ、ウェブ		9	261	428	2.08x10 ⁵	43.4	0.61				
フランジ	SS400	12	293	469	2.07x10 ⁵	45.5	0.63				
フランジ		16	317	463	2.17x10 ⁵	45.1	0.68				

表-2 鋼材の機械的性質

t:板厚, σ_v :降伏点強度, σ_u :引張強さ,E:ヤング係数,Elng: (伸び率,Y.R:降伏比, ε_v :降伏ひずみ

な実験結果を記載した。図-3中の破線は鋼材の降伏応 力度とコンクリート強度を用いて計算した一般化累加強 度 M_{pc} (表-3中 M_{pcl} と表記)を柱脚部で発揮するとして 式(1)で求めた塑性崩壊機構形成時の耐力である。同図中 の実線はコンクリート強度を0.85倍して計算した一般化 累加強度(表-3中 M_{pcl} と表記)で求めたものである。

$$Q = \frac{M_{pc}}{L} - N \cdot R \tag{1}$$

ここで、L:スタブフェイスから水平加力位置までの

距離, N: 柱軸力, R: 部材角である。

図-3より,全ての試験体で実験耐力は*M_{pcl}*および*M_{pc2}*で計算した塑性崩壊機構形成時の耐力を上回り,実験終 了時まで紡錘形の履歴性状を描いていることがわかる。

写真-1に実験後の試験体を示す。全ての試験体において、部材角1.0%までに柱脚部付近の鉄骨間のコンクリートにひび割れが発生した。続いて、部材角2.0%までにコンクリートの剥落が観察された。また、試験体SC(9.6)36-0.30は部材角2.0%付近で鉄骨強軸フランジの

柱脚部付近における局部座屈が観察され,試験体 SC(7.2)36-0.30および試験体SC(5.0)36-0.30では部材角 3.0%で観察された。

3.3 フランジ幅厚比の違いによる影響

前述した破壊過程でも述べたように、フランジ幅厚比 が大きいほど早期に鉄骨フランジの局部座屈が観察され たが、局部座屈を生じたのちも耐力低下はほとんど見ら れていない。また、試験体SC(5.0)36-0.30のようにフラン ジ幅を細くしても、計算耐力と比較すると M_{max}/M_{pcl} で 1.13倍、 M_{max}/M_{pc2} で1.22倍(表-3参照)発揮している。 本SC柱材においてフランジの局部座屈が発生しても耐 力低下が見られなかった要因は、十字鉄骨によるコンク リートの拘束効果を十分に発揮しており、かつ鉄骨ウェ ブがコンクリートで拘束されているため、合成効果が期 待できるためだと考えられる。また、試験体SC(12.8)36-0.30および試験体 SC(9.6)36-0.30の鉄骨フランジの構造 ランクは、それぞれFCおよびFBランクであるが、いず れの構造ランクでも安定した履歴性状を示した。

図-4に中心軸位置における軸縮み-部材角関係を示 す。いずれの試験体でも明瞭な差異は見られず, 概ね同 様の縮み量が計測された。部材角3.0%以降で軸縮みが増 大しているが,これは鉄骨フランジが柱脚部で局部座屈 を生じ,付随してコンクリートの剥落が多く見られたた めである。部材角4.0%時においても軸縮みは15mm以下 (軸ひずみにして1.0%) に抑えられており, 脆性的な挙 動につながることはなかった。

3.4 寸法効果の影響

図-3(e),(f)に文献1)で実施した鉄骨せい190mmを 有する試験体の実験挙動を示す。同程度の幅厚比を有し ている試験体SC(9.6)36-0.30と試験体SC(8.3)30-0.30*(図 -3(b),(e)参照),および試験体SC(5.0)36-0.30と試験体 SC(5.0)30-0.30*(図-3(d),(f)参照)をそれぞれ比較す ると,いずれもエネルギー吸収能力に優れた紡錘形の履 歴性状を描いていることが分かる。また,図-5には繰 返しに伴う抵抗曲げモーメントの推移を示す。縦軸には 各除荷点におけるPA効果を考慮した柱脚位置での抵抗 モーメントを各試験体の最大曲げモーメントで除した値 を、横軸には各除荷点の部材角を一般化累加強度*M_{pc2}を* 発揮するときの部材角*R_{p2}*で除した値を取っている。同 図より、各々の試験体とも、断面寸法の違いに拘らずほ ぼ同様の挙動を示していることがわかる。図-6に水平 力載荷後の軸ひずみの推移を示す。軸ひずみは、それぞ れ鉄骨せい500mmの試験体は検長区間1500mmで、鉄骨 せい190mmの試験体は検長区間800mmで、軸縮み量を 除した値である。いずれの試験体も、軸ひずみの累積は 概ね同様の傾向を示していることが分かる。更に、崩壊 形式においてもコンクリートの剥落およびフランジの局 部座屈発生等、破壊性状は文献1)の実験と同様の性状を 示したことから、本実験条件下における断面寸法では寸 法効果の影響はあまりないと云える。

4. 軸力と曲げせん断を受ける柱材の弾塑性解析 4.1 解析方法

(b) SC (9. 6) 36–0. 30

(c) SC(7.2)36-0.30 写直-1

)36-0.30 (d) SC(5.0)36-0.30 写真-1 実験後の試験体

表-3 主要な実験結果一覧

	実験耐力								計算耐力		M _{max}		M _{max}	
試験体名	Q_{max} (kN)		R _{max} (%)		M_{max} (kNm)		R _{max} (%)		M_{pcl}	M_{pc2}	M _{pc1}		M _{pc2}	
	正	負	Ē	負	E	負	Ē	負	(kNm)	(kNm)	н	負	ΤĒ	負
SC(12.8)36-0.30	578	-585	1.36	-1.41	942	-960	1.40	-1.93	894	830	1.05	1.07	1.13	1.16
SC(9.6)36-0.30	659	-683	1.88	-1.41	1143	-1173	2.78	-2.85	1056	991	1.08	1.11	1.15	1.18
SC(7.2)36-0.30	776	-790	2.58	-1.34	1360	-1360	3.80	-2.84	1263	1196	1.08	1.08	1.14	1.14
SC(5.0)36-0.30	467	-462	1.37	-1.36	775	-775	2.72	-2.82	689	641	1.12	1.12	1.21	1.21
SC(8.3)30-0.30*	199	-196	2.51	-2.51	88	-89	3.98	-5.96	81	78	1.09	1.10	1.13	1.14
SC(5.0)30-0.30*	148	-146	2.50	-2.46	66	-67	5.99	-5.96	55	53	1.20	1.22	1.25	1.26

軸力と曲げせん断を受ける本SC柱材の弾塑性解析を 行うため,解析モデルを図-7に示すような弾塑性ヒン ジ部と剛体からなるものと考え,柱材の変形を弾塑性ヒ ンジ部に集中させ、その点での断面のモーメントー曲率 関係を求め、力の釣合を満足させることにより、柱の挙 動を解析した。弾塑性ヒンジ部での曲率 øと柱部材角Rの 間に式(2)が成立つと仮定している。式(3)中のαはSRC 柱材の実験と解析の初期剛性を合わせることで求められ た式であるフ。

$$R = \alpha \cdot L \cdot \phi \tag{2}$$

$$\alpha = 0.1 + 1.3 \frac{D}{L} \tag{3}$$

ここで, D: 断面せいである。

係モデルを,図-8,図-9にそれぞれ示す。コンクリー トの応力-歪関係は崎野・孫モデルを使用し, 十字鉄骨 によるコンクリートの拘束効果を考慮している。なお, 解析手法の詳細は文献5)を参照されたい。

4.2 実験挙動と解析結果の比較

図-10に実験結果と解析結果の比較を示す。同図(e) のみやや乖離が見られているが,フランジ幅厚比の違い に拘らず,いずれの試験体も精度よく実験挙動を追跡で きていることが分かる。なお、190mm試験体において大 きな乖離が見られたのは同図(e)の試験体のみであった 5)。最大耐力は実験挙動の方が大きく発現される傾向に ある。大変形時になると実験耐力は徐々に低下する一方 で,解析における水平抵抗力の低下はあまり見られな い。これは本解析では鉄骨フランジの局部座屈の影響を

図-5 抵抗曲げモーメントの推移

考慮していないためである。また,除荷剛性ならびに紡 錘形の膨らみは鉄骨せい500mmの実験挙動をよく評価で きている。

十字鉄骨によるコンクリートの拘束効果は, 崎野・孫 式を基にして、式(4)、式(5)で考慮している?。

$${}_{c}\sigma_{cB} = {}_{c}\sigma_{B} + k' \cdot \sigma_{r} \tag{4}$$

$$k' = \frac{2.3}{\sigma_{c}^{0.65}}$$
(5)

ここで、σ, ε, : 十字鉄骨で拘束されたコンクリート強 度, $\sigma_{\mathbf{k}}$:無拘束コンクリート強度, k':有効拘束係数, $\sigma_{\mathbf{k}}$: 鉄骨フランジに作用するコンクリートの側圧である。

図-11に有効拘束係数-側圧関係を示す。図中のプ ロットは本試験体条件で計算した値である。式(5)は鉄骨 せい200mmの断面を有する本SC柱材の中心圧縮実験に より得られた結果であるが、この評価式を用いた本解析 手法でも本実験条件下において寸法効果の影響を考慮す ることなく,鉄骨せい500mmの実験挙動を追跡可能であ ると考えられる。

5. 結論

八角形断面を有する鋼・コンクリート合成柱材の寸法 効果の影響について検討するため,一定軸力下における 繰返し載荷実験を行なったところ,以下の知見を得た。 1)フランジ幅厚比の違いに拘らず,いずれの試験体も安 定した履歴性状を示し,一般化累加強度を用いた計算 耐力を発揮した。また、文献1)で実施した鉄骨せい 190mmの試験体と同様な履歴性状ならびに破壊性状を

図-6 軸ひずみの推移

3

示したことから、本実験条件下において、鉄骨せい 190mmから500mmを有する断面形状では曲げ耐力に おける寸法効果による影響は見られない。

- 2) 鉄骨フランジにFC ランクを使用しても、安定した塑 性変形能力を示した。また,フランジ幅を細くしても, 十字鉄骨によるコンクリートの拘束効果によって安定 した履歴性状を示す。
- 3) 十字鉄骨によるコンクリートの拘束効果を考慮した弾 塑性解析を行なうと,鉄骨せい500mmの試験体でも実 験挙動を精度良く評価できた。

謝辞

本研究は平成30年度科学研究費助成事業・基盤研究(c) (課題番号18K04452,研究代表: 堺純一)の助成を受け た。また、試験体の製作および載荷実験にあたり、 福岡 大学教育技術職員の石橋宏一郎氏と大野敦弘氏および, 吉村威吹氏をはじめとする同大学堺研究室の卒研生にお 世話になった。ここに記して,感謝の意を表します。

参考文献

- 1) 倉富洋, 堺純一, 田中照久, 川原健輔: 十字鉄骨とコ ンクリートで構成された合成柱材の弾塑性変形性状に 関する実験的研究,日本建築学会構造工学論文集, Vol.60B, pp.65-71, 2014.3
- 2) 倉富洋, 堺純一, 田中照久, 渕上大貴: 鋼・コンクリー ト合成柱材と鉄骨梁で構成された骨組の弾塑性変形性 状に関する実験的研究, コンクリート工学年次論文 集, Vol.40, No.2, pp.1117-1122, 2018.7
- 3) 崎野健治,山口達也,中原浩之,向井昭義:コンクリー ト充填円形鋼管短柱の中心圧縮耐力,構造工学論文 集, Vol.48B, pp.231-236, 2002.3
- 4) 藤本利昭, 小松博, 櫻田智之, 帥橋憲貴, 三橋博已: 薄肉鋼管で補強した鉄骨コンクリート合成柱の軸圧縮 性状, 日本建築学会技術報告集, Vol.18, No.39, pp.565-570, 2012.6
- 5) 倉富洋, 堺純一, 田中照久, 川原健輔:八角形断面を 有する鋼・コンクリート合成柱材の弾塑性変形性状に 関する解析的研究, コンクリート工学年次論文集, Vol.36, No.2, pp.1039-1045, 2014.7
- 6) 建築物の構造関係技術基準解説書編集委員会:2015 年版建築物の構造技術関係技術基準解説書, 2015
- 7) 堺純一,松井千秋:鉄骨鉄筋コンクリート柱材の復元 力特性に関する研究ー単一H形鋼を内蔵したSRC柱 の骨格曲線の定式化-,日本建築学会構造系論文集, Vol.534, pp.183-190, 2000.8